+ All Categories
Home > Documents > Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf ·...

Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf ·...

Date post: 15-Jul-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
47
Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis University of Athens May 21, 2016 1 / 51
Transcript
Page 1: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Gamma-Nonnegativity in Enumerative and GeometricCombinatorics

Christos Athanasiadis

University of Athens

May 21, 2016

1 / 51

Page 2: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Outline

1 Definitions

2 Gamma-nonnegativity in enumerative combinatorics

3 Gamma-nonnegativity in geometric combinatorics

4 Methods

2 / 51

Page 3: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Symmetry and unimodality

Definition

A polynomial f (x) ∈ R[x ] is

• symmetric (or palindromic) and• unimodal

if for some n ∈ N,

f (x) = p0 + p1x + p2x2 + · · ·+ pnx

n

with

• pk = pn−k for 0 ≤ k ≤ n and• p0 ≤ p1 ≤ · · · ≤ pbn/2c.

The number n/2 is called the center of symmetry.

3 / 51

Page 4: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example: Eulerian polynomial

We let

• Sn be the group of permutations of [n] := {1, 2, . . . , n}

and for w ∈ Sn

• des(w) := # {i ∈ [n − 1] : w(i) > w(i + 1)}• exc(w) := # {i ∈ [n − 1] : w(i) > i}

be the number of descents and excedances of w , respectively. Thepolynomial

An(x) :=∑w∈Sn

xdes(w) =∑w∈Sn

xexc(w)

is the nth Eulerian polynomial.

4 / 51

Page 5: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

An(x) =

1, if n = 1

1 + x , if n = 2

1 + 4x + x2, if n = 3

1 + 11x + 11x2 + x3, if n = 4

1 + 26x + 66x2 + 26x3 + x4, if n = 5

1 + 57x + 302x2 + 302x3 + 57x4 + x5, if n = 6.

Note: The Eulerian polynomial An(x) is well known to be symmetric andunimodal. Is there a simple combinatorial proof?

5 / 51

Page 6: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Gamma-nonnegativity

Proposition (Branden, 2004, Gal, 2005)

Suppose f (x) ∈ R[x ] has nonnegative coefficients and only real roots andthat it is symmetric, with center of symmetry n/2. Then

f (x) =

bn/2c∑i=0

γi xi (1 + x)n−2i

for some nonnegative real numbers γ0, γ1, . . . , γbn/2c.

Definition

The polynomial f (x) is called γ-nonnegative if there exist nonnegative realnumbers γ0, γ1, . . . , γbn/2c as above, for some n ∈ N.

6 / 51

Page 7: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

An(x) =

1, if n = 1

1 + x , if n = 2

(1 + x)2 + 2x , if n = 3

(1 + x)3 + 8x(1 + x), if n = 4

(1 + x)4 + 22x(1 + x)2 + 16x2, if n = 5

(1 + x)5 + 52x(1 + x)3 + 186x2(1 + x), if n = 6.

Note: Every γ-nonnegative polynomial (even if it has nonreal roots) issymmetric and unimodal.

7 / 51

Page 8: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

An index i ∈ [n] is called a double descent of a permutation w ∈ Sn if

w(i − 1) > w(i) > w(i + 1),

where w(0) = w(n + 1) = n + 1.

Theorem (Foata–Schutzenberger, 1970)

We have

An(x) =

b(n−1)/2c∑i=0

γn,i xi (1 + x)n−1−2i ,

where γn,i is the number of w ∈ Sn which have no double descent anddes(w) = i . In particular, An(x) is symmetric and unimodal.

8 / 51

Page 9: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Recall that a permutation w ∈ Sn is said to be up-down if

w(1) < w(2) > w(3) < · · · .

Corollary

We have

An(−1) =

{0, if n is even,

(−1)(n−1)/2 γn,(n−1)/2, if n is odd,

where γn,(n−1)/2 is the number of up-down permutations in Sn.

9 / 51

Page 10: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Recently, gamma-nonnegativity attracted attention after the work of

• Branden (2004, 2008) on P-Eulerian polynomials,• Gal (2005) on flag triangulations of spheres.

A book exposition can be found in:

• T.Kyle Petersen, Eulerian Numbers, Birkhauser, 2015.

10 / 51

Page 11: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

P-Eulerian polynomials

We let

• P be a poset with n elements,• ω : P → [n] be an order preserving bijection.

Definition (Stanley, 1972)

The P-Eulerian polynomial is defined as

WP(x) =∑

w∈L(P,ω)

xdes(w),

where L(P, ω) consists of all permutations (a1, a2, . . . , an) ∈ Sn with theproperty

ω−1(ai ) <P ω−1(aj) ⇒ i < j .

11 / 51

Page 12: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

For

(P, ω) = ss

ss

1 2

3 4

���

we have

L(P, ω) = {(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (1, 3, 2, 4)}

and

WP(x) = 1 + 3x + x2.

12 / 51

Page 13: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

For an n-element antichain P (no two elements are comparable)

(P, ω) = s s s s1 2 3 4

we have

L(P, ω) = Sn

and hence

WP(x) = An(x).

13 / 51

Page 14: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Note: The polynomial WP(x):

• plays a role in Stanley’s theory of P-partitions,• does not depend on ω,• is symmetric, provided P is graded,• can have non-real roots, as shown by Branden and Stembridge.

14 / 51

Page 15: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Theorem (Reiner–Welker, 2005)

The polynomial WP(x) is unimodal for every graded poset P.

Their proof uses deep results from geometric combinatorics. Branden gavetwo elementary proofs of the following:

Theorem (Branden, 2004, 2008)

The polynomial WP(x) is γ-nonnegative for every graded poset P.

15 / 51

Page 16: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Derangement polynomials

We let Dn be the set of derangements in Sn. The polynomial

dn(x) :=∑w∈Dn

xexc(w)

is the nth derangement polynomial.

Example

dn(x) =

0, if n = 1

x , if n = 2

x + x2, if n = 3

x + 7x2 + x3, if n = 4

x + 21x2 + 21x3 + x4, if n = 5

x + 51x2 + 161x3 + 51x4 + x5, if n = 6,

x + 113x2 + 813x3 + 813x4 + 113x5 + x6, if n = 7.

16 / 51

Page 17: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Note: The unimodality of dn(x) follows from deep results of Stanley onlocal h-polynomials of triangulations of simplices. Other proofs of uni-modality were given by:

• Brenti (1990),• Stembridge (1992),• Zhang (1995).

Note:

dn(x) =

0, if n = 1

x , if n = 2

x(1 + x), if n = 3

x(1 + x)2 + 5x2, if n = 4

x(1 + x)3 + 18x2(1 + x), if n = 5

x(1 + x)4 + 47x2(1 + x)2 + 61x3, if n = 6

x(1 + x)5 + 108x2(1 + x)3 + 479x3(1 + x), if n = 7.

17 / 51

Page 18: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

A descending run of a permutation w ∈ Sn is a maximal string of indices{a, a + 1, . . . , b} such that w(a) > w(a + 1) > · · · > w(b). An index i ∈[n − 1] is a double excedance of w if w(i) > i > w−1(i).

Theorem

We have

dn(x) =

bn/2c∑i=0

ξn,i xi (1 + x)n−2i ,

where ξn,i equals the number of:

• permutations w ∈ Sn with i runs and no run of size one,• derangements w ∈ Dn with i excedances and no double excedance.

18 / 51

Page 19: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

This statement, along with several q-analogues and generalizations, wasdiscovered independently (using different methods) by:

• A–Savvidou (2012),• Gessel–Shareshian–Wachs (2010),• Linusson–Shareshian–Wachs (2012),• Shin–Zeng (2012),• Sun–Wang (2014).

For instance:

19 / 51

Page 20: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

We denote by c(w) the number of cycles of w ∈ Sn.

Theorem (Shin–Zeng, 2012)

We have

∑w∈Dn

qc(w)xexc(w) =

bn/2c∑i=0

ξn,i (q) x i (1 + x)n−2i ,

where

ξn,i (q) =∑

w∈Dn(i)

qc(w)

and Dn(i) consists of all elements of Dn with exactly i cyclic valleys andno double cyclic descent.

20 / 51

Page 21: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Recall that

maj(w) =∑

i∈Des(w)

i

is the major index of w ∈ Sn.

Theorem (Gessel–Shareshian–Wachs, 2010)

We have

∑w∈Dn

pmaj(w)−exc(w)qdes(w)xexc(w) =

bn/2c∑i=0

ξn,i (p, q) x i (1 + x)n−2i

for some polynomials ξn,i (p, q) in p, q with nonnegative coefficients.

21 / 51

Page 22: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Corollary

We have

dn(−1) =

{0, if n is odd,

(−1)n/2 ξn,n/2, if n is even,

where ξn,n/2 is the number of up-down permutations in Sn.

22 / 51

Page 23: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Involutions

We let In be the set of permutations w ∈ Sn with w = w−1 and let

In(x) :=∑w∈In

xdes(w).

Example

In(x) =

1, if n = 1

1 + x , if n = 2

1 + 2x + x2, if n = 3

1 + 4x + 4x2 + x3, if n = 4

1 + 6x + 12x2 + 6x3 + x4, if n = 5

1 + 9x + 28x2 + 28x3 + 9x4 + x5, if n = 6,

1 + 12x + 57x2 + 92x3 + 57x4 + 12x5 + x6, if n = 7.

23 / 51

Page 24: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Note: The polynomial In(x) was first considered by Brenti.

Theorem (Guo–Zeng, 2006)

The polynomial In(x) is symmetric and unimodal for every n.

The proof uses generating functions and recursions.

Conjecture (Guo–Zeng, 2006)

The polynomial In(x) is γ-nonnegative for every n.

24 / 51

Page 25: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

In(x) =

1, if n = 1

1 + x , if n = 2

(1 + x)2, if n = 3

(1 + x)3 + x(1 + x), if n = 4

(1 + x)4 + 2x(1 + x)2 + 2x2, if n = 5

(1 + x)5 + 4x(1 + x)3 + 6x2(1 + x), if n = 6

(1 + x)6 + 6x(1 + x)4 + 18x2(1 + x)2, if n = 7.

25 / 51

Page 26: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

More examples

There is an endless list of generalizations and similar results, including:

• q-analogues,• Coxeter group analogues,• analogues for colored permutations,• results for other interesting classes of permutations.

More examples to follow...

26 / 51

Page 27: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Face enumeration of simplicial complexes

We let

• ∆ be a simplicial complex of dimension n − 1,• fi (∆) be the number of i-dimensional faces.

Definition

The h-polynomial of ∆ is defined as

h(∆, x) =n∑

i=0

fi−1(∆) x i (1− x)n−i =n∑

i=0

hi (∆) x i .

The sequence h(∆) = (h0(∆), h1(∆), . . . , hn(∆)) is the h-vector of ∆.

Note: h(∆, 1) = fn−1(∆).

27 / 51

Page 28: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

For the 2-dimensional complex

∆ =

s ss

ss

ss

s����������

�����

@@@

��������AAAAAAAAAA�

����

we have f0(∆) = 8, f1(∆) = 15 and f2(∆) = 8 and hence

h(∆, x) = (1− x)3 + 8x(1− x)2 + 15x2(1− x) + 8x3

= 1 + 5x + 2x2.

28 / 51

Page 29: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Theorem (Klee, Reisner, Stanley)

The polynomial h(∆, x):

• has nonnegative coefficients if ∆ triangulates a ball or a sphere,

• is symmetric if ∆ triangulates a sphere,

• is unimodal if ∆ is the boundary complex of a simplicial polytope.

29 / 51

Page 30: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

We let

• V be an n-element set,• 2V be the simplex on the vertex set V ,• Γ be the first barycentric subdivision of the boundary complex of 2V .

Then h(Γ, x) = An(x). For n = 3

Γ = s ss

ss

s�����@

@@@@

h(∆, x) = (1− x)2 + 6x(1− x) + 6x2 = 1 + 4x + x2.

30 / 51

Page 31: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Flag complexes and Gal’s conjecture

Definition

A simplicial complex ∆ is called flag if it contains every simplex whose1-skeleton is a subcomplex of ∆.

ss

s

s�����

����������

HHHHH

AAAAAAAAAA

not flag

s ss

ss

ss

s����������

�����

@@@

��������AAAAAAAAAA�

����

flag

31 / 51

Page 32: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

For a 1-dimensional sphere ∆ with m vertices we have

h(∆, x) = 1 + (m − 2)x + x2.

Note that h(∆, x) is γ-nonnegative ⇔ m ≥ 4 ⇔ ∆ is flag.

Conjecture (Gal, 2005)

The polynomial h(∆, x) is γ-nonnegative for every flag triangulation ∆ ofthe sphere.

Note: This extends a conjecture of Charney–Davis (1995).

32 / 51

Page 33: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Note: Let us write

h(∆, x) =

bn/2c∑i=0

γi (∆) x i (1 + x)n−2i .

Then Gal’s conjecture implies that h2(∆) is bounded below by the co-efficient of x2 in

(1 + x)n + γ1(∆)x(1 + x)n−2,

which means the following:

Conjecture

Among all flag triangulations of the (n − 1)-dimensional sphere with givennumber m of vertices, the (n− 2)-fold double suspension over the complexof an (m − 2n + 4)-gon has the smallest possible number of edges.

33 / 51

Page 34: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Note: By a result of Karu (2006), Gal’s conjecture holds for barycentricsubdivisions of regular CW-spheres.

34 / 51

Page 35: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

The local h-polynomial

We let

• V be an n-element set,• Γ be a triangulation of the simplex 2V on the vertex set V .

Definition (Stanley, 1992)

The local h-polynomial of Γ (with respect to V ) is defined as

`V (Γ, x) =∑F⊆V

(−1)n−|F | h(ΓF , x),

where ΓF is the restriction of Γ to the face F of the simplex 2V .

Note: This polynomial plays a major role in Stanley’s theory of subdivisi-ons of simplicial (and more general) complexes.

35 / 51

Page 36: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

For the 2-dimensional triangulation

Γ =

ss

sss

ss

s����������

�����

@@@

��������AAAAAAAAAA�

����

we have

`V (Γ, x) = (1 + 5x + 2x2) − (1 + 2x) − (1 + x) − 1

+ 1 + 1 + 1 − 1 = 2x + 2x2.

36 / 51

Page 37: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Theorem (Stanley, 1992)

The polynomial `V (Γ, x)

• is symmetric,• has nonnegative coefficients,• is unimodal for every regular triangulation Γ of 2V .

Conjecture (A, 2012)

The polynomial `V (Γ, x) is γ-nonnegative, if Γ is a flag triangulation of 2V .

Note: this is stronger than Gal’s conjecture. There is considerable eviden-ce for both conjectures.

37 / 51

Page 38: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

We denote by Σn the boundary complex of the n-dimensional cross-poly-tope.

Theorem (A, 2012)

Every flag triangulation ∆ of the (n − 1)-dimensional sphere is a flag, ve-rtex-induced homology subdivision Γ of Σn. Moreover,

h(∆, x) =∑F∈Σn

`F (ΓF , x) (1 + x)n−|F |,

hence the γ-nonnegativity of h(∆, x) is implied by that of the `F (ΓF , x).

38 / 51

Page 39: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Corollary

For every flag triangulation ∆ of the (n − 1)-dimensional sphere,

h(∆, x) ≥ (1 + x)n

holds coefficientwise.

Note: This holds, more generally, for doubly Cohen–Macaulay flag comple-xes of dimension n − 1.

39 / 51

Page 40: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

For the barycentric subdivision Γ of the simplex 2V on the vertex set V

{1}

{3}{2} {2, 3}

{1, 2} {1, 3}

{1, 2, 3}

Stanley showed that

`V (Γ, x) =n∑

k=0

(−1)n−k(n

k

)Ak(x) =

∑w∈Dn

xexc(w) = dn(x).

40 / 51

Page 41: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

More barycentric subdivisions

Consider the barycentric subdivision K of the cubical barycentric subdivi-sion of the simplex 2V .

Note: The sum of the coefficients of `V (K , x) is equal to the number of

• even derangements in Bn,• derangements in Dn,

where Bn is the group of signed permutations of [n] and Dn is the sub-group of even signed permutations.

41 / 51

Page 42: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Example

`V (K , x) =

0, if n = 1

3x , if n = 2

7x + 7x2, if n = 3

15x + 87x2 + 15x3, if n = 4

31x + 551x2 + 551x3 + 31x4, if n = 5

63x + 2803x2 + 8243x3 + 2803x4 + 63x5, if n = 6.

Conjecture

The polynomial `V (K , x) has only real roots.

42 / 51

Page 43: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

For w = (w1,w2, . . . ,wn) ∈ Bn we let

• excA(w) := # {i ∈ [n − 1] : w(i) > i},• neg(w) := # {i ∈ [n] : w(i) < 0}.

Definition (Bagno–Garber, 2006)

The flag-excedance number of w ∈ Bn is defined as

fex(w) = 2 · excA(w) + neg(w).

Example: For

• w = (3,−5, 1, 4,−2)

we have excA(w) = 1 and neg(w) = 2, so fex(w) = 4.

43 / 51

Page 44: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Theorem (A, 2014)

We have

`V (K , x) =∑w

x fex(w)/2

=

bn/2c∑i=0

ξ+n,i x

i (1 + x)n−2i ,

where the first sum runs over all derangements w ∈ Dn and ξ+n,i is the

number of elements of Bn with i decreasing runs, none of size one, andpositive last coordinate.

Problem: Find a simple combinatorial proof of the second expression.

44 / 51

Page 45: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Consider the second barycentric subdivision Γ2 of the simplex 2V .

Note: The sum of the coefficients of `V (Γ2, x) equals the number of pairs(u, v) ∈ Sn ×Sn of permutations with no common fixed point.

Problem: Find a combinatorial interpretation for:

• the coefficients of `V (Γ2, x),• the coefficients in the expansion

`V (Γ2, x) =∑

γi xi (1 + x)n−2i .

45 / 51

Page 46: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Problem: Study the barycentric subdivision of more general polyhedralsubdivisions of the simplex.

For a generalizations and other results of this type see

• C.A. Athanasiadis, A survey of subdivisions and local h-vectors, in”The Mathematical Legacy of Richard P. Stanley”, AMS, 20xx.

46 / 51

Page 47: Gamma-Nonnegativity in Enumerative and Geometric Combinatoricsusers.uoa.gr/~caath/Japan.pdf · Gamma-Nonnegativity in Enumerative and Geometric Combinatorics Christos Athanasiadis

Methods

Methods to prove γ-nonnegativity include:

• valley hopping (Foata–Schutzenberger–Strehl)• combinatorial expansions (Branden, Shin–Zeng, Stembridge)• enriched P-partitions (Stembridge, Petersen)• poset homology, shellability (Linusson–Shareshian–Wachs)• symmetric functions (Shareshian–Wachs),• geometric methods (A–Savvidou).

47 / 51


Recommended