+ All Categories
Home > Documents > Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization,...

Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization,...

Date post: 07-Jun-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
40
Fundamental Catalysis Science in the DOE/Office of Basic Energy Sciences Chuck Peden, Laboratory Fellow, Emeritus Pacific Northwest National Laboratory DOE, Office of Science and BES Structure About the BES Catalysis Science Program Some current and future challenges and opportunities for the BES CS Program Some examples of specific relevance to emission control catalysis interspersed in the discussion Disclaimer: The opinions presented are those of the presenter and do not necessarily reflect those of the U.S. Department of Energy or Pacific Northwest National Laboratory. Only publicly available information is being shared.
Transcript
Page 1: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Fundamental Catalysis Sciencein the DOE/Office of Basic Energy Sciences

Chuck Peden, Laboratory Fellow, EmeritusPacific Northwest National Laboratory

• DOE, Office of Science and BES Structure• About the BES Catalysis Science Program• Some current and future challenges and

opportunities for the BES CS Program• Some examples of specific relevance to emission

control catalysis interspersed in the discussion

Disclaimer:  The opinions presented are those of the presenter and do not necessarily reflect those of the U.S. Department of Energy or Pacific Northwest National Laboratory.  Only publicly available information is being shared.

Page 2: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

SecretaryRick Perry

$34.5 B FY2018

Department of Energy

Federal EnergyRegulatory

Commission

Under Secretary for Nuclear Security/ Administrator for

Nuclear Security

Dep. Administrator for Defense Programs

Dep. Administrator for Defense Nuclear Nonproliferation

Dep. Administrator for Naval Reactors

Director,Office of Science

$6.3 B

Assistant Secretary for Fossil Energy $727 M

Assistant Secretary for Energy Efficiency and

Renewable Energy$2.3 B

Assistant Secretary for Environmental Management

$7.1 B

Office of Security and Emergency Operations

Chief Information OfficerOffice of Independent Oversight

and Performance AssuranceOffice of Public AffairsOffice of PolicyOffice of Management

and AdministrationOffice of Worker and

Community TransitionOffice of Hearings and AppealsContract Reform and

Privatization Project OfficeDefense Nuclear Facilities

Safety Board LiaisonOffice of Economic Impact and Diversity

Under Secretaries for Science and Energy

National Security

Environmental Clean-Up

Scientific Research

Energy R & D ($4.2 B)

Nuclear Energy, Science & Tech $1.2 BIncludes Used Nuclear Fuel Disposition

ARPA – E$333 M 

Office of Elec. Del. &Rel. $147 M

$14.7 B(42%)

Under Secretary for Management

Inspector General

Boards and Councils

DOE Structure and Budget Breakdown

Chief of Staff

https://www.energy.gov/leadership/organization‐chart

Page 3: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

DOE Office of Science

https://science.energy.gov/about/organization/

Page 4: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

https://science.energy.gov/~/media/bes/pdf/about/BES_Org_Chart.pdf

Page 5: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

DOE Basic Energy Sciences FY18 Budget

https://science.energy.gov/~/media/bes/besac/pdf/201807/BESAC_July2018_Kung.pdf

Page 6: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

https://science.energy.gov/~/media/bes/pdf/about/BES_Org_Chart.pdf

Page 7: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Team Lead – Gail McLean 

Photochemistry and Biochemistry Team

Geosciences

James Rustad

Heavy Element Chemistry

Catalysis Science

Chemical Transformations TeamTeam Lead – Raul MirandaTeam Lead – Jeff Krause

Fundamental Interactions Team

Atomic, Molecular, and Optical Sciences

Condensed Phase and Interfacial Molecular Science

Gregory Fiechtner

Gas Phase Chemical Physics

Wade Sisk

Computational and Theoretical Chemistry

Fuels from Sunlight Energy Innovation Hub

Tom Settersten

Chemical Sciences, Geosciences and Biosciences Division

Bruce Garrett, Division Director      

Mark Pederson

Solar Photo‐chemistry

Chris Fecko

Viviane Schwartz

Philip Wilk

Physical Biosciences

Robert Stack

Photosynthetic Systems

Stephen Herbert

Stefan Vajda

Chris Bradley

Separation Science

PM vacancy

PM vacancy

Page 8: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Team Lead – Gail McLean 

Photochemistry and Biochemistry Team

Geosciences

James Rustad

Heavy Element Chemistry

Catalysis Science

Chemical Transformations TeamTeam Lead – Raul MirandaTeam Lead – Jeff Krause

Fundamental Interactions Team

Atomic, Molecular, and Optical Sciences

Condensed Phase and Interfacial Molecular Science

Gregory Fiechtner

Gas Phase Chemical Physics

Wade Sisk

Computational and Theoretical Chemistry

Fuels from Sunlight Energy Innovation Hub

Tom Settersten

Chemical Sciences, Geosciences and Biosciences Division

Bruce Garrett, Division Director      

Mark Pederson

Solar Photo‐chemistry

Chris Fecko

Viviane Schwartz

Philip Wilk

Physical Biosciences

Robert Stack

Photosynthetic Systems

Stephen Herbert

Stefan Vajda

Chris Bradley

Separation Science

PM vacancy

PM vacancy

Page 9: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

• Office of Energy Efficiency and Renewable Energy (EERE)• Hydrogen and Fuel Cell Technologies

• CO tolerant cathode materials

• Vehicle Technologies (vehicle emission control)• Low temperature (<200 ⁰C) catalysis

• Bioenergy Technologies (biomass conversion)• Stable catalysts in water

• Office of Fossil Energy• Coal liquefaction• CO2 capture and conversion

• Catalytic CO2 reduction

• Natural gas (methane) conversion• C-H activation

Relevance of BES/Catalysis Science to DOE Mission Agencies

Page 10: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

High‐Surface‐Area Ceria by Atomic Layer Deposition on Al2O3

Scientific AchievementConformal, 0.5-nm films of CeO2 were prepared on anAl2O3 support by ALD. The CeO2/Al2O3 catalyst hasidentical catalytic properties to bulk CeO2; but, unlikebulk CeO2, the ALD sample maintains its surface areaand activity after high temperature treatment.

Significance and ImpactCeria is used in three-way auto catalysts and is apromoter in many important reactions, such as water-gas shift (WGS). However, it loses surface area andredox activity under operation. By forming a thinconformal film on Al2O3, surface area and activity aremaintained.

Research Details• A uniform CeO2 film (28-wt%, 0.5-nm thick) was

grown on 130-m2/g Al2O3.• Pd/CeO2/Al2O3 prepared by ALD showed high activity

for WGS and was completely stable upon heating to900°C, while bulk Pd/CeO2 and Pd/CeO2/Al2O3prepared by infiltration were unstable.

• The method is completely general for forming high-surface-area, functional supports.

TEM of Pd/CeO2/Al2O3 prepared by ALD (a) and by impregnation (b), showing the very different structure.

Diagram of the CeO2/Al2O3structures.

CO oxidation rates showing that the of Pd/CeO2/Al2O3 catalyst prepared by ALD exhibits superior stability and performance.

Work was performed at the University of Pennsylvaniaand the University of Michigan.

T. Z. Onn, S. Zhang, L. Arroyo‐Ramirez, Y. Xia, C. Wang, X. Pan, G. W. Graham, and R. J. Gorte, Applied Catalysis B 201 (2017) 430‐437.

Page 11: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Strategic Planning – The Role of PI Meetings

Date of Conference Title of Conference

June 22‐June 24, 2016 Science of Catalytic Reaction Mechanisms

July 19‐July 22, 2015 Benchmarking Catalysis Science

July 20‐July 23, 2014 Frontiers at the Interface of Heterogeneous and HomogeneousCatalysis, II

June 30‐July 2, 2013 Frontiers at the Interface of Heterogeneous and Homogeneous Catalysis

October 2‐5, 2011 Frontiers in Catalysis: Heterogeneous, Surface, Photo‐ and Electrochemical

June 1‐4, 2010 Organometallic and Bioinspired Catalysis Science

May 31‐June 3, 2009 Advanced Synthesis, Characterization, and Modeling

May 18‐21, 2008 Molecular Catalysis Science

May 23‐26, 2007  Interfacial and Nano Catalysis

May 21‐24, 2006 Organometallic, Inorganic, and Bioinspired Chemistry and Catalysis

May 18‐21, 2005 Nanocatalysis Science

11https://science.energy.gov/bes/csgb/principal‐investigators‐meetings/

Page 12: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

2015 PI Meeting Discussions Published in ACS Catalysis

• Using benchmarking to advance catalysis science

• Best practices and opportunities for benchmarking in electro‐, homogeneous (molecular), heterogeneous, and computational catalysis.

• Adopting community defined standards• Incentivizing reproducibility

ACS Catalysis 6 (2016) 2590-2602.

Page 13: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Science for National Needs

Science for Discovery

13

BES strategic planning activitiesinclude “Basic Research Needs” Workshops

National Scientific User Facilities, the 21st century tools of science

https://science.energy.gov/bes/community-resources/reports/

BESAC Future Light

Sources2013

BESAC Report on

Facility Upgrades

2016

ComplexSystems

Page 14: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Informing Current Catalysis Program Strategic Directions

NAS Review of the BES Catalysis Science Program - 2009

Modest changes in portfolio were recommended, consistent with the strategic planning put forward at that time:

Basic Research Needs: Catalysis for Energy - 2007 Grand challenges for catalysis science

Understanding the mechanisms and dynamics of catalyzed reactions at the atomic and molecular scale.Design and controlled synthesis of catalyst structures.

Priority Research Directions:Understanding complex transformations of fossil fuel feedstocksUnderstanding lignocellulosic biomass and the chemistries of deconstructionUnderstanding the chemistry for conversion of biomass-derived oxygenates to fuelsPhoto- and electrochemical conversion of H2O and CO2

Current Strengths Recommendations

Heterogeneous Catalysis

Surface science; nanoscale catalysis; theory

Catalyst design; new synthesismethods; unique reactor systems; new characterization tools; new chemical reactions

Homogeneous Catalysis

Single‐site polymerization, C‐H activation and functionalization, and organic synthesis

C‐H bond functionalization; new approaches to transition metal catalysis and electrochemical catalysis; catalysis for bioderivedmaterials into fuels, bioinspired catalytic processes

Page 15: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Experimental and Theoretical Insights into the Hydrogen‐Efficient Direct Hydrodeoxygenation Mechanism of Phenol over Ru/TiO2

Scientific AchievementBased on experimental and theoretical evidence a newmechanism for direct deoxygenation of phenoliccompounds at the metal/oxide interface wasproposed. This mechanism involves heterolytic H2cleavage to form an interfacial Brønsted acid site.

Significance and ImpactIn contrast to prior studies, this work emphasizes theamphoteric nature of TiO2, rather than its reducibility,as key requirement for selective deoxygenationcatalysts.

Research Details– Isotopic labeling experiments and TEM data areconsistent with direct deoxygenation, not withhydrogenation pathways, for small Ru particle sizes.– Density functional theory (DFT) calculationseliminate hydrogen spillover for support reduction.– Computational modeling suggests that the interplaybetween metal and acid sites to create a bifunctionalenvironment is paramount for efficient C‐O cleavage.

Work was performed at Bates College,U of Houston, and U of Maine, Orono.

R. C. Nelson, B. Baek, P. Ruiz, B. Goundie, A. Brooks, M. C. Wheeler, B. G. Frederick, L. C. Grabow, R. N.  Austin, ACS Catal. 5 (2015), 6509–6523.

(A) Heterolytic H2 dissociation at the Ru/TiO2 interface creates a support water molecule with Brønsted acid character.(B) We propose the that balanced acid/base properties of the amphoteric TiO2 support are largely responsible for selective, direct cleavage of the C‐O bond in phenol.

A

B

Ru

Support Ti TiO

HH H

Ru

Support Ti TiO

H

H H Ru

Support Ti TiO

H

H HO

H

Basicity Acidity

OH H2

Page 16: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Informing Current Catalysis Program Strategic Directions

NAS Review of the BES Catalysis Science Program - 2009

Modest changes in portfolio were recommended, consistent with the strategic planning put forward at that time:

Basic Research Needs: Catalysis for Energy - 2007 Grand challenges for catalysis science

Understanding the mechanisms and dynamics of catalyzed reactions at the atomic and molecular scale.Design and controlled synthesis of catalyst structures.

Priority Research Directions:Understanding complex transformations of fossil fuel feedstocksUnderstanding lignocellulosic biomass and the chemistries of deconstructionUnderstanding the chemistry for conversion of biomass-derived oxygenates to fuelsPhoto- and electrochemical conversion of H2O and CO2

16

Current Strengths Recommendations

Heterogeneous Catalysis

Surface science; nanoscale catalysis; theory

Catalyst design; new synthesismethods; unique reactor systems; new characterization tools; new chemical reactions

Homogeneous Catalysis

Single‐site polymerization, C‐H activation and functionalization, and organic synthesis

C‐H bond functionalization; new approaches to transition metal catalysis and electrochemical catalysis; catalysis for bioderivedmaterials into fuels, bioinspired catalytic processes

Page 17: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Probing a Chemical Bonding Being Born CO + O → CO2 on Ru catalyst

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild‐Pedersen, H. Ogasawara, L. G. M. Pettersson, A. Nilsson, Science, 347, 978‐982 (2015). 

Scientific AchievementUltrafast time resolved X‐ray absorption spectroscopy (XAS) probed the electronic structure during chemicalbond formation.

Significance and ImpactFirst experimental observation of spectra close to transition state for surface chemical reaction. Confirmation of theoretical description of bond formation and, hence, description of surface catalysis

Research Details‐ X‐ray FEL followed the state‐to‐state transition initiate by 400 nm laser pulse.‐ DFT calculations show  transient signatures in XAS are assignable tospecies near the transition states.‐ Short lived O‐CO species are identified along the reaction coordinate.

Linac Coherent Light Source (LCLS) at SLAC

Page 18: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Update on BRN for Catalysis Science 1 Year Ago

https://science.energy.gov/bes/community‐resources/reports/

May 8‐10, 2017

Presentation to BESAC, July, 2017

Page 19: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Changes in Our Energy Landscape Drive the Need for Advances in Catalysis

Quad = 1015 BTU; 2007 consumption ≈ 2015 consumption LLNL flowcharts available from https://flowcharts.llnl.gov

Catalysis(chemical

production)Catalysis (feedstocks to

energy carriers)

Chemical Energy Carriers

Electrical Energy Carriers

Energy Resources

Energy Carriers

Energy Services

% Contribution2007 20150.1 0.5

8.7 8.6

0.9 2.5

0.1 1.9

0.4 0.2

22 29

23 16

3.0 4.8

41 36

Carl Koval ‐ Presentation to BESAC, July 2017

Page 20: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Impact of New Energy Technologies on the US Chemical Industry

americanchemistry.com/Policy/Energy/Shale-Gas

Carl Koval ‐ Presentation to BESAC, July 2017

Page 21: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

New Paradigms in Catalysis Science

Metal-free redox catalysis using Frustrated Lewis Pairs

Room temperature H2 activation leads to hydrogenation of unsaturated organic compounds..

Stabilization of isolated metal atoms on oxide supports

Individual Pt atoms (bright dots) are stabilized on the surface of CeO2and catalyze CO oxidation without sintering.

Outer coordination sphere assistance in multiproton,

multielectron reactions

The rate of electrochemical H2evolution is dramatically enhanced by strategic placement of pendant amines that function as proton relays to a metal hydride.

Carl Koval ‐ Presentation to BESAC, July 2017

Stephan, Acc. Chem. Res.2015, 48, 306-316

Datye et al., Science2016, 353, 150-154.

Bullock et al., Chem. Commun.2014, 50, 3125-3143.

Page 22: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

• Methanol‐to‐olefins technology has emerged (from a 50‐year‐old discovery) as one of the leading technologies for dedicated light olefin synthesis (>20 new plants worldwide)

• Fundamental science was indispensable for targeted catalyst development

Dedicated Olefin Synthesis from Methanol

Aromatic cycle Olefin cycle

CH3OH

H2O

CH3OH

H2O

CH3OH

H2O

H2O

CH3OH

H2O

CH3OH

CH3OH

H2O

H2O

CH3OH

H2O

CH3OH

CH3OH

Olefins,AromaticsWater

Translation

Inspiration

Patience et al., Chem. Eng. Sci. 2007, 62, 5527.

Carl Koval ‐ Presentation to BESAC, July 2017

Page 23: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Low Temperature Catalysts for Diesel Exhaust Aftertreatment

Fuel-efficient diesel vehicles created new challenges for catalysis. Starting in 2007, NOx had to be removed from exhaust gases to meet stricter air quality standards. In selective catalytic reduction (SCR), a Cu/zeolite catalyst uses NH3 to reduce NOx to N2.

Bifunctional Cu/chabazitecatalyst, selective for SCR and resistant to poisoning

due to Cu2+ confinement in small zeolite pores

www.basf.com

Ford DOC-SCR-DPF system layout - Beale, Peden et al., Chem. Soc. Rev. 2015, 44, 7371

McEwen, Peden et al., ACS Catal. 2014, 4, 4093

Carl Koval ‐ Presentation to BESAC, July 2017

Page 24: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Mechanisms and dynamicsControlled catalyst synthesisHeavy fossil energy feedstocksBiologically derived feedstocksConversion of CO2 and H2O

New Catalysis Science to Transform Energy Technologies

Panel 1: Diversified Energy Feedstocks and CarriersPanel 2: Novel Approaches to Energy TransformationsPanel 3: Advanced Chemical Conversion ApproachesPanel 4: Cross-cutting Capabilities and Challenges in

Synthesis, Characterization, Theory and Computation

From feedstock focus to understanding and using chemical complexity.

Susannah ScottUC Santa Barbara

Johannes LercherPacific Northwest National Lab Technical University Munich

Carl KovalUniversity of Colorado, Boulder

BRN 2007 BRN 2017

Carl Koval ‐ Presentation to BESAC, July 2017

The significant changes just described drove the need for a new Basic Research Needs Workshop in Catalysis Science.

Page 25: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Plenary Presentations at 2017 BRN Workshop

Catalyst Design for Sustainable Production of Fuels and Chemicals Jens Norskov (Stanford)

The Nexus of Reaction Mechanism and Dynamic Materials Properties in Designing Catalytic Processes Cynthia Friend (Harvard)

Opportunities for Catalysis in Utilization of Biomass Resources Jim Dumesic (Wisconsin)

Creating New Economic Advantages from US Oil and Gas Jim Rekoske (UOP)

Lessons From the Quest for Cellulosic Biofuels…… Kim Johnson (Shell)

Frontiers, Challenges and Opportunities in Biological and Bio-Inspired Catalysis Russ Hille (UC Riverside)

Impact of Catalytic Technology on Use of Renewable Energy Resources Reuben Sarkar (EERE)

Carl Koval ‐ Presentation to BESAC, July 2017

Page 26: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Plenary Presentations at 2017 BRN Workshop

Catalyst Design for Sustainable Production of Fuels and Chemicals Jens Norskov (Stanford)

The Nexus of Reaction Mechanism and Dynamic Materials Properties in Designing Catalytic Processes Cynthia Friend (Harvard)

Opportunities for Catalysis in Utilization of Biomass Resources Jim Dumesic (Wisconsin)

Creating New Economic Advantages from US Oil and Gas Jim Rekoske (UOP)

Lessons From the Quest for Cellulosic Biofuels…… Kim Johnson (Shell)

Frontiers, Challenges and Opportunities in Biological and Bio-Inspired Catalysis Russ Hille (UC Riverside)

Impact of Catalytic Technology on Use of Renewable Energy Resources Reuben Sarkar (EERE)

Carl Koval ‐ Presentation to BESAC, July 2017

Page 27: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Panel Breakout Sessions at 2017 BRN Workshop

Panel 1: Diversified Energy Feedstocks and CarriersGeoffrey Coates, Cornell University Enrique Iglesia, University of California Berkeley, and LBNL

Panel 2: Novel Approaches to Energy TransformationsMorris Bullock, Pacific Northwest National Laboratory Thomas Jaramillo, Stanford University, and SUNCAT/SLAC

Panel 3: Advanced Chemical Conversion Approaches Maria Flytzani-Stephanopoulos, Tufts UniversityCathy Tway, Dow Chemical CompanyDaniel Resasco, University of Oklahoma

Panel 4: Crosscutting Capabilities and Challenges: Synthesis, Theory, and Characterization

Karena Chapman, Argonne National LaboratoryVictor Batista, Yale UniversitySheng Dai, Oak Ridge National Laboratory

Carl Koval ‐ Presentation to BESAC, July 2017

Page 28: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Panel Breakout Sessions at 2017 BRN Workshop

Panel 1: Diversified Energy Feedstocks and CarriersGeoffrey Coates, Cornell University Enrique Iglesia, University of California Berkeley, and LBNL

Panel 2: Novel Approaches to Energy TransformationsMorris Bullock, Pacific Northwest National Laboratory Thomas Jaramillo, Stanford University, and SUNCAT/SLAC

Panel 3: Advanced Chemical Conversion Approaches Maria Flytzani-Stephanopoulos, Tufts UniversityCathy Tway, Dow Chemical CompanyDaniel Resasco, University of Oklahoma

Panel 4: Crosscutting Capabilities and Challenges: Synthesis, Theory, and Characterization

Karena Chapman, Argonne National LaboratoryVictor Batista, Yale UniversitySheng Dai, Oak Ridge National Laboratory

Carl Koval ‐ Presentation to BESAC, July 2017

Primary outcome of the workshop is a list of “Priority Research Directions”

Page 29: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Priority Research Direction 1Construct catalyst architectures to incorporate strong and weak interactions that organize matter and space beyond the binding siteThe extended structure of the active site includes not only the locations where the molecular orbitals of the reactants interact directly with the catalyst, but also nearby regions in space where the atomic organization in 3-dimensions serves to assemble and precisely position both reacting molecules and non-reacting components such as solvent molecules and counter-ions to achieve selective chemical transformations at high rates.

Fu et al. Proc. Natl. Acad. Sci. 2017, 114, 5930. Scott et al. ACS Catal. 2017, 114, 5930.

Metal nanoparticle catalyst confinement, (A) inside a zeolite pore; (B) inside a carbon nanotube; (C) beneath a graphene sheet

Glucose solvation by water in a zeolite supercage

Carl Koval ‐ Presentation to BESAC, July 2017

Page 30: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Constructing Cooperative Catalyst Architectures

o How do we map the cooperative roles in catalyst-substrate ensembles at an atomistic level, using powerful emerging characterization and theory methods?

o How do we design synthesis methods that direct the organization of structural and functional motifs in the extended catalyst architecture so as to influence the ground and transition states of reacting molecules?

Davis et al., ACS Catal. 2015, 5, 5679Iglesia et al., J. Catal. 2016, 344, 817.

Bimetallic cooperativity in polyol dehydration

Redox-active ligands enable thermally-forbidden cyclodimerization

Chirik et al., Science 2015, 349, 960.Effect of metal-acid site proximity on activity and

selectivity in bifunctional catalysts

Carl Koval ‐ Presentation to BESAC, July 2017

Page 31: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Control the dynamic evolution of catalysts by influencing the rates and directing the pathways for reorganization 

Priority Research Direction 2

Catalysts are inherently dynamic materials whose local and extended structures change continuously, beginning when the components are assembled into a catalytically active architecture and continuing as materials interact with reaction mixtures.

TiOx bilayer on Pdnanoparticle under reducing conditions

TiOx monolayer on Pdnanoparticle under

H2/O2 mixture

No TiOx layer on Pdnanoparticle under oxidizing conditions

Pd

TiO2

TiOx TiOxPdPd

Pan et al. Nano Lett., 2016, 16, 4528-4534.

Carl Koval ‐ Presentation to BESAC, July 2017

Page 32: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Observing and Directing Complex Catalyst Behavior

Kooyman, Helveg, et al. Nature Mater., 2014, 13, 884-890.

Time-resolved TEM images of Pt nanoparticle exposed to CO/O2 at 727 K

o How do we monitor changes in catalysts in real time and relate their consequences to reactivity and selectivity?

o How do we design catalysts to control their rates of activation, deactivation, and reactivation?

Grunwaldt et al. J. Phys. Chem. C, 2009, 113, 3037.

Reduction/ignition of individual Pt-Rh nanoparticles during catalytic partial

oxidation of methane

Carl Koval ‐ Presentation to BESAC, July 2017

Page 33: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Decode complex networks of reactions, and integrate catalytic reactions with molecular transport and separations

Priority Research Direction 3

Emerging chemical fuels and feedstocks are often mixtures that present challenges for catalysis in terms of their inherent complexity and variability. In addition, their highly distributed nature will require entirely new approaches to catalytic processing.

Alternative feedstocks have huge energy potential, and pose unique challenges for catalyst technology.

Municipal Solid

Waste

Flared Gas

AgricultureResidues

Pulp Waste

Wet Sludges

Fats, Oils, and Greases

Complex mixturesDistributed sourcesSolids handling

Carl Koval ‐ Presentation to BESAC, July 2017

Page 34: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Integration of Reaction with Separation and Design for Catalyst Resilience

o How do we design catalysts that adapt to transients in feed composition and reaction conditions, and that are capable of operating in highly distributed systems with minimal external control?

Cronin et al. Chem. Sci. 2013, 4, 3099.

Self-healing oxygen-evolving catalyst

Nocera et al. J. Am. Chem. Soc. 2009, 131, 3838.

Achieving spatial control over catalysts, reactions and separations

Carl Koval ‐ Presentation to BESAC, July 2017

Page 35: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Priority Research Direction 4Design electrocatalyst systems to optimize electron-driven processes for precise chemical transformations efficiently under mild conditions

The interconversion of chemical and electrical energy is based on the ability to store energy in chemical bonds and retrieve energy from those bonds by using the electron potential to control the directions and rates of chemical processes.

Electrochemical systems offer the possibility to drive chemical transformations under mild conditions, where thermal catalysis is inefficient.

Carl Koval ‐ Presentation to BESAC, July 2017

Page 36: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Enhancing Activity in Molecular Electrocatalysts for H2 Production

o How do we design conducting solid/solution interfaces, and coupled redox reaction chemistries, that catalyze electron-driven chemical processes with high precision and efficiency under mild conditions?

o How do we improve electrocatalysts for critical multi-electron, multi-proton reactions, and also expand the repertoire of chemical transformations that can occur effectively in electrochemical systems?

o How do we develop new electrocatalytic systems that circumvent known scaling relationships through detailed mechanistic understanding of catalytic pathways?

Carl Koval ‐ Presentation to BESAC, July 2017

MoS2 nanoparticles

Core-shell MoO3-MoS2 nanowires

Mesoporous MoS2 thin films

[Mo3S13]2- clusters

3

2

1

Jaramillo, Besenbacher et al., Nat. Chem., 2014, 6, 248.

HER activity in 0.5 M H2SO4

Page 37: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Priority Research Direction 5Drive new catalyst discoveries using data science to resolve complex structure-function relations, predict new catalyst properties, and design more incisive experimentsThe complex coupling of many variables that govern catalyst reactivity and its evolution in time makes it challenging to discern relationships between catalyst structure/composition and performance.

High dimensional screening of catalysts for selective oxidation of propene to acrolein

Rajan et al. J. Comb. Chem. 2009, 11, 385Milo, Neel et al. Science 2015, 347, 6223

Multivariate analysis of catalytic C-N bond formation

Carl Koval ‐ Presentation to BESAC, July 2017

Page 38: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Mining Complex Information Using Data Science Approacheso How do we deploy the tools of machine learning to find and extract robust, often

unexpected structure-activity relations from large, heterogeneous datasets? o How do we use this information to predict effective combinations of catalytic

structural components and reaction cascades, leading to entirely new catalyst formulations?

Bligaard, Nørskov, et al. Nat. Commun.2017, 8, 14621

Machine learning simplifies reaction network for syngas (CO+H2) conversion to acetaldehyde over Rh(111)

In situ multimodal 3D chemical imaging of a hierarchically structured core@shellcatalyst for methanol synthesis

Grunwaldt et al. J. Am. Chem. Soc. 2017, 139, 7855

Carl Koval ‐ Presentation to BESAC, July 2017

Page 39: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

As-prepared catalyst Active catalyst Dynamic catalyst behavior Controlled catalystarchitecture and performance

Unsupervisedlearning

Theo

ry a

nd

com

puta

tiona

l m

odel

ing

Correlativelearning

Image recognition

In-situ controlData science:

Syn

thes

is, a

tom

ican

d m

esos

cale

ch

arac

teriz

atio

n

Electronic structure Multiscale modelingAb initio dynamics

after Olga Ovchinnikova, ORNL

o How do we use data science tools to design better experiments with higher resolution and greater sensitivity, and extract more information from them?

Extracting More Detailed Information from Experiments

Molecular dynamics simulations

Carl Koval ‐ Presentation to BESAC, July 2017

Page 40: Fundamental Catalysis Science - CLEERS › ... › 2018CLEERS_-ChuckPeden_Web.pdfpolymerization, C‐H activation and functionalization, and organic synthesis C‐H bond functionalization;

Concluding Remarks

• The BES Catalysis Science (BES/CS) Program is the largest U.S. funder of fundamental catalysis science.

• There are a number of examples of prior funded BES/CS research that has advanced catalytic vehicle emission control technologies.

• Recent Basic Research Needs Workshop on Catalysis is informing the future directions of the BES/CS program:

– Low‐temperature catalysis– Novel catalysis by isolated, oxide‐supported single‐metal atoms– Accounting for ‘weak’ as well as ‘strong’ interactions in catalysis; e.g., ‘confinement’ effects in the nano‐spaces of zeolites

– Use the nascent area of ‘data science’ and ‘machine‐learning’ to utilize greatly expanding amounts of data for understanding and controlling catalytic processes.


Recommended