+ All Categories
Home > Documents > Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy...

Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy...

Date post: 30-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
118
Center for Machine Perception presents Fuzzy control Mirko Navara, Praha, Czech Republic Center for Machine Perception Faculty of Electrical Engineering, Czech Technical University 166 27 Praha, Czech Republic [email protected] http://cmp.felk.cvut.cz/˜navara Outline: Historical introduction Brief overview of classical control theory Principles of fuzzy control 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
Transcript
Page 1: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Center for Machine Perception presents

Fuzzy control

Mirko Navara, Praha, Czech RepublicCenter for Machine Perception

Faculty of Electrical Engineering, Czech Technical University166 27 Praha, Czech Republic

[email protected]://cmp.felk.cvut.cz/˜navara

Outline:

� Historical introduction

� Brief overview of classical control theory

� Principles of fuzzy control

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 2: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Outline:

� Historical introduction

� Brief overview of classical control theory

• Sample problem: inverted pendulum

• Internal and external descriptions of dynamical systems, transfer function

• Connections of systems, the role of feedback

• Stabilizing the inverted pendulum

• Theory of stability of dynamical systems

• Problems and limits of linear control

� Principles of fuzzy control

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 3: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Outline:

� Historical introduction

� Brief overview of classical control theory

� Principles of fuzzy control

• Basic notions, motivation of the use of fuzzy data in control and decision

• Fuzzy relations

• Residuum-based and Mamdani–Assilian controllers

• What should a fuzzy controller satisfy

• Solvability of fuzzy relational equations and its relation to interpretability ofrules

• Automated generation of rules, problems of fuzzy controllers

• Alternative to Mamdani–Assilian approach — controller with conditionallyfiring rules

• Methods of defuzzification

• Takagi–Sugeno controllers

• Tuning of controllers, methods of automatic rules generation

• Applications of fuzzy control principles outside automatic control(classification, decision making, approximation, etc.)

• Miscellaneous topics, advantages and disadvantages of fuzzy control, its rolein human-machine communication, current role, perspectives and problems

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 4: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Basics of classical control theory

Intuitively used in ancient times

Watt – steam enginenegative feedback:high speed ⇒ less steamlow speed ⇒ more steam

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 5: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Basics of classical control theory

Intuitively used in ancient times

Watt – steam enginenegative feedback:high speed ⇒ less steamlow speed ⇒ more steam

Watt did not care of non-linearity and dynamical properties of the controller

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 6: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Basics of classical control theory

Intuitively used in ancient times

Watt – steam enginenegative feedback:high speed ⇒ less steamlow speed ⇒ more steam

Watt did not care of non-linearity and dynamical properties of the controller

It sufficed to have it very sensitive and much faster than the controlled system

Middle of 20th century: [Wiener, Shannon, Nyquist, ... , Zadeh]

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 7: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Inspiration: Cartpole problem (inverted pendulum)

Very simplified model:

� no friction (⇒ no damping)

� zero moment of inertia (single pendulum); a real pendulum is described by thesame model with some equivalent length

� the influence of the mass of the pendulum on our movements is neglected

� linearization around ϕ = 0

� the acceleration (and the fluctuations of forces) in the vertical direction areneglected

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 8: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Inspiration: Cartpole problem (inverted pendulum)

-

6

��������������

XXz

ϕ

h

m

mg

Fh

`

F-

��

�� ?

� u

Constants:` = lenght of the pendulumm = mass of the pendulumg = acceleration of gravity

Variables:t = timeh(t) = horizontal coordinate of the axis of the pendulumϕ(t) = angle of the pendulum (measured from the vertical direction)a(t) = acceleration of the axis of the pendulum in the horizontal direction

(proportional to the acting force F (t))q(t) = h(t) + ` sinϕ(t) = horizontal coordinate of the mass of the pendulum

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 9: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Inspiration: Cartpole problem (inverted pendulum)

Equations (with (t) omitted):q = h + ` sinϕ

Linearized coordinate of the mass of the pendulum:q = h + ` ϕ

Its second derivative is proportional to the horizontal force on the pendulum:Fhm = h + ` ϕ

The pendulum transfers only a force parallel to it, henceFhmg = tan ϕ linearized: Fh

m = gϕ

We act through a force causing an accelerationa = h

The dynamics of the system is described by a system of linear ODEs:

h + ` ϕ = g ϕ

h = a

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 10: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Inspiration: Cartpole problem (inverted pendulum)

State variables:

x1 = ϕ x2 = ϕ x3 = h x4 = h x =

ϕϕh

h

Control variable (input):

u1 = a u =[

a]

The linearized dynamics of the system is described by

x = Ax + Bu

x1 = ϕ = x2

x2 = ϕ =g

`ϕ− 1

`a =

g

`x1 −

1`u1

x3 = h = x4

x4 = h = a = u1

A =

0 1 0 0g` 0 0 00 0 0 10 0 0 0

B =

0−1`01

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 11: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Inspiration: Cartpole problem (inverted pendulum)

Output variables:

y1 = ϕ y2 = q = h + `ϕ y =[

ϕq

]y = Cx + Du

C =[

1 0 0 0` 0 1 0

]D =

[00

](no direct influence of the control on the output)

controller system����

---

-

-uu

-6

aq

ϕ

desired position e

+−

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 12: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Descriptions of a linear dynamical system

Internal description: A,B,C,Dx = Ax + Buy = Cx + Du

B∫

C

A

D

����u u ��

��-

?-

6- - - -

6

-

u x x y+

+ +

+

External description: using the Laplace images U(s),Y(s) of u(t),y(t) (with zeroinitial conditions)

Y(s) = G(s)U(s) where G(s) is the transfer function of the systemHaving vectors of variables, G(s) is a matrix of functions of sIts element Gij(s) is the Laplace image of the response at the jth output to theDirac pulse at the ith input (difficult to measure directly)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 13: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

How to derive the external description from the internal one?

Under zero initial conditions (I denotes the unit matrix):

sX(s) = AX(s) + BU(s)

Y(s) = CX(s) + DU(s)

X(s) = (s I−A)−1 BU(s)

Y(s) =(C (s I−A)−1 B + D

)︸ ︷︷ ︸G(s)

U(s)

det(s I−A) = 0 is the characteristic equation of the systemIts solutions (in variable s) are eigenvaluesEach of them corresponds to one exponential component of the solutionThe system is stable iff all characteristic numbers have negative real parts(this can be tested without finding the characteristic numbers, which is a difficultproblem)

How to derive the internal description from the external one?This is not unique, there are many standardized methods whose choice depends onthe hardware implementation

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 14: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Non-stability of the cartpole

s I−A =

s −1 0 0−g

` s 0 00 0 s −10 0 0 s

det(s I−A) =

1`

(s2`− g

)s2

This polynomial has roots 0 (double) and ±√

g`

All of them are real, one positive (causing non-stability), one zero (at the boundary ofstability region) and one negative (corresponding to a stable component)

(s I−A)−1 =

−`s

g−s2`−`

g−s2`0 0

−gg−s2`

−`sg−s2`

0 00 0 1

s1s2

0 0 0 1s

G(s) = C (s I−A)−1 B + D =

[1

g−s2`1s2 + `

g−s2`

]

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 15: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Connections of dynamical systems

Series connection

G2 G1- - -

G(s) = G1(s)G2(s)

Parallel connection

G2

G1

����

-?

6

u-

-

-

+

+

G(s) = G1(s) + G2(s)

Feedback connection

G2

G1���� u- - -

6

+

+

G(s) =(I−G2(s)G1(s)

)−1G1(s)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 16: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Exceptions: Cancellation of roots

Example of a series connection:

G(s) = G1(s)G2(s)

G1(s) =1

s + a

G2(s) =s + a

s + b

G(s) =1

s + b

The factor s + a has been cancelled and does not occur in the external description,although it corresponds to some internal part;Moreover, for a < 0 it is unstable, while the stability of the external descriptiondepends only on b

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 17: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Exceptions: Cancellation of roots

Example of a series connection:

G(s) = G1(s)G2(s)

G1(s) =1

s + a

G2(s) =s + a

s + b

G(s) =1

s + b

The factor s + a has been cancelled and does not occur in the external description,although it corresponds to some internal part;Moreover, for a < 0 it is unstable, while the stability of the external descriptiondepends only on b

This part has a state variable which is not controllable, neither observable

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 18: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Classical controller design

We usually put the controller in the feedback loop

G2

G1u -

����?

-

6+

−e

input G(s) =(I + G2(s)G1(s)

)−1G2(s)G1(s)

The stability of the whole loop is influenced by the factor(I + G2(s)G1(s)

)−1

where G1(s) (the controlled system) is givenand G2(s) (the controller) can be chosen almost arbitrarily

Using the above analysis, we can decide the stability of the loop with the proposedcontroller (difficult)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 19: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Classical controller design

We usually put the controller in the feedback loop

G2

G1u -

����?

-

6+

−e

input G(s) =(I + G2(s)G1(s)

)−1G2(s)G1(s)

The stability of the whole loop is influenced by the factor(I + G2(s)G1(s)

)−1

where G1(s) (the controlled system) is givenand G2(s) (the controller) can be chosen almost arbitrarily

Using the above analysis, we can decide the stability of the loop with the proposedcontroller (difficult)

The task is easier if we have more information than the output of the controlledsystem, in particular if we can measure the states; then a feedback from states allows– in its extreme (theoretical) form – to achieve arbitrary dynamics of the control loop

Generally, the more information we have the better the control behaviour can be

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 20: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Structure of classical controllers

Usually the controller uses a linear combination of its inputs (this is Proportional tothe signal), its Integrals, and Derivatives (PID controller)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 21: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Structure of classical controllers

Usually the controller uses a linear combination of its inputs (this is Proportional tothe signal), its Integrals, and Derivatives (PID controller)

Remark:In fact, a derivative cannot be correctly computed in real time (it requires informationwhich is not available); even the causality principle and boundedness of power provethe impossibility of an element performing the derivative; only a rough approximationis used instead

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 22: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Structure of classical controllers

Usually the controller uses a linear combination of its inputs (this is Proportional tothe signal), its Integrals, and Derivatives (PID controller)

Remark:In fact, a derivative cannot be correctly computed in real time (it requires informationwhich is not available); even the causality principle and boundedness of power provethe impossibility of an element performing the derivative; only a rough approximationis used instead

Higher order integrals are possible, but not used so often

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 23: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Structure of classical controllers

Usually the controller uses a linear combination of its inputs (this is Proportional tothe signal), its Integrals, and Derivatives (PID controller)

Remark:In fact, a derivative cannot be correctly computed in real time (it requires informationwhich is not available); even the causality principle and boundedness of power provethe impossibility of an element performing the derivative; only a rough approximationis used instead

Higher order integrals are possible, but not used so often

The controller is usually implemented as another (inner) feedback system with anamplifier in the direct branch and a suitable feedbackIn the one-dimensional case, for a constant G1(s) →∞ the feedback results in

G(s) =G1(s)

1 + G2(s)G1(s)=

11

G1(s)+ G2(s)

→ 1G2(s)

and the feedback loop “fully” determines the properties

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 24: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Problems of the classical control

� Non-linearity

� Boundedness of control variables

� Further requirements on control (e.g., zero overshoot) which cannot be easilychecked in the model

� Parameters are not precisely known (or it is difficult to measure them)

� Sensitivity to changes of parameters and input values

� Discretization

� Delays in actions (e.g., computation of the control variable)

� Non-stationarity (the parameters change)

� The model does not describe all important relations (it is drastically simplified)

� Problems of solvability of the task

� Non-interpretability of the parameters of the controller

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 25: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Brief history of fuzzy control

[Zadeh 1973] suggested the use of fuzzy logic in control (he already contributed tothe development of the classical control theory)

[Mamdani, Assilian 1975]: the first fuzzy controller (of a steam engine)

[Holmblad 1982]: a fuzzy controller of a cement kiln (high non-linearity, manyvariables, manual control used before)

[Sugeno 1985]: prototypes of other industrial applications

[Yasunubo et al. 1983]: a fuzzy controller of the Sendai Underground (operatingsince 1987)

A boom of fuzzy controllers in 80’s and 90’s, mainly in Japan (now mainly washingmachines, vacuum cleaners, camcorders, etc.)

Now it is time to test whether fuzzy control may infiltrate in more difficult anddemanding applications

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 26: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Basic ideas and notions of fuzzy control

Inputs of a fuzzy controller:

� desired output values

� actual output values

� possibly internal states of the controlled system

� event. additional information from the user, usually linguistic

Input variables are coordinates in the input space, X , usually a convex subset of Rµ

Outputs of a fuzzy controller:

� control actions (inputs of the controlled system)

� event. additional information for the user

Output variables are coordinates in the output space, Y, usually a convex subsetof Rν

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 27: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Crisp controller

A classical controller performs a mapping f :X → YIt can be represented by a crisp subset of X × Y, namely

{(x, y) ∈ X × Y | y = f(x)}

and by a (crisp) membership function R:X × Y → {0, 1}

R(x, y) ={

1 if y = f(x),0 otherwise

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 28: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Motivation of a fuzzy controller

Sometimes a human expert (or other source, e.g., data mining) can give us hints inthe form

if input is ... then output is ... and. . .if x ∈ An then y ∈ Cn

(rule base of if-then rules)

The rules are vague, often with unsharp boundaries of applicability

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 29: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Fuzzy controller

Zadeh’s suggestion (1973): Express the information from the rule base using fuzzysets, as a fuzzy relation R:X × Y → [0, 1](a fuzzy subset of X × Y, R ∈ F(X × Y))which generalizes the classical control function

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 30: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Fuzzy controller

Zadeh’s suggestion (1973): Express the information from the rule base using fuzzysets, as a fuzzy relation R:X × Y → [0, 1](a fuzzy subset of X × Y, R ∈ F(X × Y))which generalizes the classical control function

Moreover, the internal inference mechanism can work with fuzzy subsets of theinput/output space (instead of points) and map fuzzy subsets of the input space Xonto fuzzy subsets of the output space Y,

Φ:F(X ) → F(Y)

The input can be fuzzy, but it is often crisp; sometimes a crisp input is fuzzified

The output can be fuzzy, but usually a crisp value is required; a defuzzification∆:F(Y) → Y takes place as the final step

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 31: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Basic notions of a fuzzy controller

Rule database:if X is A1 then Y is C1 and. . .if X is An then Y is Cn

whereX ∈ F(X ) is a fuzzy inputY = Φ(X) ∈ F(Y) is the corresponding fuzzy outputAi ∈ F(X ), i = 1, . . . , n, are antecedents (premises) which can be interpreted as

� assumptions,

� domains of applicability, or

� typical fuzzy inputs

Ci ∈ F(Y), i = 1, . . . , n, are consequents expressing the desired outputs

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 32: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Dimensionality

Antecedents are subsets of multi-dimensional spacesThey carry information about several variables (and so do the consequents)Usually they are decomposed to conjunctions (cylindric extensions) of one-dimensionalfuzzy setsThen the rules attain the form

if A1 is Ai1

and ...and Aµ is Aiµ

then C1 is Ci1

and ...and Cν is Ciν

i = 1, . . . , n

If an antecedent has a more complex shape (non-convex), we may cover itapproximately by several rules of the above form

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 33: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Simplifying assumptions

1. We ignore the conjunctions (cylindric extensions) and admit arbitrary shapes ofantecedents

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 34: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Simplifying assumptions

1. We ignore the conjunctions (cylindric extensions) and admit arbitrary shapes ofantecedents

2. We decompose the output to single variables considered independently. Withoutloss of generality, we restrict attention to MISO (Mulitple Input Single Output)systems

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 35: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Compositional rule of inference

The rule base is represented by a fuzzy relation R ∈ F(X × Y)The output, Y , is obtained by a composition of R with the input, X:

Y = Φ(X) = X ◦. R

Y (y) = supx∈X

(R(x, y) ∧. X(x)

)where ∧. is a t-norm (fuzzy conjunction); different choices are possible, but we shall

restrict to continuous t-norms

The supremum is the standard t-conorm; it should not be replaced by another t-norm(because it may have uncountably many arguments)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 36: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

How to derive the fuzzy relation R from the rule base

The most natural idea:Residuum-based fuzzy controller:

RRES(x, y) = mini

(Ai(x)→. Ci(y)

)where →. is a fuzzy implication, usually the residuum (residuated implication)

of ∧. ,

α→. β = sup{γ ∈ [0, 1] | γ ∧. α ≤ β}

Properties of residua of continuous t-norms:

� α→. β = 1 iff α ≤ β

� 1→. β = β

� non-increasing in the first and non-decreasing in the second variable

� continuous iff the t-norm ∧. is nilpotent

� adjointness: a ∧. b ≤ c iff a ≤ b→. c

As the minimum is the standard conjunction, this approach represents the rule basenaturally as a conjunction of implications

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 37: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

How to derive the fuzzy relation R from the rule base 2

Mamdani–Assilian fuzzy controller:

RMA(x, y) = maxi

(Ai(x) ∧. Ci(y)

)Logically this is a disjunction of conjunctions,not a conjunction of implications

These expressions are not totally different; if Ai, i = 1, . . . , n, form a crisp partitionof X (i.e., they are mutually disjoint and

⋃i Ai = X ), then RMA = RRES

However, this usually is not the case

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 38: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Comparison of residuum-based and Mamdani–Assilian controllers

Continuity:RRES only for ∧. nilpotent

RMA always

Computational efficiency:

ΦRES(X)(y) = supx

(X(x) ∧. min

i(Ai(x)→. Ci(y))

)requires three nested cycles (over X and Y and over the number of rules)

ΦMA(X)(y) = supx

(X(x) ∧. max

i(Ai(x) ∧. Ci(y))

)= max

isup

x

(X(x) ∧. Ai(x) ∧. Ci(y)

)= max

i(D(X, Ai) ∧. Ci(y))

D(X, Ai) = supx

(X(x) ∧. Ai(x)) . . . the degree of overlapping (non-disjointness)

here equal to the degree of firing (applicability)

requires two nested cycles (over X and the number of rules) resulting in real numbersD(X, Ai), i = 1, . . . , n; then two nested cycles (over Y and the number of rules)

ΦMA can be computed more efficiently (approx. #Y/2-times faster)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 39: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Principle of Mamdani–Assilian controller — block diagram

rule base

degreesof overlapping

compositionrule defuzzification

X� Y �

y�

Xi Yi

DT (X�; Xi)1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 40: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Driankov et al. 1993]

1. Completeness:⋃i

Supp Ai = X , where Supp Ai = {x ∈ X | Ai(x) > 0}1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 41: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Driankov et al. 1993]

1. Completeness:⋃i

Supp Ai = X , where Supp Ai = {x ∈ X | Ai(x) > 0}

2. Consistency: (Ai = Aj) ⇒ (Ci = Cj) (rather weak condition)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 42: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Driankov et al. 1993]

1. Completeness:⋃i

Supp Ai = X , where Supp Ai = {x ∈ X | Ai(x) > 0}

2. Consistency: (Ai = Aj) ⇒ (Ci = Cj) (rather weak condition)

3. Continuity: (Ai, Aj are “neighbouring antecedents” ) ⇒ (Ci ∩ Cj 6= ∅)usually

(Ai ∩Aj 6= ∅) ⇒ (Ci ∩ Cj 6= ∅)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 43: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Driankov et al. 1993]

1. Completeness:⋃i

Supp Ai = X , where Supp Ai = {x ∈ X | Ai(x) > 0}

2. Consistency: (Ai = Aj) ⇒ (Ci = Cj) (rather weak condition)

3. Continuity: (Ai, Aj are “neighbouring antecedents” ) ⇒ (Ci ∩ Cj 6= ∅)usually

(Ai ∩Aj 6= ∅) ⇒ (Ci ∩ Cj 6= ∅)

4. Interaction: ∀j : Φ(Aj) = Cj

usually weakened for crisp inputs to:

The output of the controller should be the fuzzy union of the outputs of separaterules(this weaker form always holds for a Mamdani–Assilian controller)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 44: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Recommendations on the rule base [Driankov et al. 1993]

Antecedents (one-dimensional) should be

� normal, ∀i ∃x ∈ X : Ai(x) = 1

� continuous

� symmetric (when possible, usually not at the borders of the input space!)

The recommended degree of overlapping of neighbouring antecedents (computedusing the standard t-norm, min) is 0.5

The recommended endpoints of the support of an antecedent are the peeks of theneighbouring antecedents

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 45: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Moser, Navara 2002]

� Interaction: ∀j : Φ(Aj) = Cj

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 46: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Moser, Navara 2002]

� Interaction: ∀j : Φ(Aj) = Cj

� Strong completeness: ∀ normal X ∈ F(X ) : Φ(X) 6⊆⋂i

Ci, where the fuzzy

intersection is standard (computed using min)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 47: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Moser, Navara 2002]

� Interaction: ∀j : Φ(Aj) = Cj

� Strong completeness: ∀ normal X ∈ F(X ) : Φ(X) 6⊆⋂i

Ci, where the fuzzy

intersection is standard (computed using min)

� Weak interpolation property: Φ(X) is in the convex hull of all Ci with i suchthat Supp Ai ∩ Supp X 6= ∅

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 48: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on the rule base [Moser, Navara 2002]

� Interaction: ∀j : Φ(Aj) = Cj

� Strong completeness: ∀ normal X ∈ F(X ) : Φ(X) 6⊆⋂i

Ci, where the fuzzy

intersection is standard (computed using min)

� Weak interpolation property: Φ(X) is in the convex hull of all Ci with i suchthat Supp Ai ∩ Supp X 6= ∅

� Crisp interaction:(Ai(x) = 1

)⇒

(Φ(x) = Φ({x}) = Ci

)(“if there is a totally

firing rule, it determines the output”)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 49: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Completeness of the rule base

Completeness is required, because in any situation we need at least one firing rule

Nevertheless, non-completeness is sometimes tolerated for the following reasons:

� The input is impossible (then do not include it in the input space!)

� The input values are fuzzified so that they always overlap with some antecedent

� The sparse database is used for interpolation [Koczy et al. 1997]

� Some inputs do not require any action (we just wait until the situation changes)

The latter case can be formally described by an additional “else rule”[Amato, Di Nola, Navara 2003]It is treated differently w.r.t. other requirementsIn any case, it assumes that we assign a meaning of “no action”;the output variable has to be defined always

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 50: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Completeness of the rule base

Completeness is required, because in any situation we need at least one firing rule

Nevertheless, non-completeness is sometimes tolerated for the following reasons:

� The input is impossible (then do not include it in the input space!)

� The input values are fuzzified so that they always overlap with some antecedent

� The sparse database is used for interpolation [Koczy et al. 1997]

� Some inputs do not require any action (we just wait until the situation changes)

The latter case can be formally described by an additional “else rule”[Amato, Di Nola, Navara 2003]It is treated differently w.r.t. other requirementsIn any case, it assumes that we assign a meaning of “no action”;the output variable has to be defined always

Omitting rules for some situations is motivated by the attempt to reduce the numberof rules (curse of dimensionality)

Sometimes the table of linguistic rules does not cover some combinations of linguisticvariablesThis does not obviously mean that the antecedents are not complete; the case may becovered by neighbouring rules, although with a smaller degree of firing

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 51: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in Mamdani–Assilian controller

When ∀j : Φ(Aj) = Aj ◦. RMA = Cj? (a system of fuzzy relational equations for

a fuzzy relation RMA)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 52: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in Mamdani–Assilian controller

When ∀j : Φ(Aj) = Aj ◦. RMA = Cj? (a system of fuzzy relational equations for

a fuzzy relation RMA)

For Mamdani–Assilian controller: Theorem: ∀j : ΦMA(Aj) ≥ Cj

Proof: X := Aj

D(X, Aj) = D(Aj, Aj) = 1 (due to normality)ΦMA(Aj)(y) = max

i(D(Aj, Ai) ∧. Ci(y)) ≥ D(Aj, Aj)︸ ︷︷ ︸

1

∧. Cj(y) = Cj(y)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 53: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in Mamdani–Assilian controller

Theorem [de Baets 1996, Perfilieva, Tonis 1997]:(∀j : ΦMA(Aj) = Cj

)iff(

∀i ∀j : D(Ai, Aj) ≤ I(Ci, Cj)),

where I(Ci, Cj) = infy

(Ci(y)→. Cj(y)

)(the implication →. has to be the residuum of ∧. )

Instead of I(Ci, Cj) we may use E(Ci, Cj) = infy

(Ci(y)↔. Cj(y)

)(degree of indistinguishability (equality)),where α↔. β = min(α→. β, β →. α) = (α→. β) ∧. (β →. α)

Proof: The negation of the left-hand side is

∃j ∃y : ΦMA(Aj)(y) > Cj(y)

∃j ∃y ∃x : Aj(x) ∧. RMA(x, y) > Cj(y)

∃i ∃j ∃y ∃x : Aj(x) ∧. Ai(x) ∧. Ci(y) > Cj(y)

∃i ∃j ∃y ∃x : Aj(x) ∧. Ai(x) > Ci(y)→. Cj(y)

∃i ∃j : supx

(Aj(x) ∧. Ai(x)

)> inf

y

(Ci(y)→. Cj(y)

)which is the negation of the right-hand side

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 54: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in Mamdani–Assilian controller [Moser, Navara 1999]

If ∧. has no zero divisors (e.g., the minimum or product), then D(Ai, Aj) ≤ E(Ci, Cj)is satisfied in two situations:

� E(Ci, Cj) > 0; then Supp Ci = Supp Cj, which is rather unusual,

� E(Ci, Cj) = 0; then D(Ai, Aj) = 0, Supp Ai ∩ Supp Aj = ∅; for continuousdegrees of membership, strong completeness is violated.

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 55: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in Mamdani–Assilian controller [Moser, Navara 1999]

If ∧. has no zero divisors (e.g., the minimum or product), then D(Ai, Aj) ≤ E(Ci, Cj)is satisfied in two situations:

� E(Ci, Cj) > 0; then Supp Ci = Supp Cj, which is rather unusual,

� E(Ci, Cj) = 0; then D(Ai, Aj) = 0, Supp Ai ∩ Supp Aj = ∅; for continuousdegrees of membership, strong completeness is violated.

This problem does not occur if ∧. has zero divisors (e.g., the Lukasiewicz t-norm)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 56: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in Mamdani–Assilian controller [Moser, Navara 1999]

If ∧. has no zero divisors (e.g., the minimum or product), then D(Ai, Aj) ≤ E(Ci, Cj)is satisfied in two situations:

� E(Ci, Cj) > 0; then Supp Ci = Supp Cj, which is rather unusual,

� E(Ci, Cj) = 0; then D(Ai, Aj) = 0, Supp Ai ∩ Supp Aj = ∅; for continuousdegrees of membership, strong completeness is violated.

This problem does not occur if ∧. has zero divisors (e.g., the Lukasiewicz t-norm)

However, this choice may easily violate the strong completeness [Moser, Navara 1999]

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 57: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in residuum-based controller

Theorem: ∀j : ΦRES(Aj) ≤ Cj

Proof: X := Aj

ΦRES(Aj)(y) = supx

(Aj(x) ∧. min

i(Ai(x)→. Ci(y))

)≤ sup

x

(Aj(x) ∧. (Aj(x)→. Cj(y))

)≤ Cj(y)

Theorem: If there is a fuzzy relation R such that ∀j : Aj ◦. R = Cj, then also RRES

satisfies these equalities (and it is the largest solution).

Proof: ∀j ∀x ∀y :

Aj(x) ∧. R(x, y) ≤ Cj(y)

R(x, y) ≤ Aj(x)→. Cj(y)

R(x, y) ≤ mini

(Ai(x)→. Ci(y)

)= RRES(x, y)

Cj = Aj ◦. R ≤ Aj ◦. RRES ≤ Cj

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 58: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Interaction in residuum-based controller

What happens if interaction requirement is violated?

Nothing serious, this is usually accepted and possibly compensated during the tuning

However, it causes a distorted interpretation of (possibly good) control rules

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 59: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

An alternative: CFR (Controller with conditionally firing rules)[Moser, Navara 2002]

1st generalization of Mamdani–Assilian controller:%: [0, 1] → [0, 1] . . . increasing bijection, e.g., %(t) = tr, r > 1, or piecewise linearTransformation of membership degrees in the input space X

The degrees of overlapping, D(Ai ◦ %,Aj ◦ %), may be made arbitrarily small

2nd generalization of Mamdani–Assilian controller:σ: [0, 1] → [c, 1] . . . increasing bijection(0 < c < 1)Transformation of membership degrees in the output space YOutput Y ◦ σ has to be transformed back by σ[−1],so the inference rule is not compositional(however, the computational complexity remains of the same order)

The degrees of equality, E(Ci ◦ σ,Cj ◦ σ), may be made arbitrarily large

We may satisfy D(Ai ◦ %,Aj ◦ %) ≤ E(Ci ◦ σ,Cj ◦ σ)

Problem 1: D(X ◦ %,Ai ◦ %) becomes also small, causing “irrelevant outputs” andviolating strong completeness

Problem 2: Interaction and strong completeness are “almost contradictory” for theMamdani–Assilian controller; sometimes they cannot be satisfied simultaneously forany compositional inference rule

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 60: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

An alternative: CFR (Controller with conditionally firing rules)

3rd generalization of Mamdani–Assilian controller:For the degree of firing in the inference rule, replace the degree of overlappingD(X, Ai) with the normalized value — degree of conditional firing

C(X, Ai) =D(X, Ai)

maxjD(X, Aj)

All the above requirements (incl. crisp interaction) are easily satisfied[Moser, Navara 2002, Navara, St’astny 2002]

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 61: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Comparison of Mamdani–Assilian and CFR controller — block diagrams

rule base

degreesof overlapping

compositionrule defuzzification

X� Y �

y�

Xi Yi

DT (X�; Xi)

firing

degreesof conditionalof overlapping

degrees

rescaled rule base

compositionrule

rescaling defuzzificationrescalingX�

�[�1]�

�(Xi) �(Yi)

Y � y��(X�)

DT (X�; Xi)

CT;i(X�)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 62: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Sample problem: ball on beam (ball on plate)

We want to stabilize a position of a ball by leaning a plate on which it lies

Static friction is considered (⇒ non-linearity)

Solution due to [St’astny 2001]

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 63: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Example: Comparison of Mamdani–Assilian and CFR controller —position (premises)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1position

position [−]

mem

bers

hip

[−]

velka neg.

mala neg. mala pos.

velka pos.rovnovaha

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 64: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Example: Comparison of Mamdani–Assilian and CFR controller —velocity (premises)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1velocity

velocity [−]

mem

bers

hip

[−]

NB

NS

ZO

PS

PB

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 65: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Example: Comparison of Mamdani–Assilian and CFR controller — angle(consequents)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1angle

angle [rad]

mem

bers

hip

[−]

NB

NS

ZO

PS

PB

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 66: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Example: Comparison of Mamdani–Assilian and CFR controller — rules

Angle:

position NB NS ZO PS PB

velocity

NB PB PB PB PB PS

NS PB PS PS PS ZO

ZO PB PB ZO NB NB

PS ZO NS NS NS NB

PB NS NB NB NB NB

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 67: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Example: Comparison of Mamdani–Assilian and CFR controller —quality of control

criterion Mam. controller CFR controllermaximum overshoot [m] σ - -asymptotic value [m] y∞ -0.0021 0.0012number of extremes [-] - -transient time [s] 3.56 3.05cumulative quadratic error [ms] 0.0552 0.0569

Ball on plate, initial position +0.25, simulation time 5 s — till steady state. Smallervalues – better control. TOUT = 100ms

criterion Mam. controller CFR controllermaximum overshoot [m] σ - -asymptotic value [m] y∞ -0.0052 -0.0006number of extremes [-] - -transient time [s] 18.06 17.22cumulative quadratic error [ms] 23.12 22.34

Ball on plate, initial position +2.00, simulation time 20 s — till steady state. Smallervalues – better control. TOUT = 100ms

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 68: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Example: Comparison of Mamdani–Assilian and CFR controller —quality of control

criterion Mam. controller CFR controllermaximum overshoot [m] σ 0.35 0.35asymptotic value [m] y∞ -0.0032 -0.0041number of extremes [-] 1 1transient time [s] 13.49 11.39cumulative quadratic error [ms] 0.523 0.474

Ball on plate, initial speed 0.5ms−1, simulation time 15 s — till steady state. Smallervalues – better control. TOUT = 50ms

criterion Mam. controller CFR controllermaximum overshoot [m] σ 0.346 0.346asymptotic value [m] y∞ 0.0051 0.0034number of extremes [-] 1 1transient time [s] 14.8 11.1cumulative quadratic error [ms] 0.583 0.441

Ball on plate, initial speed 0.5ms−1, simulation time 15 s — till steady state. Smallervalues – better control. TOUT = 5ms

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 69: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Example: Comparison of Mamdani–Assilian and CFR controller —outputs

0 1 2 3 4 5−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0velocity

time [s]

mag

nitu

de [m

/s]

0 1 2 3 4 5−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3position

time [s]

mag

nitu

de [m

]

0 1 2 3 4 5−0.1

−0.05

0

0.05

0.1angle

time [s]

mag

nitu

de [−

]

1.5 2 2.5 3 3.5−0.15

−0.1

−0.05

0

0.05

0.1position + velocity (detail)

time [s]

mag

nitu

de [m

, m/s

]

0 1 2 3 4 5−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0velocity

time [s]

mag

nitu

de [m

/s]

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25position

time [s]

mag

nitu

de [m

]

0 1 2 3 4 5−0.15

−0.1

−0.05

0

0.05angle

time [s]

mag

nitu

de [−

]

1.5 2 2.5 3 3.5−0.15

−0.1

−0.05

0

0.05

0.1position + velocity (detail)

time [s]

mag

nitu

de [m

, m/s

]

Typical outputs of Mamdani–Assilian controller (left) and CFR controller (right)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 70: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Problems of implementation of CFR controller

Software implementation: only three new blocks requiring a few lines of source codeThe computational complexity slightly increases, but its order remains unchanged

Hardware implementation: Requires to add an additional block inside the currentstructure, thus a totally new design of an integrated circuit - expensive!

Looking for a possibility to achieve the same control action using current fuzzyhardware and a modified rule base, we have found [Amato, Di Nola, Navara 2003]:

1. it is not possible to substitute the CFR controller in its full generality, but

2. this is possible for crisp input variables

This case is still of much importance, because it covers most of applications;in fact, current fuzzy hardware works only with crisp inputs

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 71: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Initial rule base

Can be obtained by

� asking an expert

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 72: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Initial rule base

Can be obtained by

� asking an expert

� observing him/her at work

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 73: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Initial rule base

Can be obtained by

� asking an expert

� observing him/her at work

� combination with analysis of a model (if available)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 74: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Initial rule base

Can be obtained by

� asking an expert

� observing him/her at work

� combination with analysis of a model (if available)

� a template for a similar problem

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 75: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Initial rule base

Can be obtained by

� asking an expert

� observing him/her at work

� combination with analysis of a model (if available)

� a template for a similar problem

Automatic derivation of rules can be made by clustering methods in the space X × YThe clusters are approximated by cylindrical extensions of antecedents andconsequents

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 76: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Tuning

In the phase of tuning, we may

� modify membership functions of antecedents and consequents

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 77: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Tuning

In the phase of tuning, we may

� modify membership functions of antecedents and consequents

� add new rules

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 78: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Tuning

In the phase of tuning, we may

� modify membership functions of antecedents and consequents

� add new rules

� delete irrelevant rules or join them with similar ones

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 79: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Tuning

In the phase of tuning, we may

� modify membership functions of antecedents and consequents

� add new rules

� delete irrelevant rules or join them with similar ones

by

� experimenting with the controller

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 80: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Tuning

In the phase of tuning, we may

� modify membership functions of antecedents and consequents

� add new rules

� delete irrelevant rules or join them with similar ones

by

� experimenting with the controller

� observing a human controlling the system (interpretability is needed)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 81: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Tuning

In the phase of tuning, we may

� modify membership functions of antecedents and consequents

� add new rules

� delete irrelevant rules or join them with similar ones

by

� experimenting with the controller

� observing a human controlling the system (interpretability is needed)

using

� neural networks,

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 82: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Tuning

In the phase of tuning, we may

� modify membership functions of antecedents and consequents

� add new rules

� delete irrelevant rules or join them with similar ones

by

� experimenting with the controller

� observing a human controlling the system (interpretability is needed)

using

� neural networks,

� genetic algorithms, etc.

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 83: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on defuzzification

� Continuity1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 84: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on defuzzification

� Continuity

� Disambiguity

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 85: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on defuzzification

� Continuity

� Disambiguity

� Small computational complexity

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 86: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on defuzzification

� Continuity

� Disambiguity

� Small computational complexity

� Plausibility (the resulting value should be approximately in the middle of thesupport and have a high degree of membership)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 87: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Requirements on defuzzification

� Continuity

� Disambiguity

� Small computational complexity

� Plausibility (the resulting value should be approximately in the middle of thesupport and have a high degree of membership)

� Weight counting? (When several firing rules have the same consequent, shouldwe sum them up?)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 88: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

• Continuity: excellent

• Disambiguity: none

• Computational complexity: high

• Plausibility: doubtful! (it may choose a wrong value between two peeks)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 89: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

� Center of sums – respects the multiplicity of overlapping consequents

• Continuity: excellent

• Disambiguity: none

• Computational complexity: moderate (centroids corresponding to separaterules may sometimes be computed in advance)

• Plausibility: doubtful! (it may choose a wrong value between two peeks)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 90: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

� Center of sums – respects the multiplicity of overlapping consequents

� Center of largest area

• Continuity: sometimes violated

• Disambiguity: occurs

• Computational complexity: moderate

• Plausibility: reasonable

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 91: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

� Center of sums – respects the multiplicity of overlapping consequents

� Center of largest area

� First/last of maxima

• Continuity: bad!

• Disambiguity: none, but due to an additional criterion

• Computational complexity: low

• Plausibility: reasonable

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 92: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

� Center of sums – respects the multiplicity of overlapping consequents

� Center of largest area

� First/last of maxima

� Middle of maxima

• Continuity: bad!

• Disambiguity: none, but due to an additional criterion

• Computational complexity: low

• Plausibility: may be a problem

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 93: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

� Center of sums – respects the multiplicity of overlapping consequents

� Center of largest area

� First/last of maxima

� Middle of maxima

� Any of maxima (chosen at random)

• Continuity: bad!

• Disambiguity: occurs!

• Computational complexity: low

• Plausibility: reasonable

• Can be applied to any form of consequents (not necessarily convex or evennon-numerical)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 94: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

� Center of sums – respects the multiplicity of overlapping consequents

� Center of largest area

� First/last of maxima

� Middle of maxima

� Any of maxima (chosen at random)

� Height defuzzification (each consequent is replaced by a singleton and theirweighted mean is computed)

• Continuity: good

• Disambiguity: none

• Computational complexity: low

• Plausibility: doubtful!

• Some features of fuzzy control are lost; in fact, crisp outputs of rules arecombined

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 95: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Methods of defuzzification

� Center of area (gravity) – ignores the multiplicity of overlapping consequents

� Center of sums – respects the multiplicity of overlapping consequents

� Center of largest area

� First/last of maxima

� Middle of maxima

� Any of maxima (chosen at random)

� Height defuzzification (each consequent is replaced by a singleton and theirweighted mean is computed)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 96: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Defuzzification

Problems of defuzzification:

� Multiple maxima

� Continuous switching between rules

� If supports of consequents are not bounded, extending the universe may lead todifferent outputs

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 97: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Takagi-Sugeno controller

Uses rules in a generalized formif X is A1 then Y is f1(X) and. . .if X is An then Y is f2(X)

where fi, i = 1, . . . , n, may be arbitrary functions of the input variables(usually linear)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 98: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Takagi-Sugeno controller

Uses rules in a generalized formif X is A1 then Y is f1(X) and. . .if X is An then Y is f2(X)

where fi, i = 1, . . . , n, may be arbitrary functions of the input variables(usually linear)

In particular, we may choose any classical controller for fi

The advantage is that we added the assumptions of applicability of different rules;as these assumptions are fuzzy, we may switch smoothly from one rule to another

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 99: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Takagi-Sugeno controller

Uses rules in a generalized formif X is A1 then Y is f1(X) and. . .if X is An then Y is f2(X)

where fi, i = 1, . . . , n, may be arbitrary functions of the input variables(usually linear)

In particular, we may choose any classical controller for fi

The advantage is that we added the assumptions of applicability of different rules;as these assumptions are fuzzy, we may switch smoothly from one rule to another

The output is usually a linear combination (weighted mean) or other aggregationoperator applied to the separate rules and taking into account the degrees of firing ofthe rules

Defuzzification is not necessary

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 100: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Evaluation of fuzzy control in comparison to the classical control

Problems:

� It is difficult to guarantee some properties, in particular stability

� Number of rules (curse of dimensionality)

� Adding new rules, the output of a Mamdani–Assilian controller increases, that ofa residuum-based controller decreases; in both cases, they may degenerateIn CFR controller this negative effect is compensated, the influence of old rules isattenuated when new rule applies (this is caused by the formula for the degree ofconditional firing)

Advantages:

� Easy design and tuning

� Simplicity and fast action

� Interpretability (before/after tuning)

� Possible combination of a theoretical model, automatic generation of rules, andhuman expertise

� Universal approximation property: For each continuous function and for eachε there is a fuzzy controller which ε-approximates the given function.

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 101: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Evaluation of fuzzy control in comparison to the classical control

Problems:

� It is difficult to guarantee some properties, in particular stability

� Number of rules (curse of dimensionality)

� Adding new rules, the output of a Mamdani–Assilian controller increases, that ofa residuum-based controller decreases; in both cases, they may degenerateIn CFR controller this negative effect is compensated, the influence of old rules isattenuated when new rule applies (this is caused by the formula for the degree ofconditional firing)

Advantages:

� Easy design and tuning

� Simplicity and fast action

� Interpretability (before/after tuning)

� Possible combination of a theoretical model, automatic generation of rules, andhuman expertise

� Universal approximation property: For each continuous function and for eachε there is a fuzzy controller which ε-approximates the given function.

However, the number of rules is not bounded (like in the Weierstrass theorem).

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 102: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Other areas of application

Any form of approximation, also in computer vision1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 103: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Other areas of application

Any form of approximation, also in computer vision

Decision making – CFR tested in [Peri 2003, Navara, Peri 2004] as an extension ofFURL (Fuzzy Rule Learner), [Yager et al. 2002] in medical diagnostic systems

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 104: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Other areas of application

Any form of approximation, also in computer vision

Decision making – CFR tested in [Peri 2003, Navara, Peri 2004] as an extension ofFURL (Fuzzy Rule Learner), [Yager et al. 2002] in medical diagnostic systems

Expert systems

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 105: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Other areas of application

Any form of approximation, also in computer vision

Decision making – CFR tested in [Peri 2003, Navara, Peri 2004] as an extension ofFURL (Fuzzy Rule Learner), [Yager et al. 2002] in medical diagnostic systems

Expert systems

Human-machine interface

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 106: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Other areas of application

Any form of approximation, also in computer vision

Decision making – CFR tested in [Peri 2003, Navara, Peri 2004] as an extension ofFURL (Fuzzy Rule Learner), [Yager et al. 2002] in medical diagnostic systems

Expert systems

Human-machine interface

Intelligent database search (Google)

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 107: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Other areas of application

Any form of approximation, also in computer vision

Decision making – CFR tested in [Peri 2003, Navara, Peri 2004] as an extension ofFURL (Fuzzy Rule Learner), [Yager et al. 2002] in medical diagnostic systems

Expert systems

Human-machine interface

Intelligent database search (Google)

Any field which needs to represent linguistic knowledge in a program

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 108: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Bibliography

[Amato, Di Nola, Navara 2003] Amato, P., Di Nola, A., Navara, M.: Mathematicalaspects of fuzzy control. WILF 2003 International Workshop on Fuzzy Logicand Applications, Naples, Italy, 1–6, 2003.

[Amato, Manara 2002] P. Amato, C. Manara: Relating the theory of partitions inMV-logic to the design of interpretable fuzzy systems, In: Trade-off betweenAccuracy and Interpretability in Fuzzy Rule-Based Modeling, J. Casillas,O. Cordon, F. Herrera, and L. Magdalena (Eds), Springer Verlag, Berlin, 2002.

[Koczy et al. 1997] P. Baranyi, I. Bavelaar, L. Koczy, A. Titli: Inverse rule base ofvarious fuzzy interpolation techniques, In: Proc. Congress IFSA 97, Vol. II,Praha, 121–126, 1997.

[de Baets 1996] B. de Baets: A note on Mamdani controllers, In: D. Ruan,P. D’hondt, P. Govaerts and E. Kerre (eds.), Intelligent Systems and SoftComputing for Nuclear Science and Industry, World Scientific Publishing,Singapore, 1996, 22–28.

[Driankov et al. 1993] D. Driankov, H. Hellendoorn, M. Reinfrank: An Introductionto Fuzzy Control , Springer, Berlin, Heidelberg, 1993.

[Kruse et al. 1994] R. Kruse, J. Gebhardt, F. Klawon: Foundations of FuzzySystems. J. Wiley, 1994.

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 109: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Bibliography

[Mamdani, Assilian 1975] E.H. Mamdani, S. Assilian: An experiment in linguisticsynthesis with a fuzzy logic controller, J. Man-Machine Stud. 7 (1975) 1–13.

[Moser, Navara 1999] Moser, B., Navara, M.: Which triangular norms are convenientfor fuzzy controllers? In: Proc. EUSFLAT-ESTYLF Joint Conf. 99 ,Universitat de les Illes Balears, Palma (Mallorca), Spain, 1999, 75–78.

[Moser, Navara 2002] Moser, B., Navara, M.: Fuzzy controllers with conditionallyfiring rules. IEEE Trans. Fuzzy Systems 10 (2002), No. 3, 340–348.

[Navara, St’astny 2002] Navara, M., St’astny, J.: Properties of fuzzy controller withconditionally firing rules. In: P. Sincak, J. Vascak, V. Kvasnicka, J. Pospıchal(eds.) Intelligent Technologies — Theory and Applications., IOS Press,Amsterdam, 2002, 111–116.

[Navara, Peri 2004] M. Navara, D. Peri: Automatic Generation of Fuzzy Rules and ItsApplications in Medical Diagnosis. Proc. 10th Int. Conf. InformationProcessing and Management of Uncertainty , Perugia, Italy, Vol. 1, 657–663,2004.

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 110: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

Bibliography

[Perfilieva, Tonis 1997] I. Perfilieva, A. Tonis: Criterion of solvability of fuzzyrelational equations system. In: M. Mares, R. Mesiar, V. Novak, J. Ramık, andA. Stupnanova, (eds.), Proceedings of IFSA’97 , Academia, Prague, 1997, 90–95.

[Peri 2003] D. Peri: Fuzzy Rules Induction in Medical Diagnosis. Technical Report,CTU, Praha, 2003.

[St’astny 2001] J. St’astny: Comparison of Mamdani and CFR Controller (inCzech), Research Report CTU–CMP–2001–04, Center for Machine Perception,Czech Technical University, Prague, Czech Republic, 2001,ftp://cmp.felk.cvut.cz/pub/cmp/articles/navara/TR_Stastny.ps.gz

[Yager et al. 2002] R. Rozich, T. Ioerger, and R. Yager (2002). FURL - a theoryrevision approach to learning fuzzy rules. Proc. IEEE International Conference onFuzzy Systems, pages 791–796, 2002.

[Zadeh 1973] L.A. Zadeh: Outline of a new approach to the analysis of complexsystems and decision processes. IEEE Trans. on Systems, Man, and Cybernetics3 (1973) 28–44.

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 6465 6667 6869

Page 111: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

rule base

degreesof overlapping

compositionrule defuzzification

X� Y �

y�

Xi Yi

DT (X�; Xi)

Page 112: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

rule base

degreesof overlapping

compositionrule defuzzification

X� Y �

y�

Xi Yi

DT (X�; Xi)

Page 113: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

firing

degreesof conditionalof overlapping

degrees

rescaled rule base

compositionrule

rescaling defuzzificationrescalingX�

�[�1]�

�(Xi) �(Yi)

Y � y��(X�)

DT (X�; Xi)

CT;i(X�)

Page 114: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1position

position [−]

mem

bers

hip

[−]

velka neg.

mala neg. mala pos.

velka pos.rovnovaha

Page 115: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1velocity

velocity [−]

mem

bers

hip

[−]

NB

NS

ZO

PS

PB

Page 116: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1angle

angle [rad]

mem

bers

hip

[−]

NB

NS

ZO

PS

PB

Page 117: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

0 1 2 3 4 5−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0velocity

time [s]

mag

nitu

de [m

/s]

0 1 2 3 4 5−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3position

time [s]

mag

nitu

de [m

]

0 1 2 3 4 5−0.1

−0.05

0

0.05

0.1angle

time [s]

mag

nitu

de [−

]

1.5 2 2.5 3 3.5−0.15

−0.1

−0.05

0

0.05

0.1position + velocity (detail)

time [s]

mag

nitu

de [m

, m/s

]

Page 118: Fuzzy control - CMPcmp.felk.cvut.cz/~navara/fl/fc_Foligno04.pdf · • Applications of fuzzy control principles outside automatic control (classification, decision making, approximation,

0 1 2 3 4 5−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0velocity

time [s]

mag

nitu

de [m

/s]

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25position

time [s]

mag

nitu

de [m

]

0 1 2 3 4 5−0.15

−0.1

−0.05

0

0.05angle

time [s]

mag

nitu

de [−

]

1.5 2 2.5 3 3.5−0.15

−0.1

−0.05

0

0.05

0.1position + velocity (detail)

time [s]

mag

nitu

de [m

, m/s

]


Recommended