+ All Categories
Home > Documents > Function of Random Variables - people.ysu.edu

Function of Random Variables - people.ysu.edu

Date post: 14-Feb-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
8
Function of Random Variables FRV - 1 1 Functions of Random Variables 7.1 Introduction Methods for finding distribution of function of one or more random variables: 1. Distribution Function Technique 2. Transformation Technique 3. Moment Generating Function Technique How to find the distribution of a random variable Y that is a function of several random variables X 1 , X 2 , โ€ฆ, X n that has a joint probability distribution? = ( 1 , 2 , โ€ฆ, ) 7.2 Distribution Function Technique For finding the probability density function with a given joint probability density, the probability density function of = ( 1 , 2 , โ€ฆ, ) can be obtained by first finding the cumulative probability or distribution function F(y)= โ‰คy = (( 1 , 2 , โ€ฆ, ) and then differentiate it to get the p.d.f. = () 4 Example: Let X ~ U(0,1), and Y = , find . . . of . G(y) = P(Y โ‰ค y) = P( โ‰ค y) = P(X โ‰ค y 1/n ) = F(y 1/n ) = y 1/n g = 1 1 โˆ’1 ,0โ‰คโ‰ค1 0, elswhere. 5 Example: Let X has the following p.d.f., G(y) = P(Y โ‰ค y) = P( 3 โ‰ค y) = P(X โ‰ค y 1/3 ) = 6 1 โˆ’ y 1/3 0 = 3y 2/3 โ€“ 2y, for 0< y <1 = 6 1โˆ’ , 0<<1 0, elswhere g = 2(y โˆ’1/3 โ€“ 1), 0<<1 0, elswhere. find the p.d.f. of Y = 3 . 6 Example: Let X have a p.d.f. f(x) and Y = 2 , find . . . of . G(y) = P(Y โ‰ค y) = P( 2 โ‰ค y) = P(-y 1/2 โ‰ค X โ‰ค y 1/2 ) = F(y 1/2 ) - F(- y 1/2 ) g(y) = 1 2 (y 1/2 ) + f(โˆ’ y 1/2 )
Transcript

Function of Random Variables

FRV - 1

1

Functions of Random Variables

7.1 Introduction

Methods for finding distribution of function of one

or more random variables:

1. Distribution Function Technique

2. Transformation Technique

3. Moment Generating Function Technique

How to find the distribution of a random variable Y

that is a function of several random variables X1, X2,

โ€ฆ, Xn that has a joint probability distribution?

๐‘ฆ = ๐‘ข(๐‘ฅ1, ๐‘ฅ2, โ€ฆ, ๐‘ฅ๐‘›)

7.2 Distribution Function Technique

For finding the probability density function with a

given joint probability density, the probability

density function of ๐‘Œ = ๐‘ข(๐‘‹1, ๐‘‹2, โ€ฆ, ๐‘‹๐‘›) can be

obtained by first finding the cumulative probability

or distribution function

F(y)= ๐‘ƒ ๐‘Œ โ‰ค y = ๐‘ƒ(๐‘ข(๐‘‹1, ๐‘‹2, โ€ฆ, ๐‘‹๐‘›)

and then differentiate it to get the p.d.f.

๐‘“ ๐‘ฆ =๐‘‘๐น(๐‘ฆ)

๐‘‘๐‘ฆ

4

Example: Let X ~ U(0,1), and Y = ๐‘‹๐‘› , find ๐‘. ๐‘‘. ๐‘“. of ๐‘Œ.

G(y) = P(Y โ‰ค y)

= P(๐‘‹๐‘› โ‰ค y)

= P(X โ‰ค y1/n )

= F(y1/n )

= y1/n

g ๐‘ฆ = 1

๐‘›๐‘ฆ

1๐‘›โˆ’1, 0 โ‰ค ๐‘ฆ โ‰ค 1

0, elswhere.

5

Example: Let X has the following p.d.f.,

G(y) = P(Y โ‰ค y) = P(๐‘‹3 โ‰ค y)

= P(X โ‰ค y1/3 )

= 6๐‘ฅ 1 โˆ’ ๐‘ฅ ๐‘‘๐‘ฅy1/3

0

= 3y2/3 โ€“ 2y, for 0< y <1

๐‘“ ๐‘ฅ = 6๐‘ฅ 1 โˆ’ ๐‘ฅ , 0 < ๐‘ฅ < 1

0, elswhere

g ๐‘ฆ = 2(y โˆ’1/3 โ€“ 1), 0 < ๐‘ฆ < 10, elswhere.

find the p.d.f. of Y = ๐‘‹3.

6

Example: Let X have a p.d.f. f(x) and Y = ๐‘‹2 , find ๐‘. ๐‘‘. ๐‘“. of ๐‘Œ.

G(y) = P(Y โ‰ค y)

= P(๐‘‹2 โ‰ค y)

= P(-y1/2 โ‰ค X โ‰ค y1/2)

= F(y1/2) - F(- y1/2)

g(y) = 1

2 ๐‘ฆ๐‘“(y1/2) + f(โˆ’ y1/2)

Function of Random Variables

FRV - 2

7

Example: Let X have a p.d.f. f(x) and Y = |X|, find ๐‘. ๐‘‘. ๐‘“. of ๐‘Œ when ๐‘‹ ~ ๐‘ 0,1 .

G(y) = P(Y โ‰ค y)

= P(|X|โ‰ค y)

= P(-y โ‰ค X โ‰ค y)

= F(y) - F(- y)

g(y) = ๐‘“(y) + f(โˆ’y), for y > 0

when ๐‘‹ ~ ๐‘ 0,1 , g(y) = 2๐‘“(y) , for y > 0

= 21

2๐œ‹๐‘’โˆ’

๐‘ฆ2

2

-y 0 y 8

Example: Let X have a p.d.f. ๐‘“ ๐‘ฅ =1

๐œƒ๐‘’โˆ’

๐‘ฅ

๐œƒ, for ๐‘ฅ > 0,

find p. d. f. of ๐‘Œ = ln ๐‘‹ .

G(y) = P(Y โ‰ค y)

= P(lnX โ‰ค y)

= P(X โ‰ค e y )

= 1

๐œƒ๐‘’โˆ’

๐‘ฅ

๐œƒ ๐‘‘๐‘ฅ๐‘’๐‘ฆ

0

= - ๐‘’โˆ’๐‘ฅ

๐œƒ ๐‘’๐‘ฆ

0= 1 โˆ’ ๐‘’โˆ’

1

๐œƒโˆ™๐‘’๐‘ฆ

g(y) = Gโ€ฒ(y) = 1

๐œƒ๐‘’๐‘ฆ๐‘’โˆ’

1

๐œƒโˆ™๐‘’๐‘ฆ

, - < y <

9

Example: If the joint density of X1 and X2 is given by

Find the probability of Y = X1 + X2

F(y) = P(Y โ‰ค y) = P(X1 + X2 โ‰ค y)

๐‘“ ๐‘ฅ1, ๐‘ฅ2 = 6๐‘’โˆ’3๐‘ฅ1โˆ’2๐‘ฅ2 , for ๐‘ฅ1 > 0, ๐‘ฅ2 > 0

0, elsewhere

= 1 + 2e-3y โ€“ 3e-2y

F(y) = f (y) = 6(e-2y โ€“ e-3y), for y > 0,

f (y) = 0, elsewhere.

x1 + x2 = y = 6๐‘’โˆ’3๐‘ฅ1โˆ’2๐‘ฅ2

๐‘ฆโˆ’๐‘ฅ2

0

๐‘ฆ

0๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2

0 y

10

Example: If X1 and X2 are independent random variables

having U(0,1), find the distribution function of Y = X1+X2.

F(y) = 0, if y โ‰ค 0.

๐‘“1 ๐‘ฅ1 = 1 = ๐‘“2 ๐‘ฅ2 ๐‘“ ๐‘ฅ1, ๐‘ฅ2 ,

for 0 < ๐‘ฅ1< 1, 0 < ๐‘ฅ2< 1.

y = x1 + x2

0 1

1

x1

x2

F(y) = 1

2๐‘ฆ2, if 0 < y โ‰ค 1.

F(y) = 1 โˆ’(2โˆ’๐‘ฆ)2

2, if 1 < y โ‰ค 2.

F(y) = 1, if y > 2.

11

7.3 Transformation Technique: One Variable

For discrete random variable, whether X and Y = u(X)

is one-to-one or not, finding the distribution of Y is

straight forward substitution.

Example: Let X be the number of heads in tossing a

balanced coin three times, find the probability

distribution of Y = 1/(1+X) . (One-to-one function)

x 0 1 2 3

f(x) 1/8 3/8 3/8 1/8

y 1 1/2 1/3 1/4

g(y) 1/8 3/8 3/8 1/8 12

Example: Let X be the number of heads in tossing a

balanced coin three times, find the probability

distribution of Y = (1 - X)2 . (Not one-to-one function)

x 0 1 2 3

f(x) 1/8 3/8 3/8 1/8

y* 1 0 1 4

g(y*) 1/8 3/8 3/8 1/8

y 0 1 4

g(y) 3/8 4/8 1/8

Function of Random Variables

FRV - 3

13

Inverse Function Theorem :

For functions of a single variable, if u is a continuously

differentiable function with nonzero derivative at the

point x, then u is invertible in a neighborhood of x, the

inverse is continuously differentiable, and

where y = u(x).

๐ท๐‘ฆ๐‘ขโˆ’1(๐‘ฆ) =1

๐ท๐‘ฅ๐‘ข(๐‘ฅ)

14

Theorem 7.1: (Univariate Transformation Theorem)

Let f(x) be the probability density of the continuous

random variable X at x. If the function given by y =

u(x) is differentiable and either (monotone) increasing

and decreasing for all values within the range of X that

has density, then the equation y = u(x) is one-to-one and

x = w(y), and the probability density of Y = u(X) is

given by

g ๐‘ฆ = ๐‘“ ๐‘ค ๐‘ฆ โˆ™ ๐‘คโ€ฒ ๐‘ฆ , for ๐‘ขโ€ฒ(๐‘ฅ) โ‰  0

0, elsewhere.

(๐‘ขโˆ’1 ๐‘ฆ )โ€ฒ = ๐‘คโ€ฒ(๐‘ฆ) =1

๐‘ขโ€ฒ ๐‘ฅ=

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ

15

g ๐‘ฆ = ๐‘“ ๐‘ขโˆ’1 ๐‘ฆ โˆ™

๐‘‘

๐‘‘๐‘ฆ๐‘ขโˆ’1 ๐‘ฆ , for ๐‘ขโ€ฒ(๐‘ฅ) โ‰  0

0, elsewhere.

Another version of the formula: u-1 (y) = w(y)

16

y

x

y = u(x)

b

a

w(a) w(b)

P(u(X) โ‰ค y) = P(X โ‰ค w(y))

u(x) is increasing function

x

y

Y = 2X

0 .5 1

0 1 2

f(x)

g(y)

Example: X ~ U (0, 1)

17

y

x

y = u(x) b

a

w(b) w(a)

P(u(X) โ‰ค y) = P(X w(y))

u(x) is decreasing function

x

y

Y = -2X

0 .5 1

- 2 - 1 0

f(x)

g(y)

Example: X ~ U (0, 1)

18

Let u(x) be a strictly decreasing function in the range

of X, and w be the inverse function of u, i.e., u-1 .

G(y) = P(Y โ‰ค y) = P(u(X) โ‰ค y)

= P(X w(y)) = 1 - P(X < w(y)) =1 - F(w(y))

g(y) = G (y) = - F (w(y)) = -f(w(y))wโ€ฒ(y)

Since u(x) is a decreasing function then wโ€ฒ(y) < 0. If

u(x) is a increasing function in the range of X, then

G(y) = P(Y โ‰ค y) = P(u(X) โ‰ค y)

= P(X โ‰ค w(y)) = P(X < w(y)) = F(w(y))

g(y) = G (y) = F (w(y)) = f(w(y))wโ€ฒ(y), with wโ€ฒ(y) > 0.

g ๐‘ฆ = ๐‘“ ๐‘ค ๐‘ฆ โˆ™ ๐‘คโ€ฒ ๐‘ฆ , for ๐‘ขโ€ฒ(๐‘ฅ) โ‰  0

0, elsewhere.

Function of Random Variables

FRV - 4

19

Example: Let X have the exponential distribution with

p.d.f. f(x) given by

find the p.d.f. of the random variable Y = ๐‘‹. Sol: For y > 0, y = ๐‘ฅ x = y2 .

w(y) = y2 , w(y) = 2y

g(y) = ๐‘“(๐‘ฆ2 ) โˆ™ 2๐‘ฆ = ๐‘’โˆ’๐‘ฆ2|2๐‘ฆ|

๐‘“ ๐‘ฅ = ๐‘’โˆ’๐‘ฅ, for ๐‘ฅ > 0,0, elsewhere

g ๐‘ฅ = 2๐‘ฆ๐‘’โˆ’๐‘ฆ2, for ๐‘ฆ > 0,

0, elsewhere. (Weibull Distribution)

for y > 0

20

Example: Let X be the a random variable takes the

distance for 0 to a point on the x-axis where the double

arrow will point to, when it is spun. The random

variable Q is the angle that has uniform density

find the p.d.f. of the random variable X.

๐‘“ ๐œƒ = 1

๐œ‹, for โˆ’

๐œ‹

2< ๐œƒ <

๐œ‹

2,

0, elsewhere

a q

0 x

x = a tanq

21

a q

0 x

x = a tanq

Sol: x = a tan q ๐‘‘๐œƒ

๐‘‘๐‘ฅ=

๐‘Ž

๐‘Ž2 + ๐‘ฅ2

1

๐œ‹โˆ™

๐‘Ž

๐‘Ž2 + ๐‘ฅ2 g(x) =

=1

๐œ‹โˆ™

๐‘Ž

๐‘Ž2 + ๐‘ฅ2 for - < x < .

22

Example: If F(x) is the distribution function of the

continuous random variable X, find the p.d.f. of Y = F(x).

Sol: Let y = F(x), )()( xfxFdx

dy

.0)(for ,)(

11 xf

xf

dx

dydy

dx

g(y) = f(x) = 1, for 0 < y <1. )(

1

xf

* Distribution function technique for random number

generation using U(0,1) random number generator.

23

Distribution Function Method for Random Numbers:

1. Generate a U(0, 1) random number

2. set this random numbers equal to F(x) and solve

for x.

3. The value x would be a random number from the

distribution that has a distribution function F(x).

Example: Generate a random number from

exponential distribution with parameter q using

U(0,1) random number.

F(x) = 1 โ€“ e-x/q = u u is a random # from U(0, 1)

The random # from the exponential distribution

would be: x = -q ln (1 โ€“ u) 24

Example: If X has the standard normal distribution find

the probability density of Z = X 2.

Sol: z = x 2 is not one-to-one.

First let Y = |X|, then Z = Y 2 = X 2

p.d.f. of Y g(y)= 2n(y; 0, 1) = 2

2๐œ‹๐‘’โˆ’

12๐‘ฆ2

for y > 0

z = y2 , w(z) = y = ๐‘ง

p.d.f. of Z h(z)= g( ๐‘ง ) |w(y)|

=2

2๐œ‹๐‘’โˆ’

12๐‘ง

1

2๐‘งโˆ’

12 =

1

2๐œ‹๐‘งโˆ’

12๐‘’โˆ’

12๐‘ง

for z > 0

(Chi-square distribution with degrees of freedom = 1.)

Function of Random Variables

FRV - 5

25

Example: Let X ~ U(0,1), and Y = ๐‘‹๐‘› , find ๐‘. ๐‘‘. ๐‘“. of ๐‘Œ.

g ๐‘ฆ = 1

๐‘›๐‘ฆ

1๐‘›โˆ’1, 0 โ‰ค ๐‘ฆ โ‰ค 1

0, elswhere. Answer:

26

7.4 Transformation Method: Several Variables

For random variable Y = u(X1, X2) where the joint

distribution or density of X1 and X2 is given, and one

can find the joint distribution or density for Y and X2 or

X1 and Y by holding the other variable fixed, if possible,

and then find the marginal distribution or density

function for Y.

In continuous case, one can first use the transformation

technique with the formula, by holding x1 or x2 fixed,

g ๐‘ฆ, ๐‘ฅ2 = ๐‘“(๐‘ฅ1, ๐‘ฅ2) โˆ™๐œ•๐‘ฅ1

๐œ•๐‘ฆ

g ๐‘ฅ1, ๐‘ฆ = ๐‘“(๐‘ฅ1, ๐‘ฅ2) โˆ™๐œ•๐‘ฅ2

๐œ•๐‘ฆ

or

then find the marginal density of Y.

27

Example: If X1 and X2 are independent random having

Poisson distribution with the parameters l1 and l2 , find

the probability distribution of the random variable Y =

X1 + X2.

Sol: Since X1 and X2 are independent, the joint density is

๐‘“ ๐‘ฅ1, ๐‘ฅ2 =๐‘’โˆ’๐œ†1๐œ†1

x1

๐‘ฅ1!โˆ™๐‘’โˆ’๐œ†2๐œ†2

x2

๐‘ฅ2!=

๐‘’โˆ’(๐œ†1+๐œ†2)๐œ†1x1๐œ†2

x2

๐‘ฅ1! ๐‘ฅ2!

for x1 = 0, 1, 2, โ€ฆ, and x2 = 0, 1, 2, โ€ฆ .

Since y = x1 + x2 then x1 = y - x2

๐‘” ๐‘ฆ, ๐‘ฅ2 =๐‘’โˆ’(๐œ†1+๐œ†2)๐œ†1

๐‘ฆโˆ’x2๐œ†2x2

(๐‘ฆ โˆ’ ๐‘ฅ2)! x2!

for y = 0, 1, 2, โ€ฆ, and x2 = 0, 1, 2, โ€ฆ, y .

Joint Distribution

of Y and X2

28

โ„Ž(๐‘ฆ) = ๐‘’โˆ’(๐œ†1+๐œ†2)๐œ†1

๐‘ฆโˆ’x2๐œ†2x2

(๐‘ฆ โˆ’ ๐‘ฅ2)! x2!

๐‘ฆ

๐‘ฅ2=0

for y = 0, 1, 2, โ€ฆ .

=๐‘’โˆ’(๐œ†1+๐œ†2)

๐‘ฆ!

๐‘ฆ!

(๐‘ฆ โˆ’ ๐‘ฅ2)! x2! ๐œ†1

๐‘ฆโˆ’x2๐œ†2x2

๐‘ฆ

๐‘ฅ2=0

=๐‘’โˆ’ ๐œ†1+๐œ†2 (๐œ†1 + ๐œ†2)๐‘ฆ

๐‘ฆ!

The sum of two independent Poisson random

variables with parameters l1 and l2 is a Poisson

random variable with parameter l1 + l2 .

29

Example: Let random variables X1 and X2 have the

joint p.d.f. as

find the p.d.f. of the random variable Y =

Sol: Since y decreases as x2 increases and x1 hold

constant, we can find a joint density of X1 and Y and

then use transformation technique to find density of Y.

๐‘“ ๐‘ฅ1, ๐‘ฅ2 = ๐‘’โˆ’(๐‘ฅ1+๐‘ฅ2), for ๐‘ฅ1 > 0, ๐‘ฅ2 > 0,

0, elsewhere

๐‘‹1

๐‘‹1+๐‘‹2

๐‘ฆ =๐‘ฅ1

๐‘ฅ1 + ๐‘ฅ2โŸน ๐‘ฅ2 = ๐‘ฅ1 โˆ™

1 โˆ’ ๐‘ฆ

๐‘ฆ for 0 < y < 1

โŸน ๐œ•๐‘ฅ2

๐œ•๐‘ฆ= โˆ’

๐‘ฅ1

๐‘ฆ2 ๐‘” ๐‘ฅ1, ๐‘ฆ = ๐‘’โˆ’๐‘ฅ1/๐‘ฆ โˆ’๐‘ฅ1

๐‘ฆ2 30

๐‘” ๐‘ฅ1, ๐‘ฆ = ๐‘’โˆ’๐‘ฅ1/๐‘ฆ โˆ’๐‘ฅ1

๐‘ฆ2

=๐‘ฅ1

๐‘ฆ2 ๐‘’โˆ’๐‘ฅ1/๐‘ฆ for x1 > 0, 0 < y < 1.

โ„Ž ๐‘ฆ = ๐‘ฅ1

๐‘ฆ2

โˆž

0

โˆ™ ๐‘’โˆ’๐‘ฅ1/๐‘ฆ๐‘‘๐‘ฅ1 Let u = x1 / y

du = -1/y2 dx1

= ๐‘ขโˆž

0

โˆ™ ๐‘’โˆ’๐‘ข๐‘‘๐‘ฅ1

= 1 for 0 < y < 1.

It is a U(0, 1)!!!

Function of Random Variables

FRV - 6

31

Example: Let random variables X and Y have the joint

p.d.f. as

find the joint p.d.f. of X and Z = X + Y & marginal p.d.f.

of Z.

๐‘“ ๐‘ฅ, ๐‘ฆ = 2, for ๐‘ฅ > 0, ๐‘ฆ > 0, ๐‘ฅ + ๐‘ฆ < 10, elsewhere

z = x + y y = z โ€“ x , and 0 < z โ€“ x and 0 < z < 1

x

z

0 1

1

z = x ๐‘” ๐‘ฅ, ๐‘ง = ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ

๐‘‘๐‘ง

= 2 โˆ™ 1 = 2

โ„Ž ๐‘ง = 2๐‘‘๐‘ฅ = 2๐‘ฅ ๐‘ง0

= 2๐‘ง๐‘ง

0

for x < z, 0 < z < 1

for 0 < z < 1 32

Theorem 7.2: (Generalization of Theorem 7.1)

Let f(x1, x2) be the joint probability density of the continuous

random variable X1 and X2. If the function given by y1 = u1(x1,

x2) and y2 = u2(x1, x2) are partially differentiable w.r.t. both x1

and x2 and are one-to-one for which f(x1, x2) โ‰  0, โˆ€ x1, x2 in

the space of X1 and X2 , and the inverse functions x1 = w1(y1,

y2) and x2 = w2(y1, y2) can be uniquely determined (by solving

for x1 and x2), the joint p.d.f. of Y1 = u1(X1, X2) and Y2 = u2(X1,

X2) is

where J is the Jacobian of the transformation, is the

determinant

g ๐‘ฆ1, ๐‘ฆ2 = ๐‘“[w1(y1, y2),w2(y1, y2)] โˆ™ ๐ฝ

๐ฝ =

๐œ•๐‘ฅ1

๐œ•๐‘ฆ1

๐œ•๐‘ฅ1

๐œ•๐‘ฆ2

๐œ•๐‘ฅ2

๐œ•๐‘ฆ1

๐œ•๐‘ฅ2

๐œ•๐‘ฆ2

33

Example: Let random variables X1 and X2 have the

joint p.d.f. as

a) find the joint p.d.f. of Y1= X1 + X2 , and Y2 =

๐‘“ ๐‘ฅ1, ๐‘ฅ2 = ๐‘’โˆ’(๐‘ฅ1+๐‘ฅ2), for ๐‘ฅ1 > 0, ๐‘ฅ2 > 0,

0, elsewhere

๐‘‹1

๐‘‹1+๐‘‹2.

๐‘ฆ1 = ๐‘ฅ1 + ๐‘ฅ2 and ๐‘ฆ2 =๐‘ฅ1

๐‘ฅ1 + ๐‘ฅ2

โŸน ๐‘ฅ1 = ๐‘ฆ1๐‘ฆ2 and ๐‘ฅ2 = ๐‘ฆ1(1 โˆ’ ๐‘ฆ2)

๐ฝ =

๐œ•๐‘ฅ1

๐œ•๐‘ฆ1

๐œ•๐‘ฅ1

๐œ•๐‘ฆ2

๐œ•๐‘ฅ2

๐œ•๐‘ฆ1

๐œ•๐‘ฅ2

๐œ•๐‘ฆ2

=๐‘ฆ2 ๐‘ฆ1

1 โˆ’ ๐‘ฆ2 โˆ’๐‘ฆ1= โˆ’๐‘ฆ1

0 < y1 and 0 < y2 <1

34

for 0 < y1 and 0 < y2 <1, and 0 elsewhere.

g ๐‘ฆ1, ๐‘ฆ2 = ๐‘’โˆ’๐‘ฆ1 โˆ’๐‘ฆ1 = ๐‘ฆ1๐‘’โˆ’๐‘ฆ1

b) Find the marginal density of Y2 .

โ„Ž ๐‘ฆ2 = ๐‘” ๐‘ฆ1, ๐‘ฆ2 ๐‘‘๐‘ฆ1

โˆž

0

= ๐‘ฆ1๐‘’โˆ’๐‘ฆ1 ๐‘‘๐‘ฆ1

โˆž

0

= (2)

= 1

for 0 < y2 <1, and 0 elsewhere.

35

Example: Let random variables X1 and X2 have the

joint p.d.f. as

a) find the joint p.d.f. of Y = X1 + X2 , and Z = X2 .

๐‘“ ๐‘ฅ1, ๐‘ฅ2 = 1, for 0 < ๐‘ฅ1 < 1,0 < ๐‘ฅ2 < 1,0, elsewhere

๐ฝ =

๐œ•๐‘ฅ1

๐œ•๐‘ฆ

๐œ•๐‘ฅ1

๐œ•๐‘ง๐œ•๐‘ฅ2

๐œ•๐‘ฆ

๐œ•๐‘ฅ2

๐œ•๐‘ง

=1 โˆ’10 1

= 1

y = x1 + x2 , and z = x2

x1= y - x2 , and x2 = z, z < y < z + 1, 0 < z < 1

y

z

0 1 2

1

y = z + x1 , z = x2

36

๐‘“ ๐‘ฆ, ๐‘ง = 1 โˆ™ 1 = 1,

for z < y < z + 1, 0 < z < 1, and 0, else where.

b) Find the marginal density of Y.

โ„Ž ๐‘ฆ =

0, ๐‘ฆ โ‰ค 0

1๐‘‘๐‘ง = ๐‘ฆ,๐‘ฆ

0

for 0 < ๐‘ฆ < 1

1๐‘‘๐‘ง = 2 โˆ’ ๐‘ฆ, 1

๐‘ฆโˆ’1

for 1 < ๐‘ฆ < 2

0, ๐‘ฆ โ‰ฅ 2

y

z

0 1 2

1

Function of Random Variables

FRV - 7

37

Example: Let random variables X1 and X2 have the

joint p.d.f. as

a) find the joint p.d.f. of Z = X + Y , and W = X - Y.

๐‘“ ๐‘ฅ, ๐‘ฆ = 2, for ๐‘ฅ > 0, ๐‘ฆ > 0, ๐‘ฅ + ๐‘ฆ < 1,0, elsewhere

๐ฝ =

1

2

1

21

2โˆ’

1

2

= โˆ’1/2

z = x + y and w = x - y x=(z + w)/2; y=(z-w)/2,

z + w > 0, z - w > 0, and 0< z < 1.

x

z

0 1

1

-1

z โ€“ w = 0

z + w = 0

๐‘” ๐‘ง,๐‘ค = 2 โˆ™ โˆ’1

2= 1

for 0 < z < 1, z > -w, and z > w. 38

b) find the marginal p.d.f. of Z = X + Y .

z

w

0 1

1

-1

z โ€“ w = 0

z + w = 0

๐‘” ๐‘ง = ๐‘”(๐‘ง, ๐‘ค)๐‘ง

โˆ’๐‘ง

๐‘‘๐‘ค

for 0 < z < 1.

= 1๐‘ง

โˆ’๐‘ง

๐‘‘๐‘ค = ๐‘ค ๐‘ง

โˆ’๐‘ง= 2๐‘ง

๐‘” ๐‘ง, ๐‘ค = 1, for 0 < z < 1, z > -w, and z > w.

39

Example: Let random variables X1 and X2 have the

joint p.d.f. as

find the marginal p.d.f. of Z = X + Y .

๐‘“ ๐‘ฅ, ๐‘ฆ = 2, for ๐‘ฅ > 0, ๐‘ฆ > 0, ๐‘ฅ + ๐‘ฆ < 1,0, elsewhere

๐‘” ๐‘ง = ๐‘”(๐‘ฅ, ๐‘ง)๐‘ง

0

๐‘‘๐‘ฅ

for 0 < z < 1.

= 2๐‘ง

0

๐‘‘๐‘ฅ = 2๐‘ฅ ๐‘ง0

= 2๐‘ง

Previous Example: g ๐‘ฅ1, ๐‘ฆ = ๐‘“(๐‘ฅ1, ๐‘ฅ2) โˆ™๐œ•๐‘ฅ2

๐œ•๐‘ฆ

z = x + y y = z โ€“ x

๐‘” ๐‘ฅ, ๐‘ง = ๐‘“(๐‘ฅ, ๐‘ฆ) โˆ™๐‘‘๐‘ฆ

๐‘‘๐‘ง = 2โˆ™ 1 = 2

for 0 < z < 1 and 0 < z โ€“ x .

x

z

0 1

1 z โ€“ x = 0

40

Example: Let random variables X1 and X2 have the

joint p.d.f. as

a) find the joint p.d.f. of Y1 = X12 and Y2 = X1 X2 .

๐‘“ ๐‘ฅ1, ๐‘ฅ2 = 4๐‘ฅ1๐‘ฅ2 , for 0 < ๐‘ฅ1 < 1,0 < ๐‘ฅ2 < 1

0, elsewhere

๐ฝ =

1

2 ๐‘ฆ10

โˆ’1

2๐‘ฆ2๐‘ฆ1

โˆ’3/21

๐‘ฆ1

=1

2๐‘ฆ1

y1 = x12 and y2 = x1x2 x1= ๐‘ฆ1 , x2 =

๐‘ฆ2

๐‘ฆ1,0 <y2< ๐‘ฆ1

๐‘” ๐‘ฆ1, ๐‘ฆ2 = 4 ๐‘ฆ1 โˆ™๐‘ฆ2

๐‘ฆ1๐ฝ

= 4y2 /2y1 =2y2 /y1

y1

y2

0 1

1 y2

2 = y1

for 0 < y2< ๐‘ฆ1

y22 < y1

41

X1, X2 , โ€ฆ , Xn ~ f(x1, x2 , โ€ฆ , xn)

Y1 ~ u1(x1, x2 , โ€ฆ , xn)

Y2 ~ u2(x1, x2 , โ€ฆ , xn)

Yn ~ un(x1, x2 , โ€ฆ , xn) โ€ฆ

g(x1, x2 , โ€ฆ , xn) = f(x1, x2 , โ€ฆ , xn)|J|

๐ฝ =

๐œ•๐‘ฅ1

๐œ•๐‘ฆ1โ€ฆ

๐œ•๐‘ฅ1

๐œ•๐‘ฆ๐‘›

โ‹ฎ โ‹ฑ โ‹ฎ๐œ•๐‘ฅ๐‘›

๐œ•๐‘ฆ1โ‹ฏ

๐œ•๐‘ฅ๐‘›

๐œ•๐‘ฆ๐‘›

42

7.5 Moment-Generating Function Technique

Theorem 7.3 (Generalized Version): If X1, X2, โ€ฆ, Xn

are independent random variables with m.g.f.โ€™s is

i = 1, 2,โ€ฆ, n, then the m.g.f. of is

)(tMiX

n

i

iXY taMtMi

1

)()(

n

i ii XaY1

Function of Random Variables

FRV - 8

43

Example: Find the probability distribution of the

sum of n independent random variables X1, X2, โ€ฆ, Xn

that have Poisson distribution with parameters l1, l2,

โ€ฆ, ln , respectively.

)1()(

-

ti

i

e

X etMl

The m.g.f. of Poisson distribution is

So, for Y = X1+ X2 + โ€ฆ+ Xn , the m.g.f. is

)1)((

1

)1( 21)(-+++

-

tn

ti e

n

i

e

Y eetMllll

which is the m.g.f. of a Poisson distribution with

parameter l = l1+ l2 + โ€ฆ+ ln , therefore, Y has a

Poisson distribution with l = l1+ l2 + โ€ฆ+ ln . 44

Example: Find the probability distribution of the

sum of n independent random variables X1, X2, โ€ฆ, Xn

that have Poisson distribution with parameters l1, l2,

โ€ฆ, ln , respectively.

)1()(

-

ti

i

e

X etMl

The m.g.f. of Poisson distribution is

So, for Y = X1+ X2 + โ€ฆ+ Xn , the m.g.f. is

)1)((

1

)1( 21)(-+++

-

tn

ti e

n

i

e

Y eetMllll

which is the m.g.f. of a Poisson distribution with

parameter l = l1+ l2 + โ€ฆ+ ln , therefore, Y has a

Poisson distribution with l = l1+ l2 + โ€ฆ+ ln .

45

Example: If X1, X2, โ€ฆ, Xn are mutually independent

random variables from normal distributions with

means m1, m2, m3, โ€ฆ, mn, and variances s12, s2

2, s32,

โ€ฆ, sn2, then the linear function

has the normal distribution N(Scimi , Sci2si

2).

n

i

ii XcY1

.1

if :Mean Samplen

cXY i

46

Sol:

+

+

2

1 1

2/

2

1

22

1

222

)()(

tctc

n

i

n

i

tctc

iXY

n

iii

n

i

ii

iiii

i

e

etcMtM

sm

sm

m.g.f. of

n

i

n

i

ii iiccN

1

22

1

, sm

47

Distribution of

If X1, X2, โ€ฆ, Xn are observations of a random

sample of size n from the normal distribution

N(m, s 2), then the distribution of the sample

mean is N(m, s 2/n)

n

i

iXn

X1

1

X

nX

X

ss

mm


Recommended