+ All Categories
Home > Documents > Gabriel Martínez Pinedo - Monash...

Gabriel Martínez Pinedo - Monash...

Date post: 25-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
35
Weak rates for ECSN progenitor evolution and nucleosynthesis Gabriel Martínez Pinedo Electron Capture Supernova & Super-AGB Star Workshop, Melbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute
Transcript
Page 1: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Weak rates for ECSN progenitor evolution andnucleosynthesis

Gabriel Martínez Pinedo

Electron Capture Supernova & Super-AGB Star Workshop,Melbourne, February 1-6, 2016

Nuclear Astrophysics Virtual Institute

Page 2: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Outline

1 Introduction

2 Weak rates for ONeMg core evolution

3 3D simulations oxygen deflagration (Jones et al)

4 nucleosynthesis in ECSN

5 Summary

Page 3: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Stellar Evolution Intermediate mass stars

Stellar Cloudwith

Protostars

Low-mass StarRed Giant

Planetary Nebula

White Dwarf

Massive Star

Red SupergiantNeutron Star

Black Hole

Intermediate-mass Star

Supernova

CCSN

ECSN

AgeM

ass

Page 4: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Core evolution (intermediate stars)

Jones et al., ApJ 772, 150 (2013)

Page 5: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Threshold densities for electron capture

David Arnett, Supernovae and Nucleosynthesis

Page 6: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Urca pairs: cooling vs heating

odd A

(odd,even)

(even,odd)

(odd,even)

Q1

Q2

even AQ1>Q2Q2>Q1

(even,even)

(odd,odd)

(even,even)

Q1

Q2

ec

β-

Urca cooling heating

ec

ec

Pairing

electron fermi energy:

mass parabola for isobaric chain

Page 7: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Description electron capture and beta decay rates

Both rates are given by a thermal average over states in the initial nucleus:

λ =

∑i f (2Ji + 1)λi f e−Ei/(kT )∑

i(2Ji + 1)e−Ei/(kT )

Allowed approximation (Gamow-Teller transitions)

λi f =ln 2K

Bi f Φ(qi f , µe,T ), K = 6144 s

Bi f : transition matrix element. Most of the relevant transitions areexperimentally known. Shell-model calculations are possible.

Φ(qi f , µe,T ): “trivial” phase space integral that accounts for thestrong sensitivity of rates to temperature and density.Implementation in stellar evolution codes requires special care.

Page 8: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

What to include in a weak interaction rate table?

Directly the rates: Requires very fine grids in density and temperature toachieve accurate interpolations. Particularly relevant at the lowtemperatures relevant for ONeMg core evolution.

Instead of the rate tabulate an effective matrix element (Fuller, Fowler andNewmann 1985). For electron capture

λec =ln 2K

BeffΦec(qgs, µe,T ), qgs = Qgs/(mec2)

Phase space can be expressed via Fermi integrals:

Φec(Q, µe,T ) =

(kT

mec2

)5 {F4

(µe − Q

kT

)+ 2

QkT

F3

(µe − Q

kT

)+

( QkT

)2

F2

(µe − Q

kT

)}Allows to use approximate expressions for Fermi integrals: fast andaccurate up to 10-20%.

An extension to β− decay is necessary.

Page 9: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Example: Electron capture on 23Na

Rates from Oda et al (1994) tabulation.

−40

−30

−20

−10

0

log

10 [λ

ec (

s−1)]

8 9 10

log10 [ρYe (g cm−3)]

0

0.1

0.2

Bef

f

Direct interpolation in sparse density grid results in 1-2 orders ofmagnitude uncertainty.

Interpolation matrix element results in a maximum error of a factor 2.

Page 10: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

How to do better?

In general, all rates relevant for ONeMg core evolution are determined by a fewtransitions. It is possible to provide analytical expressions for each individualrate [GMP+, PRC 89, 045806 (2014)]

2+ 0.0 11.163 s

2

09F11

Q–(g.s . )=7024.538

0+ 0.0>10.5<0.001

2+ 1633.6744.969799.9913

Log f tIβ–

21

00Ne10

1+ 1.057

Low densities (all temperatures): Rate determined by 2+ → 2+

(Q = 5.902 MeV) transition (experimentally known from beta decay).

Intermediate densities (T < 0.9 GK): determined second forbiddentransition 0+ → 2+ (Q = 7.536 MeV) (only an experimental limit)

Higher densities: transition 0+ → 1+ (Q = 8.592 MeV determines rate(experimentally known from (p, n) charge exchange).

Page 11: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Electron capture on 20Ne

9 9.2 9.4 9.6 9.8 10

log10 [ρYe (g cm−3)]

−35

−30

−25

−20

−15

−10

−5

0

log

10 [λ

ec (

s−1)]

Takahara et al.

2+ → 2+

2+ → 3+

0+ → 2+

0+ → 1+

Total

T = 0.4 GK

9 9.2 9.4 9.6 9.8 10

log10 [ρYe (g cm−3)]

−20

−15

−10

−5

0

log

10 [λ

ec (

s−1)]

Takahara et al.

2+ → 2+

2+ → 3+

0+ → 2+

0+ → 1+

Total

T = 1 GK

Mayor uncertainty is due to second forbidden transition.

Page 12: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Second forbidden calculation

λ =ln 2K

Φ2nd(q, µe,T )

Φ2nd(q, µe,T ) =

∫ ∞

qwp(q + w)2C(w)F(Z, w) fe(w, µe,T )dw

C(w) is the shape factor: Linear combination of matrix elementsand energy factors.

Relevant matrix elements (Behrens & Bühring 1971)

V F211 ∼[r ⊗ pi f

]2t+, pi f = (pi + pf )/2

V F220 ∼ r2Y2t+AF221 ∼ r2 [Y2 ⊗ σ]2 t+

Page 13: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Shell-model calculations

sd-shell shell-model calculation using USDB interaction (Idini, Brown,Langanke, GMP, in preparation)

Harmonic Oscillator Wood–SaxonV F211 0. 0.0048V F220 0.8035 1.3353AF221 0.2423 0.3257

The beta-decay theoretical matrix element is B = 〈C(w)〉 = 1.36 × 10−7

using gA = 1.27 (1.11 × 10−7 for gA = 1.0).

The experimental upper limit is 1.94 × 10−7.

Page 14: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Impact on electron capture and beta decay

9 9.25 9.5 9.75 10

-4

-16

-10

Blue dashed: Experimental limitRed: Wood-Saxon wave functionsBlack: Harmonic oscillator wave functions

Page 15: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Screening of weak interaction ratesThe pressence of a degenerate electron background can affect both beta-decaysand electron capture rates:

Correction to nuclear bindingenergy (DeWitt, Graboske, andCooper 1973; Hix and Thielemann1996, Bravo and García-Senz 1999,Juodagalvis et al. 2010). Q-valueincreases by 0.1–0.3 MeV.

Correction to electron energy(Itoh et al. 2002). Chemicalpotential reduced by0.02–0.05 MeV.

Net effect is a reduction ofelectron capture rate and anincrease of the beta-decay rate.

−14

−12

−10

−8

−6

−4

−2

0

log

10 [λ

(s−

1)]

e− capture (no scr.)

e− capture (scr.)

β decay (no scr.)

β decay (scr.)

9 9.2 9.4 9.6 9.8 10

log10 [ρYe (g cm−3)]

−14

−12

−10

−8

−6

−4

−2

log

10 [λ

(s−

1)]

Having an analytical scheme allows to consider screening corrections consistentwith the underlying EoS.

Page 16: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Impact evolution core

Based on ONeMg cores from Schwab, Quataert, and Bildsten 2015.Convection does not develop in the core.

9.5 9.6 9.7 9.8 9.9 10.0log ρc

8.4

8.6

8.8

9.0

9.2

9.4

logT

c

wo Ne20 2nd forbidden ECupper limit (GMP+ 2014, log fT = 9.8)

u.lim./1000 (log fT = 12.8)

How sensitive is this result to the set of nuclear reactions included?

Page 17: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Larger network

Möller, Jones, GMP, in preparation

1 8 16 20 28N

1

8

16

20Zthis workSchwab+ (2015)

Increased to account for possible role of 20O(α, n)23Ne. This ratedominates over 20Ne(α, γ)24Mg during Neon burning.

Page 18: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Evolution larger network

9.5 9.6 9.7 9.8 9.9 10.0log ρc

8.4

8.6

8.8

9.0

9.2

9.4lo

gT

c

wo Ne20 2nd forbidden ECupper limit (GMP+ 2014, log fT = 9.8)u.lim./1000 (log fT = 12.8)

Convection does in fact develops in some of the models.

Page 19: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Evolution larger network

9.90 9.92 9.94 9.96 9.98 10.00log ρc

8.4

8.6

8.8

9.0

9.2

9.4

logT

c

NACRE ratesREACLIB rates + O20(a,g)Ne24REACLIB + O20(a,g)Ne24*20REACLIB + O20(a,g)Ne24*400REACLIB + O20(a,g)Ne24*8000REACLIB + O20(a,g)Ne24/20

Evolution very sensitive to variations of 20O(α, n)23Ne rate. It may affectthe density at which oxygen deflagration initiates.

Page 20: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

O DEFLAGRATIONMULTI-DIMENSIONAL SIMULATIONSJoes, Röpke, Pakmor, Seitenzahl, Ohlmann, Edelmann, arXiv:1602.05771 [astro-ph.SR]

LEAFS code (Reinecke+ 1999, Röpke & Hillebrandt 2005, Röpke 2005, 2006)

Isothermal ONe core/WD in HSE with a range of central (ignition) densities

Centrally-confined ignition: 300 'bubbles' within 50 km sphere, < 5 x 10-4 M☉ inside initial flame surface

In laminar regime, flame speeds from Timmes+ (1992); in turbulent regime, flame speeds from subgrid scale model of turbulence (Schmidt+ 2006)

Page 21: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Scale: 1500 kmTime: 0.7 s

56NiO

DEF

LAG

RA

TIO

N3D

: 512

3

THER

MO

NU

CLE

AR

EX

PLO

SIO

N?

Page 22: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Scale: 2500 kmTime: 1.3 s

56NiO

DEF

LAG

RA

TIO

N3D

: 512

3

THER

MO

NU

CLE

AR

EX

PLO

SIO

N?

Page 23: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Scale: 400,000 kmTime: 60 sO

DEF

LAG

RA

TIO

N3D

: 512

3

THER

MO

NU

CLE

AR

EX

PLO

SIO

N?

56Ni

Page 24: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

ρign = 109.9 g cm-3

THERMONUCLEAR EXPLOSION?

Page 25: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

ρign = 1010.2 g cm-3

CORE COLLAPSE

Page 26: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Heavy elements and metal-poor starsCowan & Sneden, Nature 440, 1151 (2006)

30 40 50 60 70 80 90Atomic Number

−8

−6

−4

−2

0

Rel

ativ

e lo

g ε

30 40 50 60 70 80 90−8

−6

−4

−2

0

Stars rich in heavy r-process elements (Z > 50)and poor in iron (r-II stars, [Eu/Fe] > 1.0).

Robust abundance patter for Z > 50,consistent with solar r-process abundance.

These abundances seem the result of eventsthat do not produce iron. [Qian & Wasserburg,Phys. Rept. 442, 237 (2007)]

Possible Astrophysical Scenario: Neutron starmergers.

Stars poor in heavy r-process elements butwith large abundances of light r-processelements (Sr, Y, Zr)

Production of light and heavy r-processelements is decoupled.

Astrophysical scenario: neutrino-drivenwinds from core-collapse supernova

40 50 60 70 80

Atomic Number (Z)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

log ε

(Z

)

EuHD 122563 (Honda et al. 2006)

translated pattern of CS 22892-052 (Sneden et al. 2003)

Ag

Y

PdMo

Ru

Nb

SrZr

(b)

Honda et al, ApJ 643, 1180 (2006)

Page 27: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Nucleosynthesis in neutrino-driven winds

Main processes:

νe + n� p + e−

ν̄e + p� n + e+

Neutrino interactions determine theproton to neutron ratio.

Neutron-rich ejecta:

〈Eν̄e 〉 − 〈Eνe 〉 > 4∆np −[

Lν̄eLνe− 1

] [〈Eν̄e 〉 − 2∆np

]

neutron-rich ejecta: r-process

proton-rich ejecta: νp-process

We need accurate knowledge of νe andν̄e spectra

α, n

α, p α, p, nuclei

α, n, nuclei

R in

km

102

103

104

105

31.4

He

Ni

Si

PNS

ORns ~10

Neutrino cooling and

Neutrino-driven wind

n, p

νp-process

r-process

M(r) in M

νe,µ,τ, νe,µ,τ

νe,µ,τ, νe,µ,τ –

Page 28: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Weak rates in the decoupling regionNeutrino mean-free paths at high densities:

11121314

10−4

10−3

10−2

10−1

100

101

102

103

Baryon Density, log10

(ρ [g cm−3

])

νµ/τ

νµ/τ n→νµ/τ n

νµ/τ p→νµ/τ p

νµ/τ ν̄µ/τ →e−e+

νµ/τ ν̄µ/τ NN→NN

νµ/τ e± →νµ/τ e±

11121314

10−4

10−3

10−2

10−1

100

101

102

103

Baryon Density, log10

(ρ [g cm−3

])

ν̄e

ν̄e n→ ν̄e n

ν̄e p→ ν̄e p

ν̄e p→e+n

νeν̄e →e−e+

νeν̄e NN→NN

ν̄e e± → ν̄e e±

11121314

10−4

10−3

10−2

10−1

100

101

102

103

Baryon Density, log10

(ρ [g cm−3

])

1/λ

[km

−1]

νe

νen→νen

νep→νep

νen→e−p

νeν̄e →e−e+

νeν̄e NN→NN

νee± →νee

±

νe emission: mainly determined by charged-current νe + n� p + e−.Depends on equation of state properties.

ν̄e emission: strong sensitivity to the processes considered and equation ofstate properties.

GMP, Fischer, Huther, J. Phys. G 41, 044008 (2014)

Page 29: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Neutrino interactions at high densitiesMost of Equations of State treat neutrons and protons as “non-interacting”(quasi)particles that move in a mean-field potential Un,p(ρ,T,Ye).

µp

µen

µ

En =p2

n

2m∗n+ m∗n + Un

Q = m∗n − m∗p + Un − Up

Ep =p2

p

2m∗p+ m∗p + Up

Energy difference between neutrons and protons is directly related to nuclearsymmetry energy.

Symmetry energy enhances νe absorption and suppresses ν̄e absorption.

Symmetry energy determines the spectral differences between νe and ν̄e andconsequently the nucleosynthesis.

GMP, Fischer, Lohs, Huther, PRL 109, 251104 (2012)Roberts, Reddy, Shen, PRC 86, 065803 (2012)

Page 30: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Constrains in the symmetry energy

Combination nuclear physics experiments and astronomicalobservations (Lattimer & Lim 2013)Isobaric Analog States (Danielewicz & Lee 2013)Chiral Effective Field Theory calculations (Drischler+ 2014)

0.01 0.1

nB (fm−3)

0

5

10

15

20

25

30

35

40

Esy

m (

MeV

)

χEFT (NN+3N), Drischler et al 2014

Danielewicz & Lee 2013 IASDanielewicz & Lee 2013 IAS + SkinsLattimer & Lim 2013DD2NL3TM1TMASFHoSFHxFSUgold

IUFSULS180LS220

Figure data from Matthias Hempel (Basel)

Page 31: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Impact on neutrino luminosities and Ye evolution

1D Boltzmann transport radiation simulations (artificially induced explosion)for a 11.2 M� progenitor based on the DD2 EoS (Stefan Typel and MatthiasHempel).

0 2 4 6 8 10Time [s]

1050

1051

1052

Lum

inos

ity[e

rgs/

s]

0 2 4 6 8 10Time [s]

6789

10111213

〈Eν〉[

MeV

] νe

ν̄e

νx

0 2 4 6 8 10Time [s]

0.460.480.500.520.540.560.580.60

Ele

ctro

nfra

ctio

n

0 2 4 6 8 10Time [s]

2030405060708090

100

Ent

ropy

[kB

/bar

yon]

Ye is moderately neutron-rich at early times and later becomes proton-rich.GMP, Fischer, Huther, J. Phys. G 41, 044008 (2014).

Page 32: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Nucleosynthesis

50 60 70 80 90 100 110Mass number A

10−410−310−210−1

100101102103104105106107

Rel

.ab

unda

nce 11.2

25 30 35 40 45 50 55Charge number Z

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Ele

men

tala

bund

ance

HD 122563

Elements between Zn and Mo (A ∼ 90) are produced

Mainly neutron-deficient isotopes are produced

Uncertainties: Equation of State, neutrino reactions (mainly ν̄e), Neutrinooscillations(?).

Page 33: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Neutron decay

The neutron-proton energy difference in the medium could be of the order ofseveral 10s MeV. Neutron decay is important for low energy neutrinos.

ν̄e + p� n + e+

ν̄e + e− + p� n

This is part of the direct URCA process in neutron stars [Lattimer et al, (1991)]

Νe + e-+ p ® n

Νe + p ® n + e+

0 10 20 30 400.001

0.01

0.1

1

10

Energy HMeVL

OpacityHkm-1L

0.5 1 2 3 5 10

5

6

7

8

9

⟨E ν⟩

[MeV

]

0.5 1 2 3 5 10

6

7

8

9

10

11

12

⟨E ν⟩

[MeV

]

20

no neutron decay channelincluding neutron−decay channel

νe

ν̄e

t − tbounce [s]Fischer, Lohs, GMP, Qian, in preparation

Page 34: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Additional opacity channels for ν̄e

10−2

10−1

100

101

102

103

104

10 20 30 40 50 60 70 80 90 100

Opa

city

[1/k

m]

Energy [MeV]

ν̄e + p→ e+ + nν̄e + n→ ν̄e + nν̄e + p→ ν̄e + pν̄e + e− → ν̄e + e−

νe + ν̄e + NN → NNν̄e + e− + p→ nν̄e + e− + νµ → µ−ν̄e + e− → ν̄µ + µ−

Page 35: Gabriel Martínez Pinedo - Monash Universityusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Martinezpinedo.pdfMelbourne, February 1-6, 2016 Nuclear Astrophysics Virtual Institute. ... Q2

Introduction Weak rates for ONeMg core evolution 3D simulations oxygen deflagration (Jones et al) nucleosynthesis in ECSN Summary

Summary

Most of the weak interaction rates relevant for ONeMg coresevolution are well constrained by experimental data.

Challenge: accurate and fast implementation of rates in stellarevolutionary codes.

Core evolution sensitive to weak rates and thermonuclear rates.

Final outcome sensitive to density of oxygen ignition. 3Dsimulations by Jones et al

Electron capture supernova constitute an ideal test ground toexplore the impact of neutrino opacities on heavy elementnucleosynthesis.

It is important to improve the description of ν̄e opacities intransport codes.


Recommended