+ All Categories
Home > Documents > Fundamental (Sub)stellar Parameters: Surface Gravity

Fundamental (Sub)stellar Parameters: Surface Gravity

Date post: 16-Nov-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
30
Fundamental (Sub)stellar Parameters: Surface Gravity PHY 688, Lecture 11
Transcript
Page 1: Fundamental (Sub)stellar Parameters: Surface Gravity

Fundamental (Sub)stellar Parameters:Surface Gravity

PHY 688, Lecture 11

Page 2: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 2

Outline

• Review of previous lecture– binary stars and brown dwarfs– (sub)stellar dynamical masses and radii

• Surface gravity– stars, brown dwarfs, and giant planets– determining model-dependent masses

• Curve of growth for absorption lines– determining photospheric abundances

Page 3: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 3

Previously in PHY 688…

Page 4: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 4

Mass

• most fundamentalof stellar parameters– L ∝ M3.8

– τMS ≈1010 yr (M/MSun)–2.8

• impossible tomeasure for isolatedstars

Page 5: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 5

Dynamical Masses:Binary Stars to the Rescue

• Resolved visual binaries: see stars separately, measureorbital axes and speeds directly.

• Astrometric binaries: only brighter member seen, withperiodic wobble in the track of its proper motion.

• Spectroscopic binaries: unresolved (relatively close)binaries told apart by periodically oscillating Dopplershifts in spectral lines. Periods = days to years.– Eclipsing binaries: orbits seen nearly edge on, so that the stars

actually eclipse one another. (Most useful.)

Page 6: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 6

• first with a dynamicalmass

• measure: P, a, i(+ a1, a2 ifindependentastrometric referenceexists)

• determine: Mtot

(+ M1, M2)

• a > 5–10AU

Visual Binary: GJ 569Bab

(Lane et al. 2001)

Page 7: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 7

Astrometric Binary: GJ 802AB• unseen brown

dwarf com-panion;first and only to bediscoveredastrometrically

• measure: P, a1, i(using independentastrometricreference)

• determine: M1(a2, M2 can beconstrained fromresolved imaging)

• a > 0.5–2AU(Pravdo et al. 2005)

Page 8: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 8

SpectroscopicBinary

• double-lined (SB2)– spectra of both stars visible

• single-lined (SB1)– only spectrum of brighter star visible

(a)

(b)

(c)

(d)

(a)(d) (b)

(c)

(d)

Page 9: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 9

Radial Velocity vs. Time for an SB2in a Circular Orbit

• measure: P, v1, v2• determine: a1 sin i, a2 sin i, M1 sin i, M2 sin i

Page 10: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 10

SB1 Spectroscopic Binary: 51 Peg Ab

• first planet detectedaround a main-sequence star– primary SpT: G2 V

• Mp sin i = 0.47 MJup

• 0 AU < a < 10 AU

• measure: P, v1• determine: a sin i, M2 sin i (if M1 approximately known)

(Mayor & Queloz 1995)

Page 11: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 11

Totally Eclipsing Binaries(Are Also SB1’s or SB2’s)

ta – start of secondary ingresstb – end of secondary ingresstc – start of secondary egresstd – end of secondary egress

• measure: P, v1, i, ∆F1, ∆F2 (+ v2 if SB2)• determine: a, M1, M2, R1, R2, ratio Teff,1/Teff,2

– M1, M2 determined exactly if SB2; otherwise, only ratio is known

Page 12: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 12

First Determination of SubstellarRadii: 2MASS 0535–0546 A/B

(Stassun et al., 2005)

Page 13: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 13

Luminosity-Mass Relation for Starswith Well-determined Orbits

(Popper 1980)

similar relationsfor radius andTeff dependenceon mass

Page 14: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 14

Outline

• Review of previous lecture– binary stars and brown dwarfs– (sub)stellar dynamical masses and radii

• Surface gravity– stars, brown dwarfs, and giant planets– determining model-dependent masses

• Curve of growth for absorption lines– determining photospheric abundances

Page 15: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 15

• Sun

!

MSun = 2.0 "1033 g

RSun = 7.0 "1010 cm

# Sun =1.4 g/cm3

log g =GM /R2= 4.44 [cgs]

image credit: SOHO (ESA + NASA)

Given Masses and Radii, EstimateDensities, Surface Gravities

Page 16: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 16

Given Masses and Radii, EstimateDensities, Surface Gravities

• Betelgeuse (M2 I)

!

M "10MSun

R "1000RSun

# "10$8# Sun

"1.4 %10$8g/cm3

log g " $0.6

Page 17: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 17

• Sirius B (white dwarf)

!

M " 0.6MSun

R " 0.01RSun

# " 6 $105# Sun

" 8 $105 g/cm3

log g " 8

credit: Hubble Space Telescope (NASA)

B

Given Masses and Radii, EstimateDensities, Surface Gravities

Page 18: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 18

• Gl 229B (T6.5)

!

M " 0.03MSun

R " 0.1RSun

# " 30# Sun

" 40 g/cm3

log g " 5

Given Masses and Radii, EstimateDensities, Surface Gravities

Page 19: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 19

• 2MASS 0535–0546B– secondary of first eclipsing substellar binary

!

M = 0.034MSun

R = 0.51RSun

" = 0.26" Sun

= 0.36 g/cm3

log g = 3.6

Given Masses and Radii, EstimateDensities, Surface Gravities

Page 20: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 20

• Jupiter

!

M = 0.95 "10#3MSun

R = 0.10RSun

$ = 0.88$ Sun

=1.25 g/cm3

log g = 3.4

Given Masses and Radii, EstimateDensities, Surface Gravities

Page 21: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 21

At Constant Mass Younger BrownDwarfs Have Lower Gravities

starsbrown dwarfs“planets”

(Burrows et al. 2001)

Gl 229B(~0.03 MSun)

2MASS 0535–0546B (0.034 MSun)

2M 0535–05A

(0.054 MSun)

Page 22: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 22

At Constant Teff Younger Brown DwarfsAre Less Massive, Have Lower Gravities

starsbrown dwarfs“planets”

13 MJup10 M

Jup

5 MJup

1 MJup

starsbrown dwarfs“planets”

M

(Burrows et al. 2001)

Gl 229B

2MASS 0535–0546 A/B

Jupiter

Page 23: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 23

At Constant Teff, Younger Brown DwarfsHave Lower Gravities

(Burrows et al. 1997)

log g vs. Teff for brown dwarfs and planets

2MASS 0535–0546 A/B

Gl 229B

Jupiter

Page 24: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 24

Luminosity (i.e., Surface Gravity)Effects at A0

(figure: D. Gray)

Page 25: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 25

From Lecture 5: Line Profiles• Natural line width (Lorentzian [a.k.a., Cauchy] profile)

– Heisenberg uncertainty principle: ∆ν =∆E/h• Collisional broadening (Lorentzian profile)

– collisions interrupt photon emission process– ∆tcoll < ∆temission ~ 10–9 s– dependent on T, ρ

• Pressure broadening (~ Lorentzian profile)– ∆tinteraction > ∆temission– nearby particles shift energy levels of emitting particle

• Stark effect (n = 2, 4)• van der Waals force (n = 6)• dipole coupling between pairs of same species (n = 3)

– dependent mostly on ρ, less on T• Thermal Doppler broadening (Gaussian profile)

– emitting particles have a Maxwellian distribution of velocities• Rotational Doppler broadening (Gaussian profile)

– radiation emitted from a spatially unresolved rotating body• Composite line profile: Lorentzian + Gaussian = Voigt profile

!

I" =1

2#$e

%" %"

0( )2

2$2

$ &Gaussian FWHM

!

"thermal

= #0

kT

mc2

"rotational

= 2#0u /c

!

" natural =#Ei + #E f

h /2$=1

#ti+1

#t f

" collisional = 2 #tcoll

" pressure % r&n; n = 2,3,4,6

!

I" = I0

# /2$

" %"0( )

2

+ # 2/4

# & Lorentzian FWHM

cool stars

Page 26: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 26(Kleinmann & Hall 1986)

Page 27: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 27

Gravity-Sensitive Features in UCDs

(McGovern et al. 2004)

Page 28: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 28

Gravity inUCDs

(Kirkpatrick et al. 2006)Wavelength (µm)

Key species:• neutral alkali

elements (Na, K)– weaker at low g

• hydrides– CaH weaker at low g– FeH unchanged

• oxides– VO, CO, TiO

stronger at low g– H2O ~ unchanged

log g and Teff are measurable properties

Page 29: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 29

Example: HR8799bcd – Do the“Planets” Have Planetary Masses?

Keck AO image of the HR 8799bcd planetary system(Marois et al. 2008, Science)

Page 30: Fundamental (Sub)stellar Parameters: Surface Gravity

Feb 18, 2009 PHY 688, Lecture 11 30

Masses of HR8799bcd

(Burrows et al. 1997)

Can use log g and Teffto infer substellar mass

2MASS 0535–0546 A/B

Gl 229B

Jupiter


Recommended