+ All Categories
Home > Documents > Galway-Mayo Institute of Technology

Galway-Mayo Institute of Technology

Date post: 24-Jan-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
12
Galway-Mayo Institute of Technology Department of Mechanical & Industrial Engineering School of Engineering 41031 Heat Transfer HEAT TRANSFER LAB 2 APPLICATION OF FINITE DIFFERENCE NUMERICAL METHOD - EXERCISE NO. 3 – RECTANGULAR FIN EXTENDED SURFACE LECTURER: DR. J. LOHAN Patrick Livingstone | ID Number: G00353888 | 05/ Dec /2019
Transcript
Page 1: Galway-Mayo Institute of Technology

Galway-Mayo Institute of Technology

Department of Mechanical & Industrial Engineering

School of Engineering

41031 Heat Transfer

HEAT TRANSFER LAB 2 APPLICATION OF FINITE

DIFFERENCE NUMERICAL METHOD - EXERCISE

NO. 3 – RECTANGULAR FIN EXTENDED SURFACE

LECTURER: DR. J. LOHAN

Patrick Livingstone | ID Number: G00353888 | 05/ Dec /2019

Page 2: Galway-Mayo Institute of Technology

Table of Contents: DECLARATION OF ORIGINALITY: ............................................................................................................ 1

INRODUCTION: ......................................................................................................................................... 2

Aim: .......................................................................................................................................................... 2

Finite difference Method: ........................................................................................................................ 2

METHOD ANALYSIS: .................................................................................................................................. 3

RESULTS: ..................................................................................................................................................... 4

Fibre Glass Board: .................................................................................................................................... 4

10 W/m2K:............................................................................................................................................. 4

100 W/m2K: .......................................................................................................................................... 4

1000 W/m2K: ........................................................................................................................................ 5

Stainless Steel: .......................................................................................................................................... 5

10 W/m2K:............................................................................................................................................. 5

100 W/m2K: .......................................................................................................................................... 6

1000 W/m2K: ........................................................................................................................................ 6

Aluminium: .............................................................................................................................................. 7

10 W/m2K:............................................................................................................................................. 7

100 W/m2K: .......................................................................................................................................... 7

1000 W/m2K: ........................................................................................................................................ 8

Isoflux Lines: ............................................................................................................................................ 8

AVERAGE FIN TEMPERATURE (TAverage): .................................................................................................. 9

Fibre Glass Board: .................................................................................................................................... 9

Stainless Steel: .......................................................................................................................................... 9

Aluminium: .............................................................................................................................................. 9

CONCLUSION: ........................................................................................................................................... 10

REFERENCE: ............................................................................................................................................... 10

Page 3: Galway-Mayo Institute of Technology

PAGE | 1

DECLARATION OF ORIGINALITY:

I, Patrick Livingstone am the author of this work, using my own words (except where attributed to others). I

know that plagiarism is to use another’s work and pretend that it is one’s own, and that this is forbidden.

Signatures of Author,

______________________

Patrick John Livingstone.

Page 4: Galway-Mayo Institute of Technology

PAGE | 2

INRODUCTION:

Figure 3 Provides the dimensions of a rectangular fin that is mounted on a base-plate that operates at 120⁰C.

The ambient air temperature is 18⁰C and the convective heat transfer varies from 10, 100 and 1000 W/m2K. The

fin materials being considered are:

• Glass Fibre Board (k = 0.04 W/mK),

• Stainless Steel (k = 18 W/mK)

• Aluminium (k = 180 W/mK)

AIM:

To use the finite difference numerical method to support the thermal design of one of the 4 prescribed problems

defined on the attached exercise sheet.

FINITE DIFFERENCE METHOD:

Consider the 2-D body shown on the right, that is sub divided into equal sized square segments. Note ∆X = ∆Y.

The corners in each segment is identified by ‘m’ & ‘n’ Coordinates in the ‘x’ & ‘y’ directions, and these also

define ‘Nodal Points’. The object of the analysis is to establish the temperature at these Nadal points using the

Equation below as a governing condition. ‘Finite Differences’ are used to approximate differential increments

in the temperature and place coordinates. The smaller we choose these finite increments the closer to the true

temperature distribution will be approximated.

(𝑇𝑚 + 1, 𝑛 + 𝑇𝑚, 𝑛 + 1 + 𝑇𝑚 − 1, 𝑛 + 𝑇𝑚, 𝑛 − 1)

4

This formula only applies to the interior squares (nodes).

Page 5: Galway-Mayo Institute of Technology

PAGE | 3

METHOD ANALYSIS:

Using the data and variables given graphs were created to represent the heat transfer of each material. Here is

an example of a Calculation domain that was used within in Excel to help generate the data. This example was

used for Stainless Steel with a convective heat transfer coefficient of 10W/m2K. The variables were changed

for each material and tested through each variable of convective heat transfer coefficient (10 / 100 / 1000

W/m2K).

Formulae used for calculating fin temperatures:

Interior node =(B7+C6+D7+C8)/4

Right exterior =(B9+$B$17*$B$18+(C8+C10)/2)/(2+$B$17)

Top exterior =(C14+$B$17*$B$18+(B13+D13)/2)/(2+$B$17)

Bottom exterior =(C14+$B$17*$B$18+(B15+D15)/2)/(2+$B$17)

Exterior top right corner =($B$17*$B$18+(B20+C21)/2)/(1+$B$17)

Exterior bottom right corner =($B$17*$B$18+(C23+B24)/2)/(1+$B$17)

Convective Heat Transfer Coefficient, h (W/m2K) = 10

Characteristic Dimension, S (m) = 0.01

Thermal Conductivity, k (W/mK) 18

Biot Number (h.S)/k = 0.0055556

Surrounding Air Temp (Deg. C) = 18

Page 6: Galway-Mayo Institute of Technology

PAGE | 4

RESULTS:

FIBRE GLASS BOARD:

10 W/m2K:

100 W/m2K:

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

Temp °C

Length (mm)

Page 7: Galway-Mayo Institute of Technology

PAGE | 5

1000 W/m2K:

STAINLESS STEEL:

10 W/m2K:

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

Page 8: Galway-Mayo Institute of Technology

PAGE | 6

100 W/m2K:

1000 W/m2K:

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

Page 9: Galway-Mayo Institute of Technology

PAGE | 7

ALUMINIUM:

10 W/m2K:

100 W/m2K:

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

Page 10: Galway-Mayo Institute of Technology

PAGE | 8

1000 W/m2K:

ISOFLUX LINES:

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Convective Heat Transfer Coefficent: 3D Wireframe Temperature Distribution

0-20 20-40 40-60 60-80 80-100 100-120

Temp °C

Length (mm)

Page 11: Galway-Mayo Institute of Technology

PAGE | 9

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Centre Line Temperature Profiles @ 100 W/m2K

Glass Fibre Board Stainless Steel Aluminium

AVERAGE FIN TEMPERATURE (TAverage):

FIBRE GLASS BOARD:

• 10 W/m2K = 71.03177702

• 100 W/m2K = 69.37196835

• 1000 W/m2K = 69.06816349

STAINLESS STEEL:

• 10 W/m2K = 98.97884917

• 100 W/m2K = 89.11935939

• 1000 W/m2K = 74.13685709

ALUMINIUM:

• 10 W/m2K = 100

• 100 W/m2K = 97.808638

• 1000 W/m2K = 86.21351905

Length (mm)

Temp (°C)

Page 12: Galway-Mayo Institute of Technology

PAGE | 10

CONCLUSION:

After conducting this research experiment, I have concluded that Aluminium would be the best suited material

of the three for the construction of the heat sink fin. Aluminium has the highest averages from all the materials,

this is possibly due to its higher thermal conductivity, but in using the Finite Difference Method, we have seen

that the temperature distribution is more evenly spread out over the Aluminium plane and the material reaches

a higher temperature further away from the 120oC base plate than the other materials. This would make

Aluminium the best suited material as with a higher average and a more evenly distributed temperature range

there is more contact with the surrounding 18oC, thus more chance of the fin transferring the heat to the

surrounding air.

The Infinite difference method is a very simple and effective way of analyzing/modelling the heat transfer

through a 2D object with strong degree of accuracy.

REFERENCE:

Information has been taken from: Heat transfer module notes and the excel file supplied for the experiment,

both supplied by John Lohan.


Recommended