+ All Categories
Home > Documents > Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · [email protected] 805- 893-3244, 805...

Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · [email protected] 805- 893-3244, 805...

Date post: 25-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
52
[email protected] 805-893-3244, 805-893-5705 fax Presentation to NNIN REU interns, July 29, 2008 Mark Rodwell University of California, Santa Barbara Galileo, Elephants, & Fast Nano-Devices
Transcript
Page 1: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

[email protected] 805-893-3244, 805-893-5705 fax

Presentation to NNIN REU interns, July 29, 2008

Mark Rodwell University of California, Santa Barbara

Galileo, Elephants, & Fast Nano-Devices

Page 2: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Scaling: making transistors small makes them fastWe've recently made very fast transistors...

...mostly by making them small.

This is related to Galileo and to elephantsSo:

what are transistors ?what are they for ?how do they work ?what limits their speed ?why does making them small help ?

...and how high in frequency can electronics work ?

Page 3: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Goal: Make ICs which work in the Infrared

Far-IR and Mid-IR sources / detectors today:BWO & carcinotron vaccum tubes, CO2 & quantum cascade lasers

109 1010 1011 1012 1013 1014 1015

Frequency (Hz)

microwave3-30 GHz

mm-wave30-300 GHz

far-IR(sub-mm)0.3-3THz

mid-IR3-30 THz

near-IR30-450 THz

optical450-900 TH

z

electronics well-developed to ~340 GHz optics well developed >30 THz

mid-IR, far-IR technologies not well developedBWO & cancinotron tubes, CO2 lasers

Transistors → ICs → very complex signal processing being done very very quickly.

But: while these do make power at THz frequencies, they can't process signals at comparable rapidity, and don’t do much else

Our goal: Transistors and Integrated Circuits for 300-1000 GHz tiny very sensitive (low noise ) very rapid modulation (many bits/second)

Page 4: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

High-Resolution Microwave ADCs and DACs

What could we do with a 5 THz Transistor ?

340 GHz & 600 GHz imaging systems

sub-mm-wave radio:

320 Gb/s fiber optics& adaptive equalizers for 40 Gb/s ...

Why develop THz transistors ? → compact ICs supporting complex high-frequency systems.

Precision Analog design at microwave frequencies

Page 5: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Tiny Transistors Are Very Fast Transistors

0

10

20

30

109 1010 1011 1012

109

1010

1011

1012

dB

Hz

fτ = 560 GHz

fmax

= 560 GHz

U

H21

0

2

4

6

8

10

0 1 2 3 4 5

mA/µm

2

Vce

0

10

20

30

40

109 1010 1011 1012

dB

Hz

UH21

fτ = 424 GHz

fmax

= 780 GHz

0

5

10

15

20

0 1 2 3 4V

ce

mA

/µm

20

10

20

30

40

109 1010 1011 1012

dB

Hz

U

H21

ft = 660 GHz

fmax

= 218 GHz

0

10

20

30

0 1 2 3

mA

/µm

2

Vce

60 nm thick collector

200 GHz master-slavelatch design

340 GHz, 70 mW amplifier design

Z. Griffith, E. Lind, J. Hacker, M. Jones

-20

-15

-10

-5

0

5

10

220 240 260 280 300 320

freq. (GHz)

S21,

S11

, S22

(dB

)

S21

S22

S11

4.7 dB Gain at 306 GHz.

from one HBT

Page 6: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

First Consider Scaling...

1000: 1 larger weight, 100:1 larger bone cross-section→ legs break

10:1 (taller /wider/ deeper)

1000: 1 more flesh, 100:1 larger lung surface→ suffocates

1000: 1 more metabolism, 100:1 larger skin area surface→ overheats

& Elephants

(plagiarized from Galileo)

Page 7: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Scaling...

Scaling:

the surface matters most in little things, the bulk matters most in big things

a golf ball

Scaling: little things change more quickly than big things

bita changed has ratio area surface

volume

Page 8: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Ground Rules

(Einstein)

We can simplify, but not to the point where we ignore key considerations.

"Everything should be made as simple as possible.""Everything should be made as simple as possible, but not simpler."

Enthusiasm enables, hype mis-directs...

Page 9: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Tubes & Transistors

...what are they for ?

...how do they work ?

...what are they ?

Page 10: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

The Telegraph: The First Electronics (1830's)

transmitter receiver

Schilling , Morse, Wheatstone, Edison, Gauss, Heaviside...

"The Ancients have Stolen Our Inventions"pulse dispersion, frequency-division multiplexingFrequency-domain transform methodsamplification

http://en.wikipedia.org

http://en.wikipedia.org

Page 11: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Loss and Dispersion Limits Range

Resistance→ pulse dispersionThe longer the range, the more slowly you must signal

Page 12: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Human Relay To Repeat the Signal

Expensive and Slow...

Page 13: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Magnetic Relay: the First Electrical Amplifier

Question asked when "Tubes" or "Valves" were first introduced:"Is it a true relay ?" ---- meaning: "Is it an amplifier ?"

Modern terminology:"Is there voltage, current, power amplification?"

http://www.kpsec.freeuk.com/components/relay.htm

http://www.kpsec.freeuk.com/components/relay.htm

Page 14: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Vacuum Tubes ( 1903-1907 ) Edison, Thompson, Fleming, DeForrest

How it works:Hot cathode boils electrons into VacuumGrid screens electrons near cathode from positive anodeNegative grid repels electrons: the more negative, the less currentElectrons passing through grid drawn quickly to Anode

http://en.wikipedia.org/wiki/Vacuum_tubehttp://en.wikipedia.org/wiki/Vacuum_tube

Page 15: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Tubes: Input Voltage Controls Output Current

Page 16: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Vacuum Tubes --- As an Amplifier

inVδ

plateIδ Lplateout RIV **1 δδ −=

LmLgrid

plate

in

out RgRVI

VV

−=×∂

∂−=

∂∂

=Gain Voltage

If we had time:current gain, power gaingain as a function of signal frequency

Page 17: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

What Are Bipolar Transistors ?

Page 18: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

How Do Bipolar Transistors Work ?

cI

beV ceV

voltagecollector with little variesit through pass base reaching electrons allAlmost

)/exp(al)(exponenti thermalison distributienergy emitter Because

c

bec

I

kTqVI

Page 19: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

How Do Bipolar Transistors Amplify Signals ?

bembebe

cc VgV

VII δδδ =

∂∂

=

beVδ

Lcout RIV ×= δδ

Lmin

out RgVV

−=∂∂

=gain Voltage

Page 20: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

How Do Field-Effect Transistors Work ?

source draingate

Positive Gate Voltage→ reduced energy barrier→ increased drain current

Page 21: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

FETs: Computing Their Characteristics

chdC −

/ where/ electrongd vLQI == ττ

/~ DACgs ε

ττδδδ / and / where chdgdgsmdsdsgsmd CGCgVGVgI −==⋅+⋅=

dschdgsgs VCVCQ δδδ −+=

Page 22: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

FET Characteristics

chdC − /~ DACgs ε

dsdsgsmd VGVgI δδδ ⋅+⋅=

ID

VDS

increasingVGS

electrongchdgdgsm vLCGCg / / / === − τττ

Page 23: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Tubes & Transistors

...what limits their frequency range ?

Page 24: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

What Limits Semiconductor Device Bandwidth?

Page 25: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

What Limits Semiconductor Device Bandwidth?

Page 26: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Bandwidth Limits

depletionaccessRC

electrontransit

CRvD=

τ : timecharging RC

/ :metransit ti:limitsFrequency

Page 27: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Bandwidth Limits

depletionaccessRC

electrontransit

CRvD=

τ : timecharging RC

/ :metransit ti:limitsFrequency

Page 28: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Frequency Limitsand Scaling Laws of (most) Electron Devices

bottomR

topR

( )

×∝∆

∝∝∝

widthlengthlog

lengthpower

thickness / area

length stripe/1

area/thickness/area

thickness

2limit-charge-space max,

T

I

RRC

bottom

contacttop ρ

τ

To double bandwidth, reduce thicknesses 2:1reduce width 4:1, keep constant lengthcurrent density has increased 4:1

PIN photodiode

Page 29: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

applies to almost all semiconductor devices:transistors: BJTs & HBTs, MOSFETS & HEMTs, Schottky diodes, photodiodes, photo mixers, RTDs, ...

high current density, low resistivity contacts, epitaxial & lithographic scaling

THz semiconductor devices

bottomR

topR

capacitanceresistance transit time

device bandwidth

FETs only: high εrεo/D dielectrics

Page 30: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Why aren't semiconductor lasers R/C/τ limited ?

dielectric waveguide mode confines AC field away from resistive bulk and contact regions.

AC signal is not coupled through electrical contacts

+V (DC)

N+

N-

I

P-

P+

metal

metal

opticalmode

-V (DC)

AC outputfield

high εr

dielectric mode confinement is harder at lower frequencies

Page 31: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Tubes & Transistors

...increasing bandwidth by scaling.

Page 32: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Bipolar Transistor scaling lawseW

bcWcTbT

Goal: double transistor bandwidth when used in any circuit→ keep constant all resistances, voltages, currents→ reduce 2:1 all capacitances and all transport delays

vTDT bnbb /22 +=τvTcc 2=τ

( )ELlength emitter

cccb /TAC ∝

ecex AR /ρ=2

, / ceKirkc TAI ∝

contacts

c

e

bcs

e

esbb AL

WLWR ρρρ

++≅612

→ thin base ~1.414:1

→ thin collector 2:1

→ reduce junction areas 4:1→ reduce emitter contact resistivity 4:1

(current remains constant, as desired )

→ reduce base contact resistivity 4:1

reduce widths 2:1 & reduce length 2:1 → constant Rbbreducing widths 4:1, keep constant length → reduced Rbb

EInPe

e

EInP LKP

WL

LKPT

ππ+

≅∆ ln

need to reduce junction areas 4:1reduce widths 2:1 & reduce length 2:1 → doubles ∆Treducing widths 4:1, keep constant length→ small ∆T increase

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Page 33: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Bipolar Transistor Scaling Laws

parameter changecollector depletion layer thickness decrease 2:1base thickness decrease

1.414:1emitter junction width decrease 4:1collector junction width decrease 4:1emitter contact resistance decrease 4:1current density increase 4:1base contact resistivity decrease 4:1

Changes required to double transistor bandwidth:

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Page 34: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Scaling challenges: What's hard ?key device parameter required changecollector depletion layer thickness decrease 2:1base thickness decrease 1.414:1emitter junction width decrease 4:1

collector junction width decrease 4:1emitter resistance per unit emitter area decrease 4:1current density increase 4:1base contact resistivity(if contacts lie above collector junction)

decrease 4:1

base contact resistivity(if contacts do not lie above collector junction)

unchanged

Hard:Thermal resistance (ICs)Contact resistancesYield in deep submicron processesReliability at very high current density

Page 35: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

emitter 512 256 128 64 32 nm width16 8 4 2 1 Ω⋅µm2 access ρ

base 300 175 120 60 30 nm contact width, 20 10 5 2.5 1.25 Ω⋅µm2 contact ρ

collector 150 106 75 53 37.5 nm thick, 4.5 9 18 36 72 mA/µm2 current density4.9 4 3.3 2.75 2-2.5 V, breakdown

fτ 370 520 730 1000 1400 GHzfmax 490 850 1300 2000 2800 GHz

power amplifiers 245 430 660 1000 1400 GHz digital 2:1 divider 150 240 330 480 660 GHz

InP Bipolar Transistor Scaling Roadmap

industry university→industry

university2007-8

appearsfeasible

maybe

Page 36: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Simple FET Scaling Goal: double transistor bandwidth when used in any circuit→ reduce 2:1 all capacitances and all transport delays

→ keep constant all resistances, voltages, currents

oxgm TvWg /~/ ε

oxgggs TLWC /~/ ⋅ε

ε~/, gfgs WC

subcgsb TLWC /~/ ⋅ε

If Tox cannot scale with gate length, Cparasitic / Cgs increases, gm / Wg does not increasehence Cparasitic /gm does not scale

ε~/ ggd WC

Page 37: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Simple FET Scaling Goal: double transistor bandwidth when used in any circuit→ reduce 2:1 all capacitances and all transport delays

→ keep constant all resistances, voltages, currents

decrease gate length 2:1 (easy?)

decrease contact resistivities 4:1 (hard)

Increase gate capacitance/area 2:1 (very hard)tunneling limits in thin insulatorsupper limit on C/A from δQ/δV of semiconductor itself

Page 38: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Scaling challenges: What's hard ?

Hard:Contact resistancesGate capacitance density (εrεo /D)

Page 39: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

nm / THz Transistors

So...what are we working on ?

Bipolar Transistors → THz ICs

Page 40: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Conventional ex-situ contacts are a mess

textbook contact with surface oxide

Interface barrier → resistanceFurther intermixing during high-current operation → poor reliability

with metal penetration

So, we are working on Forming contacts in ultra-high vacuum, perhaps even by MBE

Page 41: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Current UCSB 250 /125 nm Mesa HBT process

SiO2

TiW

InGaAs n++

InGaAs p++ Base

InP n

3 4BHF

Ti

InGaAs p++ Base InGaAs p++ Base InGaAs p++ Base InGaAs p++ Base

InP nInGaAs n++ InGaAs n++

InP n InP n

Litho patternmetal

sidewall dry etch wet etch

0

10

20

30

109 1010 1011 1012

109

1010

1011

1012

dB

Hz

fτ = 56 0 GHz

fmax

= 56 0 GHz

U

H21

0

5

10

15

20

0 1 2 3 4V

cem

A/µ

m2

Page 42: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

200 GHz Digital IC designs : 250 nm HBT

Simulation:fclk = 10GHz, fout = 5GHz

Simulationfclk = 230GHz, fout = 115GHz

200GHz divider design – Teledyne 250 nm HBT process

PDC, latch ~ 300mW

Page 43: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

We Are Working on 128-nm HBTs

128 nm process runs seem to be getting close.

We hope to get 1.2 THz bandwidths from these

Page 44: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Next-Generation HBT Process Flow

Key Process steps (base & collector contacts)by MBE → ultra low resistivity contacts ?

→ 2-3 THz bandwidths ??

Page 45: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

nm / THz Transistors

So...what are we working on ?

III-V MOSFETs for VLSI

Page 46: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Why Develop III-V MOSFETs ? Silicon MOSFETs continue to scale...

...22 nm is feasible in production ( or so the Si industry tells us...)

...16 nm ? -- it is not yet clear

If we can't make MOSFETs yet smaller,instead move the electrons faster:

III-V materials→ lower m*→ higher velocitiesId / Wg = qnsv Id / Qtransit = v / Lg

Serious challenges:High-K dielectrics on InGaAs channels, InGaAs growth on SiTrue MOSFET fabrication processesDesigning small FETs which use big (low m*) electrons

Page 47: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Highly Scaled MOSFETs: What Are Our Goals ?Low off-state current (10 nA/µm) for low static dissipation

→ minimum subthreshold slope→ minimum Lg / Toxlow gate tunneling, low band-band tunneling

Low delay CFET ∆V/I d in gates wheretransistor capacitances dominate.Parasitic capacitances are 0.5-1.0 fF/µm

→ while low Cgs is good, high Id is much better

Low delay Cwire ∆V/Id in gates wherewiring capacitances dominate.large FET footprint → long wires between gates→ need high Id / Wg ; target ~6 mA/µm

Page 48: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Very Rough Projections From Simple Ballistic Theory

Channel EOT drive current intrinsic (transport)(700 mV overdrive) gate capacitance

InGaAs 1 nm 6 mA/µm 0.2 fF/µmInGaAs 1/2 nm 8 mA/µm 0.25 fF/µm

Si 1 nm 2-4 mA/µm 0.7 fF/µmSi 1/2 nm 5-7 mA/µm 1.4 fF/µm

22 nm gate length

InGaAs has much less gate capacitance 1 nm EOT → InGaAs gives much more drive current 1/2 nm EOT → InGaAs & Si have similar drive currentInGaAs channel→ little benefit for sub-22-nm gate lengths

0.5-1.0 fF/µm parasitic capacitances

Page 49: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Implications for Our Device DesignsDevice

drive current > 5 mA/µm at ~700 mV overdriveinversion carrier concentration: 1013 /cm2

off-state current must be < 10 nA/µmLow CV/I delays (will get if high current)

Dielectric: EOT < 1 nm, 0.6 nm preferableinterface Dit < about 5*1011 /cm2

Channel : high-mobility InGaAs <5 nm thickmobility > 1000 cm2/V-s at 5 nm thickness, 1013 /cm2

S/D access resistance: <10 Ohm-µm resistivity, >2*1013 /cm2 carrier density, < 5 nm thick

Page 50: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Galileo, Elephants, & Fast Nano-Devices

Page 51: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Semiconductor Device Scaling

Scaling is the key to success ofCMOS VLSI, microwave/ mm-wave III-V electronics

Scaling will take III-V transistors well in to the THz

Scaling limits are at the surfacescontact resistivitiesdielectric capacitance densities

Scaling limits also come from heatcurrent densitiesdevice thermal resistanceIC thermal resistance

Page 52: Galileo, Elephants, & Fast Nano-Devices - UCSB€¦ · rodwell@ece.ucsb.edu 805- 893-3244, 805 -893-5705 fax. Presentation to NNIN REU interns, July 29, 2008. Mark Rodwell . University

Scaling

Changing the scale changes:Perimeter / area / volume ratios,which changes characteristic times, strength / weight ratios...electrons move in femtoseconds, Galaxies in aeonsThe dominant physics changes with scale, too:A human feels the Coulomb force (as mechanics),Galaxies mostly driven by gravity


Recommended