+ All Categories
Home > Documents > Full Spectra

Full Spectra

Date post: 19-Nov-2015
Category:
Upload: pocha-bharath-chandra-reddy
View: 78 times
Download: 2 times
Share this document with a friend
Description:
Full spectra presentation by Prof Tuma
19
FULL SPECTRA AS A TOOL FOR ANALYSIS OF A SHAFT ROTATING IN JOURNAL BEARINGS JiříTůma & Jan Biloš 17. listopadu 15, Ostrava Poruba Czech Republic [email protected] & [email protected] VŠB TU Ostrava Faculty of Mechanical Engineering
Transcript
  • FULL SPECTRA AS A TOOL FOR ANALYSIS OF A SHAFT ROTATING IN

    JOURNAL BEARINGS

    Ji Tma & Jan Bilo17. listopadu 15, Ostrava Poruba

    Czech [email protected] & [email protected]

    VB TU Ostrava Faculty of Mechanical Engineering

  • Outline

    Bently Nevada Rotorkit Instrumentation arrangement Orbit plot, one-side versus two-side spectrum RPM profile & displacement time history RMS full multispectrum Fluid induced instability Bently and Muszynska model Equation of motion Shaft/fluid wedge bearing/system as a servomechanism Vibration modes

  • Bently Nevada Rotorkit

  • Bently Nevada Rotorkit - detail

  • Instrumentation arrangementProximity probes

    y(t) imaginary partx(t) real part

    Journal bearing

    Journal

    Shaft

    Fluid lubrication

    Displacement x(t)

    Displacementy(t)

    Complex coordinate of the shaft centre position:

    X

    Y

  • Orbit plot

    + X

    Y

    -

    A

    B = A* (Re)

    (Im)

    Both the vectors A and B are rotating in opposite direction at the same frequency .

    + X

    Y

    -

    A

    B (Re)

    (Im)

    Real harmonic function of time

    Complex harmonic function of time

    Ellipse

  • One-side versus two-side spectrum

    Orbit plot

    -1,5

    0,0

    1,5

    -1,5 0,0 1,5

    X (Re)

    Y (Im

    )

    Time history

    -1,5

    0,0

    1,5

    0,0 0,5 1,0

    Time [s]

    X, Y

    (Re,

    Im)

    Autospectrum

    0,00,20,40,60,81,01,2

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    Frequency [Hz]R

    MS

    X +

    j Y

    Time history

    -1,5-1,0-0,50,00,51,01,5

    0,0 0,5 1,0Time [s]

    X (R

    e)

    Autospectrum

    0,0

    0,2

    0,4

    0,6

    0,8

    -5 -4 -3 -2 -1 0 1 2 3 4 5Frequency [Hz]

    RM

    S X

    Autospectrum

    0,0

    0,2

    0,4

    0,6

    0,8

    0 1 2 3 4 5Frequency [Hz]

    RM

    S X

    Two-side spectrum One-side spectrum

    Two-side spectrum

    symmetry

    non-symmetry

    Fourier Transform

    FT

    FT

  • RPM profile & displacement time historyTachometer

    1000

    1500

    2000

    2500

    0 5 10 15Time [s]

    RPM

    Time History

    -200-100

    0100200300400500

    0 5 10 15Time [s]

    mic

    ron X

    Y;;

    Steady-state vibration

  • RMS full multispectrum of signal x(t) + j y(t)

    -100 -9

    0 -80 -70 -60 -50 -40 -30 -20 -10 0 10 2

    0 30 40 50 60 70 80 90 100

    16931935

    21832378

    24062212

    19751727

    010203040506070

    RMS m

    Frequency [Hz]

    RPM

    Autospectrum : X + jY

    60-7050-6040-5030-4020-3010-200-10

    0.475 ord 1.0 ord 2.0 ord

  • Fluid induced instability

    Time : X (Resampled) ; Y (Resampled)

    -150-100-50

    050

    100150

    0 1 2 3 4 5 6 7 8 9 10Revolution [-]

    m

    X (Resampled)Y (Resampled)

    Orbit plot

    -150-100

    -500

    50100150

    -150 0 150

    X [m]

    Y [

    m]

    Autospectrum : X (Resampled) + jY (Resampled)

    0,475 ord

    0

    20

    40

    60

    80

    -3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0

    Order [-]

    RM

    S [

    m]

    Self- excited whirl vibration

    Low rotational speed vibration

  • Full order-multispectrum of signalx(t) + j y(t)

    -2,0

    -1,8

    -1,6

    -1,4

    -1,2

    -1,0

    -0,8

    -0,6

    -0,4

    -0,2 0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    1,8

    2,0

    174619072057219423252384240123922299218120451896173415551350

    RMS dB / ref 1 m

    Order [-]

    RPMAutospectrum : X (Resampled) + Y (Resampled)

    35-4030-3525-3020-2515-2010-155-100-5

    Proportionality of the whirl vibrationfrequency to the shaft rotational speed

    0.475 ord 1.0 ord

    -0.475 ord

  • Bently and Muszynska model

    avgv BearingShaft

    = avg

    v

    Average fluid angular velocity

    Fluid circumferential velocity ratio

    rotrotrot DK rrF &+=

    Fluid forces acting on the rotor

    Spring and damper systemrotating at the angular frequency

    Fluid wedge

  • Fluid forces in stationary coordinate

    Fluid forcesTransform to stationary coordinates

    r Rotating

    Stationary

    t

    ( )( ) ( )tjj

    tj

    rotrot

    rot

    ==

    expexp

    rrrrr&&

    rrrF += jDDK &

    Direct Quadrature

    Tangentionalforce

    Direct force

    Gravity force

    An example of force balance

  • Equation of motionAngular velocity is completely independent of the rotor angular velocity

    Equation of motion

    Perturbation balance force( )( )+= tjmruonPerturbati exp2F

    ( ) ( )( )+=++ tjmrjDKDM u exp2rrr &&&

    ( ) ( )( ) ( )+

    =jDMK

    jmrj u22 expexpA

    Amplitude A and phase of the rotor shaft centre-line rotating at the angular velocity

    ( )( )+= tjexpArSolution takes a form

  • Shaft/fluid wedge bearing/system as a servomechanism

    Direct stiffness

    Quadrature stiffness

    ( )2+=

    =

    MjDKjKDirect

    ( ) DjjKQuadrature =

    ( ) ( )20 +

    =MKjD

    DjG

    Open-loop frequency transfer function

    ( )jKDirect1

    ( )jKQuadrature

    Rotorload

    Fluid wedgesupport

    +

    -

    Rotor shaft eccentricity position

    Positive feedback

    Equation of motion

  • Closed-loop stability margin

    => Bently and Muszynskathreshold

    ( ) 10 =CritjG

    According to the Nyquist stability criterion, a margin of stability is resulting from

    => Mechanical resonanceMKCrit =

    2

    CritCrit =

    =

    MKCrit

    => Fluid resonance

    ( )jG0

    Real

    (-1,0)

    stable

    margin

    unstable0=

    0=

    0=

    Crit=

    Crit

    Imag

    Nyquist plot ofin complex plane

    Crit>

    Crit

  • Vibration modes

    -120-80-40

    04080

    120

    0 5 10 15 Time [s]

    mic

    ron

    X;;

    Crit=

    Crit

    Unbalance effect Unbalance effect

    0,1

    1

    10

    100

    0 5 10 15 20

    Time [s]

    Mag

    nitu

    de

    x2 x1 x2 x3 x

    ( ) 10 =jG

    0

    10

    20

    30

    40

    50

    60

    70

    1000 1300 1600 1900 2200 2500

    RPM

    Mag

    nitu

    de

    xcoast down

    run up

    ( ) 2=MtyeccentriciK=>

    Magnitude self-control

    Crit=

    Harmonic envelopes

    Fluid Induced vibrationEccentricity

    Wal

    l

    Cen

    tre

    Stiffness K

  • Whirl & WhipFluid Induced Instabilities

    Whirl vibration

    Whip vibration

    Bently & Muszynskathreshold

    Measurement range for this paper

    An example Subharmonic

    Harmonics of rotational frequency

  • Conclusion

    This presentation describes using full spectra for rotor system diagnostics

    The full spectrum is a good tool for studying rotor instability in journal bearings

    The presentation demonstrates whirl vibration and the independence of the ratio relating the precession speed to the shaft rotational speed with respect to the shaft absolute rotational speed

    Bently and Muszynska model gives explanation of the rotor instability


Recommended