+ All Categories
Home > Documents > GaN Transistors for Efficient Power Conversion - epc-co.com · • Wireless Power Transmission –...

GaN Transistors for Efficient Power Conversion - epc-co.com · • Wireless Power Transmission –...

Date post: 24-Oct-2019
Category:
Upload: others
View: 28 times
Download: 3 times
Share this document with a friend
88
GaN Transistors for Efficient Power Conversion
Transcript

GaN Transistors for Efficient Power Conversion

Agenda

• How GaN works • Electrical Characteristics • Design Basics • Design Examples • Summary

2 2

How GaN Works

3 3

The Ideal Power Switch • Block Infinite Voltage • Carry Infinite Current • Switch In Zero Time • Zero Drive Power • Normally Off

4 4

Power Switch Wish List • Faster • Lower Conduction Loss • Less Capacitance • Smaller • Lower Cost

5

6

Material Comparison

6

GaN + AlGaN

7

AlGaN

GaN

Spontaneous Polarization

7

GaN Magic

8

AlGaN

GaN

V

“2D Electron Gas” 8

GaN Switch

9

AlGaN

GaN

V Applying bias destroys the polarization

E F

ield

9

GaN Switch

10

AlGaN

GaN

V

Now we have a switch That has high voltage blocking

capability, low on resistance, and is

very, very fast.

Depletion Mode = Normally On 10

Device Construction Concept

11

GaN Substrate

Drain

Protection Dielectric

Source

Gate AlGaN

Early substrate materials: SiC and Sapphire Are expensive and hard to manufacture. Silicon

substrates are much lower cost and allow fabrication in a standard CMOS Fab.

11

What About Normally Off Devices?

• True enhancement mode GaN HFETs have been around for years

• There are various methods for dissipating the electron gas under the gate

12 12

Enhancement Mode

13

A positive voltage from Gate-To-Source establishes an electron gas under the gate

13

State of the Art

14 14

A positive voltage from Gate-To-Drain also establishes an electron gas under the gate

Body Diode?

15 15

MOSFET + QRR

eGaN FET + Zero QRR

eGaN® FET Reverse Conduction

16 16

Threshold vs. Temperature

17

0.6

0.7

0.8

0.9

1

1.1

1.2

-50 -25 0 25 50 75 100 125 150

Norm

alize

d Th

ersh

old

Volta

ge

Junction Temperature (°C)

GaN

MOSFET A

eGaN FET

17

MOSFET Transfer Characteristics

Source: www.infineon.com

Negative temperature coefficient region of silicon MOSFET

18 18

eGaN® FET Transfer Characteristics

19

EPC2001

19

eGaN® FET Safe Operating Area

1 ms

10 ms

100 ms

DC

20

eGaN® FET Safe Operating Area

1 ms

10 ms

100 ms

DC

21

eGaN® FET Capacitances

22

GaN

Silicon

CGD

CDS

CGS

22

Total Gate Charge

23

EPC2001 = 100 V, 5.6 mΩ typ BSC057N08 = 80 V, 4.7 mΩ typ 23

BSC057N08NS

Figure of Merit

24

0

100

200

300

400

500

EPC2001 BSC109N10NS3 IRFH5030 SiR870DP FDMS86101

FOM = Rdson x Qg (100V)

24

Like A MOSFET • I²R Conduction Loss • Capacitive Switching

Losses • Gate Drive Losses • V×I Switching Loss

Not Like A MOSFET • High Reverse

Conduction Loss • No Body Diode Reverse

Recovery Loss

25 25

eGaN® FET Loss Mechanisms

Like A MOSFET • I²R Conduction Loss • Capacitive Switching

Losses • Gate Drive Losses • V×I Switching Loss

Not Like A MOSFET • High Reverse

Conduction Loss • No Body Diode Reverse

Recovery Loss

eGaN® FET Loss Mechanisms

26

Can be much, much better than comparable silicon MOSFET

26

Package Wish List

• Low parasitic resistance • Low parasitic inductance • Low thermal resistance • Small size • Low cost

27 27

Flip-Chip LGA Construction

28

Printed Circuit Board

Copper Trace

eGaN FET Silicon Solder

Bar

Absolute minimum lead resistance and inductance!

28

Gate

Substrate

Source Contacts

Drain Contacts

LGA Construction

29

Interleaving to reduce layout inductance

29

Size Comparison – 200 V

30

D-PAK

eGaN FET

Drawn To Scale

5.76 mm²

65.3 mm² 30

Key Applications

31

• Wireless Power Transmission – GaN Enabled • RF DC-DC “Envelope Tracking” – GaN Enabled • RadHard • Power Over Ethernet • RF Transmission • Network and Server Power Supplies • Point of Load Modules • Energy Efficient Lighting • Class D Audio

31

Design Basics Agenda

• Gate Driver Requirements • Layout • Thermal Management

32 32

E-Mode Gate Drive - Low VGS(ON) Overhead

33

VGS(Max) = 6 V

33

Gate Drive Solution

• Minimize inductance – Tight gate drive layout – BGA and LGA minimizes package inductance – Choose correct resistance

• Separate source and sink transistors allowing for separate drive paths.

34

No overshoot:

GS

SGG C

LLR )(4 +≥

34

Bootstrap Supply

35

HOHLEVELSHIFT

HB

HS

HOL

+5VVIN

• Switch can be node negative during low side diode conduction • Regulated high side

supply • Minimal dead time

and slow bootstrap 35

High Side Regulation – LM5113

36

• Bootstrap clamp limits floating (HS) power supply

• Separate control inputs allow accurate, flexible tuning to minimize dead-time

• Well matched channel-to-channel propagation delays are critical

• Optional Schottky in parallel

Texas Instruments, “Gate Drivers for Enhancement Mode GaN Power FETs 100 V Half-Bridge and Low-Side Drivers Enable Greater Efficiency, Power Density, and Simplicity”, SNVB001

36

Layout

37 37

Packaging Evolution

65

70

75

80

85

90

0.5 1 1.5 2 2.5 3 3.5

Effic

ienc

y (%

)

Switching Frequency (MHz)

So-8 LFPAK DirectFET eGaN

0

0.5

1

1.5

2

2.5

So-8 LFPAK DirectFET LGA

Pow

er L

oss

(W)

Device Loss Breakdown Package Die

18%

82%

VIN =12V VOUT =1.2V IOUT =20A FS =1MHz

0

0.5

1

1.5

2

2.5

So-8 LFPAK DirectFET LGA

Pow

er L

oss

(W)

Device Loss Breakdown Package Die

18%

82%

27%

73%

VIN =12V VOUT =1.2V IOUT =20A FS =1MHz

0

0.5

1

1.5

2

2.5

So-8 LFPAK DirectFET LGA

Pow

er L

oss

(W)

Device Loss Breakdown Package Die

18%

82%

27%

73%

53%

47%

VIN =12V VOUT =1.2V IOUT =20A FS =1MHz

0

0.5

1

1.5

2

2.5

So-8 LFPAK DirectFET LGA

Pow

er L

oss

(W)

Device Loss Breakdown Package Die

18%

82%

27%

73%

53%

47%

82% 18%

VIN =12V VOUT =1.2V IOUT =20A FS =1MHz

38

So-8 LFPAK DirectFET LGA eGaN

38

Generating Kelvin Source Connection

39

LS

CGS

CGD

RG

RSink

RSource

RSeries Substrate

Source

Gate

Drain

Minimize Common Source Inductance

39

Source Return

3 3.25

3.5 3.75

4 4.25

4.5 4.75

5 5.25

5.5

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 Po

wer

Los

s(W

)

Parasitic Inductance (nH)

Power Loss vs Parasitic Inductance

Ls

3 3.25

3.5 3.75

4 4.25

4.5 4.75

5 5.25

5.5

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 Po

wer

Los

s(W

)

Parasitic Inductance (nH)

Power Loss vs Parasitic Inductance

Ls LLoop

Cin

T

SR

VIN=12 V, VOUT=1.2 V, FS=1 MHz, IOUT= 20 A

Buck Converter Parasitics

LLoop: High Frequency Power Loop Inductance

40

LS: Common Source Inductance

40

83

84

85

86

87

88

89

90

91

2 4 6 8 10 12 14 16 18 20 22 24

Effic

ienc

y (%

)

Output Current (IOUT)

LLoop≈2.9nH

40V MOSFET

83

84

85

86

87

88

89

90

91

2 4 6 8 10 12 14 16 18 20 22 24

Effic

ienc

y (%

)

Output Current (IOUT)

LLoop≈1.6nH

LLoop≈2.9nH

40V MOSFET

83

84

85

86

87

88

89

90

91

2 4 6 8 10 12 14 16 18 20 22 24

Effic

ienc

y (%

)

Output Current (IOUT)

LLoop≈1.0nH

LLoop≈1.6nH

LLoop≈2.9nH

40V MOSFET

83

84

85

86

87

88

89

90

91

2 4 6 8 10 12 14 16 18 20 22 24

Effic

ienc

y (%

)

Output Current (IOUT)

LLoop≈1.0nH

LLoop≈1.6nH

LLoop≈0.4nH

LLoop≈2.9nH

40V MOSFET

Layout Impact on Efficiency

VIN=12 V, VOUT=1.2 V, FS=1 MHz, L=150 nH

Measured Efficiency

Experimental Prototype LLOOP≈0.4 nH

3x3mm LFPAK LLoop≈3nH

41 41

LLoop≈1.0 nH LLoop ≈ 0.4 nH

Layout Impact on Peak Voltage

VIN=12 V VOUT=1.2 V IOUT=20 A FS=1 MHz L=150 nH

Switching Node Voltage

70% Overshoot 30% Overshoot

42 42

Conventional Lateral Layout

Top View Side View

43 43

Conventional Vertical Layout

Top View Side View

Bottom View

44 44

Optimal Layout Top View

Side View

Top View Inner Layer 1

45 45

Power Loss Comparison

33.13.23.33.43.53.63.73.83.9

4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Pow

er L

oss

(W)

High Frequency Loop Inductance (LLOOP)

Vertical Power Loop

Lateral Power Loop

Optimal Power Loop

VIN=12 V VOUT=1.2 V IOUT=20 A FS=1 MHz L=300 nH T/SR: EPC2015 Driver LM5113

46 46

Efficiency Comparison

VIN=12 V VOUT=1.2 V FS=1 MHz L=300 nH T/SR: EPC2015 Driver LM5113

83

84

85

86

87

88

89

90

91

2 4 6 8 10 12 14 16 18 20 22 24 26

Effic

ienc

y (%

)

Output Current (IOUT)

40V MOSFETDesign 1

Vertical Design 1Lateral

Design 1

Optimal Design 1

47 47

eGaN® FET vs. MOSFET

VIN=12 V VOUT=1.2 V IOUT=20 A FS=1 MHz L=300 nH eGaN FET T/SR: EPC2015 MOSFET T:BSZ097N04LS SR:BSZ040N04LS

Si MOSFET

eGaN FET

48 48

Layout Summary eGaN FETs improve performance in high switching frequency converters • CSI is a critical component for maximizing

switching performance • Gate drive loop inductance limits switching speed • Optimizing power loop inductance improves

efficiency and minimizes voltage overshoot • Current measurements affect performance • Voltage measurements are bandwidth limited • Reduced ringing reduces EMI 49

49

Thermal Management

50 50

Thermal Management

51

Heat Is Generated In GaN Material Essentially On The Surface Of The Die

Printed Circuit Board Copper Traces

Silicon Substrate

Active GaN Device Region

Solder Bars

51

Thermal Management

52

Two Paths For Heat: Through The Back Of The Die Or Through The Solder Contacts Into The PCB

Printed Circuit Board Copper Traces

Silicon Substrate

Active GaN Device Region

Solder Bars RƟJB

RƟJC

52

Thermal Resistance with Heat Sink

53

Printed Circuit Board Copper Traces

Silicon Substrate

Active GaN Device Region

Solder Bars RƟJB

RƟJC

53

Thermal Resistance with Heat Sink

54

Printed Circuit Board

22 2

1

Thermal Interface Material on sides of die too 54

Thermal Model with Heat Sink

55

Ambient Temperature

Ambient Temperature

Device 2 Power

dissipation

Device 1 Power

dissipation

Heatsink

Junction temperature

RθJC

RθJB

RθJC

RθJB

R θTIM R θTIM

R θPCBA

R θspread

Back of Die temperature

Other PCB losses

R θHA

55

Thermal Results

Possible to remove up to 5 W from small EPC die with double sided cooling

56

Design Example Agenda • Hard Switched Circuits

– Buck Converter – Isolated Full Bridge – Envelope Tracking

• Resonant Circuits – Intermediate Bus Converter

57 57

Buck Converters

58

D. Reusch, D. Gilham, Y. Su, and F.C. Lee, C, “Gallium Nitride Based 3D Integrated Non-Isolated Point of Load Module”, APEC 2012

High Frequency Buck Converters

59

EPC9107 Optimal Layout

EPC9107 Demonstration Board VIN=12-28 V VOUT=3.3 V IOUT=15 A FS=1 MHz

2 x EPC2015 5 V/ div

Buck Module Switching Node Voltage

VIN=28 V IOUT=15 A

60

838485868788899091929394959697

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Effic

ienc

y (%

)

Output Current (Io)

28 VIN

12 VIN19 VIN24 VIN

VOUT=3.3 V FS=1 MHz GaN T/SR: EPC2015 Driver LM5113

EPC9107 Demonstration Board

61

Isolated Full Bridge

62

100 V Hard Switching FOM

VDS=0.5*VDS , IDS= 15 A

0

20

40

60

80

100

120

140

160

100V eGaN®FET 80V MOSFET 1 80V MOSFET 2 80V MOSFET 3 80V MOSFET 4

FOM

=(Q

GD+Q

GS2

)*R

DSO

N (n

C*Ω

)

QGD

QGD QGD

QGD QGD

QGS2

QGS2 QGS2

QGS2

QGS2

63 63

Regulated Full Bridge Converter EPC9102 Demo board

Full Bridge, 36 - 60 Vin, 12 V, 200 W, 375 kHz

64 64

250 kHz MOSFET

375 kHz eGaN FET

Regulated 12 V Output

Efficiency Comparison

65 65

Brick Converter Summary • Topologies varied • Optimization as important as device selection • Efficiency is key to power density

• Maximum power loss is fixed. • Good comparison requires identical designs • Given topology, eGaN FETs will outperform

MOSFETs based on superior FOM

66 66

• World of Radio Frequency Power Amplifiers (RFPA) is changing.

• Increased efficiency driven by: – Improved battery life – Reduced cooling – Reduced size – Lower cost of operation

Overview of Envelope Tracking

67

Peak to Average Power Ratio

Ref: Nujira.com website

Same average

Normalized to same peak

68

Effect of PAPR

Fixed supply

Peak Power Average Power

Output Power (dBm)

Output Probability

Average efficiency only 25 %

PAPR = 0dB Peak efficiency

up to 65%

Increasing PAPR

69

Effect of Envelope Tracking

Output Power (dBm)

Average efficiency > 50 % (incl. ET)

Only 1/3 the losses

Average Power

Output Probability

Envelope Tracking

70

RFPA Standards*

*Ref: www.open-et.org website

• Up to 20 MHz Carrier bandwidth required • Required ET supply BW up to 5x higher if linear control

71

• ET power supply topologies vary – Open loop boost – full BW required – Closed loop linear-assisted Buck*

Envelope Tracking Supply

Buck ~ 10% Bandwidth ~ 90% Power

Linear AMP ~ 10% Power Highest 90% of Bandwidth

*V. Yousefzadeh, et. Al, Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers, ISCAS 2005

72

1300 W DVB* – 8 MHz BW and 8 dB PAPR Linear-assisted Buck for ET

4 phase x 1 MHz Buck with up to 800 kHz band width

45 VIN, 22 VOUT/ 15 AOUT (Avg) Pure Buck option for ET (Push frequency)

10 phase x 4 MHz Buck with up to 8 MHz band width

45 VIN, 22 VOUT/ 6 AOUT (Avg)

eGaN® FET based Buck(s) for ET

*Representative of a high power ET buck in HV LDMOS, such as that implemented by ET specialist Nujira.

73

• Modified an EPC9006 development board

6 AOUT / 4 MHz Single φ Buck

45 VIN

22 VOUT

Common LM5113TE

EPC2007

Before After

Gappad GP1500 60 mil

74

Efficiency Results

0

2

4

6

8

10

12

14

16

90%

91%

92%

93%

94%

95%

96%

97%

98%

0 50 100 150 200 250 300 350

Powe

r loss

(W)

Effici

ency

(%)

Output Power (W)

4 MHz Efficiency

1 MHz Efficiency

4 MHz Losses

1 MHz Losses

10x potential bandwidth require 2.5x more phases and 2x losses

75

Loss Breakdown

1 MHz EPC9002 4 MHz EPC9006 Future die size optimization possible

EPC2001

EPC2001

EPC2007

EPC2007

76 76

Higher Frequency ET Results*

BSC016N04LSG 4 MHz 7 MHz 10 MHz

*D. Čučak, et. al, “Application of eGaN FETs for highly efficient Radio Frequency Power Amplifier”, CIPS 2012

24 VIN to 12 VOUT Buck

EPC1014

20 to 30 pp improvement!

77

Envelope Tracking Summary • eGaN FETs are an enabling technology for ET

– Low charge reduces delay and switching times – Thermally possible - with double sided cooling

• Results are representative, but not optimized – Improve inductor selection – Improve thermal design – Reduce high side peak device temp by reducing low

side device size to reduce QOSS losses

• Power and # of phases application specific

78 78

Resonant Converters

79

80 80

100 V Soft Switching FOM

VDS=48 V

0

50

100

150

200

250

300

350

100 V EPC2001 80 V BSC057N08NS3G 80 V BSZ123N08NS3G

FOM

=(Q

OSS

or Q

G)*

RD

SON

(nC

*Ω)

QG

QG

QOSS

QOSS

QG

QOSS

eGaN® FET vs. MOSFET

81

MOSFET VGS MOSFET VDS

eGaN FET VDS

eGaN FET VGS

ZVS Switching Comparison

FS = 1.2 MHz, VIN = 48 V, and VOUT = 12 V

TZVS = 87 nS

TZVS = 42 nS

82

MOSFET VGS

MOSFET VDS

eGaN FET VDS

eGaN FET VGS

Duty Cycle Comparison

DMOSFET = 34% DeGaN FET = 42%

FS = 1.2 MHz, VIN = 48 V, and VOUT = 12 V 83

Efficiency Comparison

90

91

92

93

94

95

96

97

98

0 5 10 15 20 25 30 35 40

Effic

ienc

y (%

)

Output Current (IOUT)

1.2 MHz MOSFET

1.2 MHz eGaN FET

10 W 12 W

14 W

2 4 6 8

10 12 14 16 18 20 22 24

0 5 10 15 20 25 30 35 40 Po

wer

Los

s (W

) Output Current (IOUT)

1.2 MHz eGaN FET

1.2 MHz MOSFET

FS = 1.2 MHz, VIN = 48 V, and VOUT = 12 V

84

0

2

4

6

8

10

12

Power Loss (W)

Gate Drive

Transfomrer Core Conduction + Turn Off

0

2

4

6

8

10

12

Power Loss (W)

Gate Drive

Transfomrer Core Conduction + Turn Off

eGaN FET IOUT = 20 A

MOSFET IOUT = 20 A

eGaN FET IOUT = 2.5 A

MOSFET IOUT = 2.5 A

FS = 1.2 MHz, VIN = 48 V, and VOUT = 12 V

Loss Breakdown

85

LK2

**

*

VIN-

VIN+ VOUT+

LIN

CIN

LK1

4:1

LOUT

COUTCRES

Q1

Q2 Q4

Q3

VOUT-

Q6,Q7

Q5,Q8

2 SR

2 SR

EPC9105 Demonstration Board 36 - 60 VIN, 12 VOUT, 350 W, 1.2 MHz

EPC9105 Bus Converter

86

Resonant Converter Summary

• eGaN FETs improve high frequency resonant converter performance – Lower output charge – Lower gate charge – More power delivery per cycle

87 87

Summary • GaN transistors have the potential to replace

silicon power MOSFETs in power conversion applications with a low-cost and higher efficiency solution

• eGaN FETs are straightforward to use, but care must be taken due to the higher switching speeds compared with power MOSFETs

• GaN transistors enable exciting new applications such as RF Envelope Tracking

88 88


Recommended