+ All Categories
Home > Documents > Full Families on Multimodal Maps on the Circle

Full Families on Multimodal Maps on the Circle

Date post: 21-Jan-2016
Category:
Upload: fergal
View: 20 times
Download: 0 times
Share this document with a friend
Description:
Full Families on Multimodal Maps on the Circle. E. de Faria, W. de Melo, P. Salomão, E. Vargas. GOAL. Find models and parametrize dynamical behaviors. Describe each model or behavior. Multimodal maps on the circle. 3. 2. G. 1. 0. -1. 1. 0. Blaschke Products. History. 1. 0. ii). - PowerPoint PPT Presentation
Popular Tags:
15
Full Families on Multimodal Maps on the Circle E. de Faria, W. de Melo, P. Salomão, E. Vargas
Transcript
Page 1: Full Families on Multimodal Maps on the Circle

Full Families on Multimodal Maps on the Circle

E. de Faria, W. de Melo,

P. Salomão, E. Vargas

Page 2: Full Families on Multimodal Maps on the Circle

GOAL

• Find models and parametrize dynamical behaviors.

• Describe each model or behavior.

Page 3: Full Families on Multimodal Maps on the Circle

Multimodal maps on the circle

1mod G

).,...,( typeand degree of :

map modal-2 continuous a oflift a ,

2111 dSSg

mG

)1,2,1(

2,d ,4

m

1

0

1

2

3

-10

G

esential are attractors periodic iv)

points periodic of intervals no iii)

intervals wanderingno ii)

attracting are points turningperiodic i)

Page 4: Full Families on Multimodal Maps on the Circle

Blaschke Products

m

j

k

j

jkiaj

za

azzezb

1

2

1)( 00

values.critical ofposition of control

.1 and ;),,,,,( )1 2222,10 j

ijj

mmm reraRrraa j

. type,and degree of control ),( 2)1

00

m

jjm kkddkk

. ,,c points critical 2m moreexist may it

but of points critical are ,0,,,,, 3)

121

111

1

Sc

baa

m

amam

open. is R modal -2 is : 4) 2mmb

1a

2a

maj

j

j k

j

j

k

k

j

j

za

za

zza

az

1

1

Page 5: Full Families on Multimodal Maps on the Circle

full is family The b

. attracting are points

turningperiodic and essential are attractors periodic points, periodic

of interval no intervals, wanderingno have which ,, type

of : maps modal - 2 continuous all ofset thebe Let

121

11

m

SSgm

rotations.by

conjugate are maps ingcorrespond theand of essuch valu

most at are there2)(# and finiteially combinator is If

. toconjugatedally topologicis

such that exist there and Given :THEOREM

b

mgPCg

bg

g

.,...,1,2),...,(),...,,( 1212110 mjkkkk jjmm

m

j

k

j

jkiaj

za

azzezb

1

2

1)( 00

1

01222

)).2cos()2sin(()2sin()(m

jjjm

jtjtmtdttT

Page 6: Full Families on Multimodal Maps on the Circle

History

1900). (Poincaré, irrational

isnumber rotation case in the behaviors eparametriz

rotations irrationalrigidy : on hismsDiffeomorp )1 1

S

76). Thurston, andMilnor by y theor

kneading ( behaviors dynamical all esparametriz ]4,0[for

),1()(family quadratic the: ]1,0[on maps Unimodal)2

xxxQ

0 1

4

.boundary togoesboundary and hismdiffeomorp a is 4)()(by given ]1,0[]4,0[: i) cQ

92). Graczyk, -Swiatek (Lyubich, parameter unique a

toscorrespond attractors periodic without mapeach ii)

21c

Page 7: Full Families on Multimodal Maps on the Circle

86). Strien, van - Melo (de behaviors dynamical esparametriz and

modal- is dimension of simplex ain ),,(for

,)(

family polynomial the: ]1,0[on maps Multimodal )3

10

1110

mmaa

xaxaaxP

m

mm

.1,,1,0)()1(:R,, i) 12m

1 mjvvvvV jjj

m

)(1 c

))(( 1 cP

boundary. togoes boundary and hismdiffeomorp

a is ))(,),(()(by given : ii) 1 mcPcPV

03). Strien, van Shen, ,(Kozlovskiparameter unique a

toscorrespond attractors periodic without mapeach iii)

Page 8: Full Families on Multimodal Maps on the Circle

.C of

mautomorphian by n conjugatio toup unique is map rational The

83). (Thurston, cycleLevy no and orbifold hyperbolic with

maps finiteially combinator of case in the behaviors dynamical

eparametriz maps rational : C of coverings Branched 4)

96). Melo, de - (Martens

behaviors dynamical eparametriz schwarzian negative

with maps Lorenz C of families monotone : ]1,0[on maps Lorenz 5) 3

Page 9: Full Families on Multimodal Maps on the Circle

m

j

k

j

jkiaj

za

azzezb

1

2

1)( 00

R modal -2 is : ofTopology 2mmb

).derivative (umbounded

not do valuescritical respectivebut their colapses points critical Two ii)

colapses. valuescritical respecties their and points critical Two i)

ja1ja

ja

i)ii)

spaceparameter The

.1 and ;)(

connected.simply and connected is iii)

j 22 2

2

1

2

1

meraec jj

j

j ijj

im

ja

am

jj

Page 10: Full Families on Multimodal Maps on the Circle

The map of critical values

mimjdvv

vvkvvvvV

m

jjjiiim

m

2,,1 and ,,1 ,

,0 ,0)( )1( :R,, 2)

12

21212

21

m

j

k

j

jkiaj

za

azzezb

1

2

1)( 00

modal -2 is :R),,,,,,(

).1,0( and 1 where ; 2 ,, 2 for

,1 ),1,0[ 1)

2m2210

2

10

mbrraa

reramj

aa

mm

jji

jjj

boundary. togoesboundary and

hismdiffeomorp a is map This . ) )(,),(( )(

by : define and of lift a Take 3)

21 mcBcB

VbB

mammmamm

mama

caccac

caccac

J

122

1

1212

111

1

1111

1

11

1

1 11

1

)( Jac

. , , , , , )(

)( )(

)(det 1212

1211

2,1

21

1 mammma

mjiij

mjiijij

babbabbc

bbcc

J

Page 11: Full Families on Multimodal Maps on the Circle

Realization of finite combinatorics

. and

,...,1 ,2 such that ),,,(any Choose

. and ),,( type, degree of :

map modal -2 finiteially combinator a oflift a be Let 1)

0

1210

12111

j

jjm

m

kdk

mjkkkk

gdSSg

mG

. and )( , typehas : Take 2) | Vb

.,..., if 1)( and ,..., if 1 mod

)(by defined map thebe ,...,1,...,1:Let iii)

.by Zinto mapped points are z ,..., and

of points turning theare ,...,z such that ,..., Choose ii)

Z.)( such that points theand 1 mod iterates

theirall , of points turning thebe 10Let i)

S C I R O TA N I B M O C

21222

)(

t

t21

21

p2m12

21

pmmpmm

jj

t

tpm

ii

s

ttjjttj

zGzss

Gz

Gztt

zGz

Gzzz

m

m

).1 ,2 ,1( typeand

twodegree of map modal-4 a oflift a i)

gG

1z 4z 6z 8z 10z 12z 14z9z

).14,10,8,6,2(),...,( ),12,9,4,1(),...,( ii) 9541 tttt

.10)14( ,6)12( ,10)10( ,14)9(

,2)8( ,6)6( ,2)4( ,2)2( ,8)1( iii)

2z

Page 12: Full Families on Multimodal Maps on the Circle

Thurston map

10:R ),...,( 1s

1 ss xxxxW

).,...,, ,0( ) ,..., ,()(

such that and

of lift a choose ),...,(),...,( define To

211)()()(

11

221 jttt

ss

mxxx

b

ByyxxT

.1 mod )( that so

),(in point unique theis ,For iii)

Z.)( such that points are ,..., ii)

. of points turningare 10 i)

defineThen

)(

1 1

212

21

ii

ttijj

ttt

tt

yBx

yyytit

yByy

Byy

jj

jpmm

m

Page 13: Full Families on Multimodal Maps on the Circle

Uniqueness

rotation. aby n conjugatio toup equal the

thatfinite,ially combinator and that casein that,implies This

sphere.Riemann the

on coverings branched as equivalentThurston are then theycircle on the

conjugateally topologicare and if fixed, For :THEOREM

21

21

bb

bb

Page 14: Full Families on Multimodal Maps on the Circle

trivial

Page 15: Full Families on Multimodal Maps on the Circle

11)( i) m

jm

m xaxaxaxP

11 )1()( ii) m

jm

m xaxaxaxP

11 )1(1)( iii) m

jm

m xaxaxaxP

03). Strien, van Shen, ,(Kozlovskiparameter unique a

toscorrespond attractors periodic without mapeach iii)


Recommended