+ All Categories
Home > Documents > Fundamentals of Solar Thermochemical...

Fundamentals of Solar Thermochemical...

Date post: 04-Oct-2020
Category:
Upload: others
View: 1 times
Download: 1 times
Share this document with a friend
13
Fundamentals of Solar Thermochemical Processes Prof. Aldo Steinfeld ETH Zurich Department of Mechanical and Process Engineering ETH-Zentrum ML-J42.1 8092 Zurich Switzerland Tel: +41-44-632-7929 E-mail: [email protected] Solar Concentrating Technologies Trough systems Tower systems Dish systems SFERA Winter School Solar Fuels & Materials Page 2
Transcript
Page 1: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

Fundamentals of Solar Thermochemical Processes

Prof. Aldo Steinfeld

ETH Zurich

Department of Mechanical and Process Engineering

ETH-Zentrum ML-J42.1

8092 Zurich

Switzerland

Tel: +41-44-632-7929

E-mail: [email protected]

Solar Concentrating Technologies

• Trough systems

• Tower systems

• Dish systems

SFERA Winter School Solar Fuels & Materials Page 2

Page 2: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

Solar Radiation

Why Concentrated Solar Energy?

qsolar

qreradiation

T

quseful

SFERA Winter School Solar Fuels & Materials Page 3

Page 3: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

Why Concentrated Solar Energy?

qsolar

qreradiation

T

quseful

C Tstagnation

1 364 K

10 648 K

100 1152

1000 2049 K

5000 3064 K

10000 3644 K

For:I = 1 kW/m2 (1 sun) = 5.67.10-8 W/m2K4

usefulFor q 0

1 solarq C I

0.25

stagnation

C IT

Thermal equilibrium:

useful absorbed reradiation

4solar

q q q

q T

8 2 4

Stefan-Boltzmann constant

5.67051x10 W /(m K )

Why Concentrated Solar Energy?

0

500

1000

1500

2000

2500

3000

3500

4000

0 2000 4000 6000 8000 1 104 1.2 104

Tem

per

atu

re [

K]

Concentration Ratio

C Tstagnation

1 364 K

10 648 K

100 1152

1000 2049 K

5000 3064 K

10000 3644 K

SFERA Winter School Solar Fuels & Materials Page 4

Page 4: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

Maximum Solar Concentration

R

qsunqorbit

EARTH

SUND

8-1

11

R = 6.9599 10 m = sin R/D = 16' = 4.65 mrad

D = 1.505 10 m

2sun2 2

sun orbit 2orbit

q D 1q 4 R = q 4 D = 46,200

q R sin

0.2524sun sun orbit

sun2orbit

q = T qDT = 5780 K

Rq = 1353 W/m

,solarI ( ) 2

solar ,solar0

I I ( )d 1353 W/m

Solar Radiation

SFERA Winter School Solar Fuels & Materials Page 5

Page 5: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

• Line focusing.

• C = 30 - 80.

• Unit 30 - 80 MW.

• Unidirectional trough curvature.

• 1-axis tracking N-S.

Parabolic Trough System

Heliostat Field

Tower

Receiver

• Point focusing.• C = 200 - 1000.• Unit 30 - 200 MW.• 2-axis tracking heliostats:

elements of different parabolas with varying focal length.

Solar Tower System

SFERA Winter School Solar Fuels & Materials Page 6

Page 6: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

• Point focusing.

• C = 1000 - 13,000.

• Unit 7.5 - 100 kW.

• 2-axis tracking parabolic dish.

• Modularity.

• Remote applications.

Solar Dish System

In thermal equilibrium:

quseful = qabsorbed - qreradiation

quseful = qsolar - T4

Quseful = Qsolar - AT4

qsolar

qreradiation

T

quseful

SFERA Winter School Solar Fuels & Materials Page 7

Page 7: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

Qsolar

Solar Receiver

absorption = [ ]

{

Solar Power Input

[ ] - [ ]

{Power absorbed {Power re-radiated

Qsolar

Qsolar A T4

= = 1

C =Qsolar

A.I}

Qreradiation

CConcentratedSolar Energy

T

I

4L

exergy,ideal absorption Carnot

TT1 1

C I T

4

absorptionT

1C I

For:I = 1 kW/m2 (1 sun) = 5.67.10-8 W/m2K4

C Tstagnation

1000 2049 K

5000 3064 K

10000 3644 K

Toptimal

1106 K

1507 K

1724 K

Carnot

1000

5,000

10,000

20,000

40,000

Fletcher and Moen, Science 197, 1050, 1977.

Toptimal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature [K]

0 500 1000 1500 2000 2500 3000 3500 4000

exergy,ideal

5 4exergy Loptimal L optimal

T IC0 T 0.75T T 0

T 4

0.25

exergy stagnation

C I0 T

4L

exergy,ideal absorption Carnot

TT1 1

C I T

SFERA Winter School Solar Fuels & Materials Page 8

Page 8: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

OPTICAL CONCENTRATOR

SOLAR

RECEIVER

Electricity

HEAT

ENGINE

Heat

Concentrated Solar Radiation

Direct Solar Radiation

Rejected heat

Receiver losses

Concentrationlosses

absorption Carnot

solar to electrcity optics receiver heat to electricity

Solar FuelsReactants

HeatAbsorption

QH,TH

ChemicalReactor

H = 285 kJ/mol

FuelCell

W

QL,TL

G = 237 kJ/mol

H2OReactants H2 + ½ O2Solar Fuels

ConcentratedSolar Radiation

Solar Thermochemical Conversion

SFERA Winter School Solar Fuels & Materials Page 9

Page 9: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

Solar FuelsReactants

HeatAbsorption

QH,TH

ChemicalReactor

FuelCell

W

QL,TL

ConcentratedSolar Radiation

Lmaximum Carnot

H

T1

T

Heat Engine

4H

absorption

T 1

C I

Solar Thermochemical Conversion

f

rim

= 16’ = 4.65 mrad

f.ab

2.f.(1+cosrim)cosrim

a =

2.f.(1+cosrim)

b =

Flux

f.r

a

C = sin2rim/2 = 4.65 mradrim = 45° } C 23,000

SFERA Winter School Solar Fuels & Materials Page 10

Page 10: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

3D - CPC2D - CPC

CPC – Compound Parabolic Concentrator

Ref.: Welford, W. T., and Winston, R. (1989).High Collection Nonimaging OpticsAcademic Press, San Diego, USA.

rin

rout

L = (rin+rout).cot

For =1:

Axis ofParabola

2D-CPC in out

2 2 23D-CPC in out

C = r /r = 1/sin

C = r /r = 1/sin

SFERA Winter School Solar Fuels & Materials Page 11

Page 11: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

= 16’ = 4.65 mrad

f

rim

inrim rim

in out rim

2D-CPC in out

2 2 23D-CPC in out

2fr

(1+cos ).cos

L = (r +r ) tan

C = r /r = 1/sin

C = r /r = 1/sin

Equations of the CPC

rin

rout

L = (rin+rout).cot

z

r

out

out in

out

2f sin( )r r

1 cos

2f cos( )z

1 cos

where :

r r sin

f r (1 sin )

22

SFERA Winter School Solar Fuels & Materials Page 12

Page 12: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

x r[sin M() cos ]

y r[ cos M()sin ]

M( ) for 0

2 a

/ 2 a cos a 1 sin( a

for 2 a

32

a

Equations of the 2-D CPC + involute

a CPC‘s half acceptance angle and is taken equal to the rim angle of the primary parabolic concentrator.

r radius tubular receiver.

Tubular-Receiver

r

a

x

y

Receiver

Tower Reflector

CPCCompoundParabolic

Concentrator

Heliostat Field

Tower

• Heliostat field + TowerReflector (Cassegrain).

• Beam-down on CPC.

• C = 5,000 - 10,000.

• Major hardware on ground level.

SFERA Winter School Solar Fuels & Materials Page 13

Page 13: Fundamentals of Solar Thermochemical Processessfera.sollab.eu/...of_Solar...Processes_Steinfeld.pdf · 1 solar qCI 0.25 stagnation CI T Thermal equilibrium: useful absorbed reradiation

DecarbonizationH2O/CO2-splitting

Solar Fuels

SolarCracking

SolarGasification

SolarReforming

SolarThermolysis

SolarThermochemical

Cycle

Solar Electricity

+Electrolysis

ConcentratedSolar Energy

Fossil Fuels(NG, oil, coal)

Optional CO2/C Sequestration

H2O CO2

Solar Fuels (H2, syngas)

SFERA Winter School Solar Fuels & Materials Page 14


Recommended