+ All Categories
Home > Documents > Gas Content Procedure

Gas Content Procedure

Date post: 03-Jun-2018
Category:
Upload: vinsensius-dwinanto-kurniadi
View: 219 times
Download: 0 times
Share this document with a friend

of 24

Transcript
  • 8/12/2019 Gas Content Procedure

    1/24

    tgi

    !! Coalbed Gas Content: InsightsCoalbed Gas Content: Insights

    Presented to:

    Mid-Continent Coalbed Methane ForumTulsa, OK

    June 13, 2002

    Tim Pratt, TICORA720/[email protected]

    a subsidiary of GTI

  • 8/12/2019 Gas Content Procedure

    2/24

    tgia subsidiary of GTI

    Coalbed Reservoir Gas Content

    Gas Storage Mechanisms:

    Free gas within natural fractures. Dissolved gas in water within natural fractures. Adsorbed gas within the coal matrix.

    Total GasVolume

    Free GasVolume

    DissolvedGas Volume

    AdsorbedGas Volume+ +=

    Typically > 95%

  • 8/12/2019 Gas Content Procedure

    3/24

    tgia subsidiary of GTI

    Long Term Desorption: Best PracticeAnalysis Protocols

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    -50

    -100

    -150

    -200

    -250

    G a s

    o n

    t e t , ( S C / T o ,

    i r - D r

    )

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 40.0 40.5

    Square Root Elapsed Time, ( Hours)

    Lost Gas

    Measured Gas

    Lost GasTime

    Residual Gas

    Long Term DesorptionExperiment Terminated.

    Sample Crushed

    to -60 Mesh.

    Gas Composition Analysis

    ResidualGas

    Analysis

    LostGas

    Analysis

  • 8/12/2019 Gas Content Procedure

    4/24

    tgia subsidiary of GTI

    Coal Flow Mechanisms

    Wellbore

    InducedFracture

    Macro-PorosityFracture Porosity

    > 50 nmMeso-Porosity> 2 nm < 50 nm

    Micro-Porosity

    < 2 nm

    Sorption Diffusion Darcy Flow Pipe Flow

  • 8/12/2019 Gas Content Procedure

    5/24

    tgia subsidiary of GTI

    Gas Sorption Knowledge Its a Good Thing

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Moisture + Ash Content, wt. fraction

    I n - S i t u

    G a s

    C o n

    t e n t , s c

    f / t o n

    Maximum gas content (0% moisture + ash): 837 scf/ton

    Gas content is 0 scf/ton at 0.9663 moisture + ash

    Maximum gas content (0% moisture + ash): 837 scf/ton

    Gas content is 0 scf/ton at 0.9663 moisture + ash

    R2 = 0.9663

  • 8/12/2019 Gas Content Procedure

    6/24

    tgia subsidiary of GTI

    Gas Sorption Knowledge Its a Good Thing

    D r y ,

    A s h - F r e e

    G a s

    C o n

    t e n t ,

    s c

    f / t o n

    Depth, ft

    Single Rapid Gas

    Average LongTerm Desorption

  • 8/12/2019 Gas Content Procedure

    7/24

    tgia subsidiary of GTI

    Gas Resource - What We Get From Core

    Coalbed Gas ReservoirsEvaluate:

    In-situ Gas Content & Bulk Density % Gas Saturation Gas Composition

    Reservoir Pressure & Temperature Reservoir Volume (Area & Thickness)

    Coalbed Gas ReservoirsEvaluate:

    In-situ Gas Content & Bulk Density % Gas Saturation Gas Composition

    Reservoir Pressure & Temperature Reservoir Volume (Area & Thickness )

  • 8/12/2019 Gas Content Procedure

    8/24

    tgia subsidiary of GTI

    Data Confidence

    UNCERTAINTY DRAINAGEAREA

    THICKNESS IN-SITUDENSITY

    IN-SITU GASCONTENT

    HIGH

    MEDIUM

    LOW

    Commonly Used Protocols

    Very High Sampling Density

    Best Practice Protocols

    GIP = A h c G c

  • 8/12/2019 Gas Content Procedure

    9/24

    tgia subsidiary of GTI

    500

    300

    200

    100

    0

    400

    0 500 1,000 1,500 2,000

    Pressure (psia)

    M e

    t h a n e

    S t o r a g e

    C a p a c

    i t y

    ( s c

    f / t o n

    )

    Methane Storage Capacity450 scf/ton

    Initial Reservoir Pressure

    1,620 psia

    InitialGas

    Content355 scf/ton

    Typical Methane Isotherm

    Critical Desorption Pressure632 psia

    Abandonment Gas Content125 scf/ton

    Abandonment Pressure100 psia

    Gas Recovery Factor (230/355) X 100 = 64.8% scf/ton

    230 scf/ton

  • 8/12/2019 Gas Content Procedure

    10/24

    tgia subsidiary of GTI

    Coal Gas Analyses Flow Chart(Minimum Data Requirements)

    FIEL D L A B ORA TORY ANALYSIS

    SampleAcquisition

    FieldDesorption(short -term)

    Desorption(long-term)

    Desorption Data Entry,Lost Gas Analysis,

    Data Analysis

    Final Analysis

    Lab Testing

    Sample Preparation

    PreliminaryData &Field

    Report

    Data

    Integration

    Residual Gas

    Density

    Sorption IsothermPetrographyChemistry

    Initial ProjectReview/Design

    With Client

    Well Site

    Transport

    to Lab

    Sample

    Submission

    RapidGasSM

    Final Project

    Report

    Client Follow-up

    DataInterpretation

    SampleAcquisition

    FieldDesorption

    (short -term)Desorption(long-term)

    Desorption Data Entry,Lost Gas Analysis,

    Data Analysis

    Final Analysis

    Lab Testing

    Sample Preparation

    PreliminaryData &Field

    Report

    DataIntegration

    Residual GasMoisture Holding Capacity

    Density

    Sorption IsothermPetrography

    Chemistry

    Initial ProjectReview/Design

    With Client

    Well Site

    Transport

    to Lab

    Sample

    Submission

    RapidGasRapidGasSMSM Log Processing

    Final Project

    Report

    Client Follow - up

    Data

  • 8/12/2019 Gas Content Procedure

    11/24

    tgia subsidiary of GTI

    How Long Does The Job Last?

    That depends on the coal desorptionproperties and the extent of the analysis

    program.

    That depends on the coal desorptionproperties and the extent of the analysis

    program.

    Job A

    Job Z

    L a

    b

    A n a

    l y s

    i s

    Months: 1 2 3 4 5 6 7 8 9 10 11 12

    Job A

    Job Z

    Function of desorptioncharacteristics

    D e s o r p

    t i o n

    A n a

    l y s

    i s

    Function of TICORA efficiency &third- party vendors

    RapidGas SM

  • 8/12/2019 Gas Content Procedure

    12/24

    tgia subsidiary of GTI

    Gas Mobility ( Movement Characteristics)

    S o r p

    t i o n

    T i m e

    s l o w

    f a s t

    Ligni te Subbi tuminous C B A

    High Vol.

    B i t u m i n o u s C B A

    Medium Vol .

    Bi tuminous

    P R B

    S J B

  • 8/12/2019 Gas Content Procedure

    13/24

    tgia subsidiary of GTI

    Residual Gas vs. Crushed Gas vs. RapidGas RapidGas RapidGas RapidGas SM

    Time

    RapidGas SM

    F a s t

    S l o w

    D e s o r

    b e

    d G a s

    V o

    l u m e

    Time

    Residual Gas

    F a s t

    D e s o r p t i o n

    S l o w D e so r p t i o n

    residualg as

    residualg as

    Time

    Crushed Gas

    F a s t

    S l o w

    crushedg as

    c rushedg as

  • 8/12/2019 Gas Content Procedure

    14/24

    tgia subsidiary of GTI

    Long Term Desorption: Best PracticeAnalysis Protocols

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    -50

    -100

    -150

    -200

    -250

    G a s

    o n

    t e t , ( S C / T o ,

    i r - D r

    )

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 40.0 40.5

    Square Root Elapsed Time, ( Hours)

    Lost Gas

    Measured Gas

    Lost GasTime

    Residual Gas

    Long Term DesorptionExperiment Terminated.

    Sample Crushed

    to -60 Mesh.

    Gas Composition Analysis

    ResidualGas

    Analysis

    LostGas

    Analysis

  • 8/12/2019 Gas Content Procedure

    15/24

    tgia subsidiary of GTI

    Sorbed Phase Gas Composition

    Twenty Mile #21C-3523

    89.27 90.37 88.77

    61.47

    8.53 7.73 8.29 8.992.18 1.82 2.92

    29.52

    0

    20

    40

    60

    80

    100

    Uppe r Inte rval,Preserved

    Middle Inte rva l,Preserved

    Lowe r Inte rval,Preserved

    Low e r Inte rva l,Non-Preserved

    M o

    l e %

    CH4

    CO2

    N2

  • 8/12/2019 Gas Content Procedure

    16/24

    tgia subsidiary of GTI

    Natural Fracture Development(Tectonic)

    vs. Rank

    H a r d g r o v e

    G r i n

    d a

    b i l i t y

    I n d e x

    ( F r a c

    t u r e

    D e v e

    l o p m e n

    t )

    Coal Rank

    High Volatile

    A Bituminouus

    Generalized Graphic

  • 8/12/2019 Gas Content Procedure

    17/24

    tgia subsidiary of GTI

    X-Ray Radiograph Gray Level (0 - 255)Density Profile

    0 50 100 150 200 250

    Coal Gas Reservoir Systems

  • 8/12/2019 Gas Content Procedure

    18/24

    tgia subsidiary of GTI

    Sorption Isotherm Parameters

    S o r b e

    d V o l u

    m e

    Pressure P P

    Temperature Moisture Gas Sorbate

    SAME COALSAME COAL

    N2

    CH4

    CO2

    C2 +

  • 8/12/2019 Gas Content Procedure

    19/24

    tgi a subsidiary of GTI

    Storage Capacity Versus Moisture Content

    S t o r a g e C

    a p a c

    i t y

    ( S o r b e

    d G a s

    V o

    l u m e

    )

    Pressure

    1-2% moisture

    10% moisture

    15% moisture

    20% moisture

    27% moisture

    = 30% moisture

  • 8/12/2019 Gas Content Procedure

    20/24

    tgi a subsidiary of GTI

    Sorption Isotherm Parameters

    S o r b e

    d V o l u

    m e

    Pressure P P

    Mineral MatterConcentration Vitrinite

    ConcentrationOxidation

    SAME RESERVOIRSAME RESERVOIR

  • 8/12/2019 Gas Content Procedure

    21/24

    tgi a subsidiary of GTI

    The Analytical Goal is to ConstructComprehensive and Critical Information...

    Isotherm Comparison& Gas Recovery Parameters

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 250 500 750 1,000 1,250 1,500 1,750 2,000

    Pressure, psia

    I n - S

    i t u

    S t o r a g e

    C a p a c

    i t y ,

    s c

    f / t o n

    Methane

    Gas Mixture - Binary

    In-Situ Gas Content

    Binary Storage Capacity: 262 scf/ton(Modeled Sorbed Gas Composition: 86.1% CH4 ; 13.9 % CO2)In-Situ Gas Content: 234.12 scf/tonReservoir Pressure: 1461.3 psiaCritical Desorption Pressure: 1,069.4 psiaGas Recovery Factor (fraction, assumes abandonment pressure of 40 psia): 0.91

    Binary Storage Capacity: 262 scf/ton(Modeled Sorbed Gas Composition: 86.1% CH4 ; 13.9 % CO2)In-Situ Gas Content: 234.12 scf/tonReservoir Pressure: 1461.3 psiaCritical Desorption Pressure: 1,069.4 psiaGas Recovery Factor (fraction, assumes abandonment pressure of 40 psia): 0.91

  • 8/12/2019 Gas Content Procedure

    22/24

    tgi a subsidiary of GTI

    Reservoir Thickness - Inorganic Dilution

    G a s

    C o n

    t e n

    t

    1.30 1.75 2.45

    COAL CARB SHALE

    ~0% ash ~50% ash ~100% ash

    Density g/cm 3

  • 8/12/2019 Gas Content Procedure

    23/24

    tgi a subsidiary of GTI

    Gas Content Versus Coal Composition

    Uintay = -7.3705x + 697.24

    R 2 = 0.9502

    Piceancey = -4.5427x + 415.99

    R 2 = 0.8316

    San Juany = -5.6368x + 532.64

    R2 = 0.9196

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 10 20 30 40 50 60 70 80 90 100

    Moisture + Ash (weight %)

    I n - S i

    t u G a s

    C o n

    t e n t ( s c

    f / t o n

    )UintaPiceanceSan Juan

    Rule-of-thumb upper density limit: 1.75 g/cm 3

  • 8/12/2019 Gas Content Procedure

    24/24

    tgi a subsidiary of GTI

    Creating Value withGas Sorption Knowledge! Exploration

    ! Is the Resource Present go/no go! Producibility Economic Viability (when should the gas come)! Critical Reservoir Properties Gas Mobility

    ! Asset Valuation! Resource In Place! Recovery Factor Producible Reserves! Resource Quality Sorbed Phase Gas Composition

    ! Asset Development! Optimum Flowing Pressure Critical Desorption Pressure! Gas Processing Gas Quality! Infield Development Potential

    Assumption is that the data is collected, analyzedand reported using best practices protocols

    Assumption is that the data is collected, analyzedand reported using best practices protocols


Recommended