+ All Categories
Home > Documents > “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for...

“Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for...

Date post: 14-May-2018
Category:
Upload: buibao
View: 225 times
Download: 1 times
Share this document with a friend
44
09-30-2010 “Gate” Materials for Nonvolatile Electronics WIN Nonvolatile Electronics Kang L. Wang Raytheon Professor of Physical Sciences and Electronics NA & W Raytheon Professor of Physical Sciences and Electronics Device Research Laboratory (DRL) Directors FEN Western Institute of Nanoelectronics - WIN Center on Functional Engineered Nano Architectonics – FENA California NanoSystems Institute - CNSI California NanoSystems Institute CNSI University of California - Los Angeles (E-mail: [email protected]) 1
Transcript
Page 1: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

09-30-2010

“Gate” Materials for Nonvolatile Electronics

WIN

Nonvolatile Electronics

Kang L. WangRaytheon Professor of Physical Sciences and Electronics

NA

& W Raytheon Professor of Physical Sciences and Electronics

Device Research Laboratory (DRL)Directors

FEN

Western Institute of Nanoelectronics - WINCenter on Functional Engineered Nano Architectonics – FENA

California NanoSystems Institute - CNSICalifornia NanoSystems Institute CNSIUniversity of California - Los Angeles

(E-mail: [email protected])

1

Page 2: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Energy dissipation

How much energy is needed to make an on or off switch?

Gate

Substrat

Source Drain

Nonvolatile

e Volatile!!

Dynamic energy: E=kTln(2)= 3x10-21 J

Nonvolatile

2WINStatic energy: Leakage due to tunneling

Page 3: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Advantages of non-Volatile Electronics

No Static dissipation No Booting! Bootingo oot g Instant on Computers mostly idle

Booting

Computers mostly idle (>98%)

GreenGreen

3WIN

Page 4: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

OutlineNon-Volatile ElectronicsNon Volatile ElectronicsSpintronics – collective, nanomagnetism Gate oxide in spintronics: Gate controlledGate oxide in spintronics: Gate controlled

ferromagnetism SPIN FET: Gate controlled ferromagnetism with Al2O3

M O t i t t ll d f ti MgO to improve gate controlled ferromagnetism

Tunneling oxide in spintronics: spin injection and detection MgO growth on Ge Symmetry properties Spin injection structure and spin detection in Ge Spin injection structure and spin detection in Ge

Spin torque Transfer Memory Dielectrics for CMOS

4WIN

Dielectrics for CMOS Traditional gate oxide SiO2 and high k dielectric oxides Learning from tunneling

Page 5: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Nanomaterials for nonvolatile electronics

Low or no standby dissipation Low or no standby dissipation Low dynamics power dissipation Examples -- Enabling collective

spintronics – nanomagnetsNanomagnetic materials for Spin FETHigh speed, low energy memory – STTNano magnetic control by electric field: spin

wave –non-equilibrium case

Integrated with CMOS to form nonvolatile electronics

5WIN

Page 6: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Spintronics

Wh Low Power

Nonvolatile Logics

Why? Low power, variability & nonvolatilityNo current flow

Nonvolatile Logics Green (low power)

Collective effect MACRO - Relays

Quantum interactionexchange interaction

Room temperature Room temperature

Low variability Low quantum Low quantum fluctuations High yield and lower T ( 500C) i

NANO

Current ( di i ti )

Electrical Field Control

6WIN

(<500C) in manufacturing

(power dissipation)MRAM/STT RAM

Ovchinnikov and Wang APL, 92, 093503, 2008

(Green Low Power)

Page 7: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

OutlineNon-Volatile ElectronicsNon Volatile Electronics

Spintronics – collective, nanomagnetism Gate oxide in spintronics: Gate controlled Gate oxide in spintronics: Gate controlled

ferromagnetism SPINFET: Gate controlled ferromagnetism with Al2O3

Improved gate controlled ferromagnetism with MgO

Tunneling oxide in spintronics: spin injection and detectiondetection MgO growth on Ge Symmetry properties

S i i j ti t t d i d t ti i G Spin injection structure and spin detection in Ge

Spin torque Transfer Memory Oxide in CMOS

7WIN

Oxide in CMOS Traditional gate oxide SiO2 and high k dielectric oxides Learning from tunneling

Page 8: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Electric Field Control

Metallic systems (relays, current controlled) Better systems

Electrical field on surface ~ 0 No electric field control possible!?

From what we know best:Semiconductor and magnetism

DMS (Dilute Magnetic Semiconductor: Group IV, GaMnAs, GaMnN, t

8WIN

etc Schematic: Spin gain FET structure with a MnGe/SiGe quantum well.

8

Page 9: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Group IV based DMS

FerromagnetismTransition metals

SemiconductorsDiamagnetismFerromagnetic DMSParamagnetic DMS

Transition metals ParamagnetismDMS

Transition metal dopedTransition metal-dopedSemiconductors

(III Mn)-VEG

EGEF

(III,Mn)-VI Group IV diluted-magnetic semiconductors Integration to Si substrates

Well developed Si microelectronics

(III,Mn) V(Ga, Mn)-As(Ge, Mn)

EF

EG (III,Mn) VI(Zn,Mn)-Se(Ge,Mn)

Well developed Si microelectronics Add more functions or options to Si IC Si-based spintronics

Fundamental studies for spin in group IV materials

MM

9WIN

Fundamental studies for spin in group IV materials Nanostructures

BB

Page 10: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Major Milestones of FCFM in Mn(In/Ga)As,MnGe

In 2000, Ohno, Electric-field control of FM, Nature. In 2003, Chiba, Electrical manipulation of magnetization

reversal in a ferromagnetic semiconductor Sciencereversal in a ferromagnetic semiconductor, Science. In 2007, Our group, Electric field control magnetic phase

transition in nanostructured MnxGe1-x, APL.x 1 x, In 2008, Chiba, Magnetization vector manipulation by electric

fields , Nature.f In 2009, Ohno, Experimental probing of the interplay between

FM and localization in (Ga, Mn)As, Nature Physics. In 2010 Our group Electrical field controlled FM in MnGe QDsIn 2010, Our group, Electrical field controlled FM in MnGe QDs,

Nature Materials.

10WIN

Page 11: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Enabling NanostructuresThe use of nanostructures affording the

Better control of physics –

The use of nanostructures affording the following advantages:

MgOQD

wetting wetting

B Au

Improved carrier density control

Carrier mediated

wetting wetting

E1

Ground state for QDsGround state for wetting

Carrier mediated ferromagnetism through quantum confinements (Bohr orbital) P iti

E5

Si

E1*

orbital) Improved materials properties

for dissimilar or lattice h d l

Position x

mismatched materials – Strain accommodated &

misfit dislocations and other

11WIN

defects minimized

Page 12: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

MOS like basic structure for FCFM

VgVgVgVgVg

MnGe QDsAuAuAuAuAu

Al2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nmAl2O3 40 nm

p Si ( 1018 cm-3)p Si ( 1018 cm-3)p Si ( 1018 cm-3)p Si ( 1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)

AuAuAuAuAu

12WIN

Page 13: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Choice of Oxides in Spintronics Devices

Al O Al2O3

Advantages: ALD process, simple and compatible Advantages: ALD process, simple and compatible with Si CMOS process

Disadvantages: Amorphous, no symmetry induced i filt i ff tspin filtering effect

M O ( ill l b t l t ) MgO (will elaborate later) Advantages:

• atomic sharp interface with Ge• atomic sharp interface with Ge• single crystalline by Epitaxy• symmetry induced spin filtering and efficient spin filtering

13WIN

Challenge: Epitaxial growth

Page 14: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

MnGe DMS quantum dotsObjective: to Obtain High Curie Temperature DMS QDs

(b)MnGe QDs(a) (b)(b)MnGe QDs(a) MnGe QDsMnGe QDs(a)

AFM MFM

20 nmM diff i

5 nm 20 nm20 nmM diff i

5 nmM diff iM diff i

5 nm

(c)Mn diffusion

(d)(c)(c)Mn diffusionMn diffusionMn diffusion

(d)(d)

10 nm10 nm10 nm10 nm

(a) and (d) TEM cross-section of MnGeQDs/Si

(b) EELS Mn mapping

(a) AFM of MnGe QDs at 320 K(b) Corresponding MFM at 320 K(c)~(f) By reversing the MFM tip

ti ti th t t

14WIN

(c) EDX composition: Mn 5%Single Crystalline DMS

magnetization, the contrasts arereversed.

high Curie temperature

Page 15: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Field Controlled FM up to 100 K2

on

) a 2

on) b 0.3on)

c2

on) a2

on

) a 2

on) b2

on) b 0.3on)

c0.3on)

c

-1

0

1

(P

er M

n io

Vg= 0 V Vg= -20 V

T = 50 K

-1

0

1

(B P

er M

n io

Vg= 0 V Vg= +10 VVg= +20 V

0.1

0.2

0.3

400 200 0 200 400-1

0

1

M (

B P

er M

n io

n)

0 V +10 V +20 V +40 V

(P

er M

n i

-1

0

1

(P

er M

n io

Vg= 0 V Vg= -20 V

T = 50 K

-1

0

1

(P

er M

n io

Vg= 0 V Vg= -20 V

T = 50 K

-1

0

1

(B P

er M

n io

Vg= 0 V Vg= +10 VVg= +20 V-1

0

1

(B P

er M

n io

Vg= 0 V Vg= +10 VVg= +20 V

0.1

0.2

0.3

400 200 0 200 400-1

0

1

M (

B P

er M

n io

n)

0 V +10 V +20 V +40 V

(P

er M

n i

0.1

0.2

0.3

400 200 0 200 400-1

0

1

M (

B P

er M

n io

n)

0 V +10 V +20 V +40 V

(P

er M

n i

-3000 -1500 0 1500 3000-2M

H (Oe)

Vg= -40 V

-3000 -1500 0 1500 3000-2M

H (Oe)

g Vg= +40 V

-60 -40 -20 0 20 400.0-400 -200 0 200 400

H (Oe)Mr

Vg (V)2

n) d 2n) e n) f

-3000 -1500 0 1500 3000-2M

H (Oe)

Vg= -40 V

-3000 -1500 0 1500 3000-2M

H (Oe)

Vg= -40 V

-3000 -1500 0 1500 3000-2M

H (Oe)

g Vg= +40 V

-3000 -1500 0 1500 3000-2M

H (Oe)

g Vg= +40 V

-60 -40 -20 0 20 400.0-400 -200 0 200 400

H (Oe)Mr

Vg (V)-60 -40 -20 0 20 400.0

-400 -200 0 200 400H (Oe)M

r

Vg (V)2

n) d2

n) d 2n) e2n) e n) fn) f

-1

0

1 T = 77 K

P

er M

n io

n

Vg= 0 V Vg= -10 VV 20 V

-1

0

1

Vg= 0 V Vg= +10 V

B P

er M

n io

0.1

0.2

-1

0

1

M (

B P

er M

n io

n)

0 V +10 V +20 V +40 V

P

er M

n io

-1

0

1 T = 77 K

P

er M

n io

n

Vg= 0 V Vg= -10 VV 20 V

-1

0

1 T = 77 K

P

er M

n io

n

Vg= 0 V Vg= -10 VV 20 V

-1

0

1

Vg= 0 V Vg= +10 V

B P

er M

n io

-1

0

1

Vg= 0 V Vg= +10 V

B P

er M

n io

0.1

0.2

-1

0

1

M (

B P

er M

n io

n)

0 V +10 V +20 V +40 V

P

er M

n io

0.1

0.2

-1

0

1

M (

B P

er M

n io

n)

0 V +10 V +20 V +40 V

P

er M

n io

-3000 -1500 0 1500 3000-2M

(

H (Oe)

Vg= -20 V Vg= -40 V

-3000 -1500 0 1500 3000-2

Vg= +20 V Vg= +40 VM

(

H (Oe)-60 -40 -20 0 20 400.0

-400 -200 0 200 4001M

H (Oe)Mr (

Vg (V)2

2n) h n) i

-3000 -1500 0 1500 3000-2M

(

H (Oe)

Vg= -20 V Vg= -40 V

-3000 -1500 0 1500 3000-2M

(

H (Oe)

Vg= -20 V Vg= -40 V

-3000 -1500 0 1500 3000-2

Vg= +20 V Vg= +40 VM

(

H (Oe)-3000 -1500 0 1500 3000-2

Vg= +20 V Vg= +40 VM

(

H (Oe)-60 -40 -20 0 20 400.0

-400 -200 0 200 4001M

H (Oe)Mr (

Vg (V)-60 -40 -20 0 20 400.0

-400 -200 0 200 4001M

H (Oe)Mr (

Vg (V)2

2

2n) h2n) h n) in) i

1

0

1 T = 100 K

Per M

n io

n)

Vg= 0 VVg= -10 V

g

-1

0

1

Vg= 0 VVg= +10 V

B P

er M

n io

n h

0.1

0.2

0

1

B P

er M

n io

n)

0 V +10 V +20 V

40 V

P

er M

n io

n i

1

0

1 T = 100 K

Per M

n io

n)

Vg= 0 VVg= -10 V

g

1

0

1 T = 100 K

Per M

n io

n)

Vg= 0 VVg= -10 V

g

-1

0

1

Vg= 0 VVg= +10 V

B P

er M

n io

n h

-1

0

1

Vg= 0 VVg= +10 V

B P

er M

n io

n h

0.1

0.2

0

1

B P

er M

n io

n)

0 V +10 V +20 V

40 V

P

er M

n io

n i

0.1

0.2

0

1

B P

er M

n io

n)

0 V +10 V +20 V

40 V

P

er M

n io

n i

15WIN-3000 -1500 0 1500 3000-2

-1

M (

H (Oe)

Vg 10 V Vg= -20 V Vg= -40 V

-3000 -1500 0 1500 3000-2

-1 Vg +10 V Vg= +20 V Vg= +40 VM

(

H (Oe)-60 -40 -20 0 20 400.0

-400 -200 0 200 400-1M

( +40 V

H (Oe)Mr (

Vg (V)-3000 -1500 0 1500 3000-2

-1

M (

H (Oe)

Vg 10 V Vg= -20 V Vg= -40 V

-3000 -1500 0 1500 3000-2

-1

M (

H (Oe)

Vg 10 V Vg= -20 V Vg= -40 V

-3000 -1500 0 1500 3000-2

-1 Vg +10 V Vg= +20 V Vg= +40 VM

(

H (Oe)-3000 -1500 0 1500 3000-2

-1 Vg +10 V Vg= +20 V Vg= +40 VM

(

H (Oe)-60 -40 -20 0 20 400.0

-400 -200 0 200 400-1M

( +40 V

H (Oe)Mr (

Vg (V)-60 -40 -20 0 20 400.0

-400 -200 0 200 400-1M

( +40 V

H (Oe)Mr (

Vg (V)

Page 16: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Electrical Field Control of Ferromagnetism in Semiconductors

1 2

0.8

1.2

0

2

0-5 e

mu)

0 V

0-5 e

mu)

MnGe QDs

Vg

Au

Vg

Au

VgVgVg

AuAuAu

0.0

0.4-400 -200 0 200 400

-2

M (X

10

H (Oe)

0 V +10 V +20 V +40 VM

r (X

1

Al2O3 40 nm

p-Si (~1018 cm-3)

Al2O3 40 nm

p-Si (~1018 cm-3)

Al2O3 40 nm

p-Si (~1018 cm-3)

Al2O3 40 nm

p-Si (~1018 cm-3)

Al2O3 40 nmAl2O3 40 nm

p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)-60 -45 -30 -15 0 15 30 45

0.0

Vg (V)

Au

p S ( 0 c )

Au

p S ( 0 c )

Au

p S ( 0 c )

AuAu

p S ( 0 c )p S ( 0 c )p S ( 0 c )p S ( 0 c )p S ( 0 c )

Demonstrate 100 K

VgAu

Al2O3 40 nm0.9

1.0From -20 to 20 V

From 20 to -20 V

VgAu

Al2O3 40 nm

VgAu

Al2O3 40 nm

VgVgVgAu

Al2O3 40 nmAuAu

Al2O3 40 nmAl2O3 40 nmAl2O3 40 nm0.9

1.0From -20 to 20 V

From 20 to -20 V

Demonstrate 100 K electrical field control of PF – FM transitionL Au

p-Si (1018cm-3)

0.7

0.8

C/C

ox

Au

p-Si (1018cm-3)

Au

p-Si (1018cm-3)

Au

p-Si (1018cm-3)

AuAu

p-Si (1018cm-3)p-Si (1018cm-3)p-Si (1018cm-3)p-Si (1018cm-3)p-Si (1018cm-3)

0.7

0.8

C/C

ox

16WIN

Low power AuMnGe QDs

-25 -20 -15 -10 -5 0 5 10 15 20 25

Voltage (V)

AuMnGe QDs

AuAuAuAuMnGe QDsMnGe QDs

-25 -20 -15 -10 -5 0 5 10 15 20 25

Voltage (V)

Page 17: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Leakage Current from Al2O3

1 5 10-4

1 5 10-4

5 0x10-5

1.0x10-4

1.5x10-4

10-8

10-7

5 0x10-5

1.0x10-4

1.5x10-4

10-8

10-7

-5 0x10-5

0.0

5.0x10

I (A

/cm

2 )

50 K 10-10

10-9

(A/c

m2 )

-5 0x10-5

0.0

5.0x10

I (A

/cm

2 )

50 K 10-10

10-9

(A/c

m2 )

-1.5x10-4

-1.0x10-4

-5.0x10 77 K 120 K 160 K

15 10 5 0 5 10 15

10-11

77 K

I

-1.5x10-4

-1.0x10-4

-5.0x10 77 K 120 K 160 K

15 10 5 0 5 10 15

10-11

77 K

I

-20 -15 -10 -5 0 5 10 15 201.5x10

Vg (V)-15 -10 -5 0 5 10 15

Vg (V)-20 -15 -10 -5 0 5 10 15 20

1.5x10

Vg (V)-15 -10 -5 0 5 10 15

Vg (V)

1 ALD Al O 401. ALD grown Al2O3, 40 nm

2. Large device area ~20 mm2

17WIN3. Defects/impurities etc. Many samples are leaking

Page 18: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

What is the Next?

Room Temperature FCFM

18WIN

Page 19: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

MgO as Dielectric Oxide

MgO

AuA200111

MgO

AuA200111 BA

MnGe QD

20 n

m

MnGe QD

20 n

mp-Si 5 nm1 nm

20p-Si 5 nm1 nm

205nm20n

m

C DBB C DBAu

Vg

MgO

BAu

Vg

MgO

p-Si substrate

MnGe

p-Si substrate

MnGe

19WINAu

ate

Au

ateMgO leakage is smaller

Page 20: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Temperature Dependent Leakage

1.5x10-5

10 K 20 K 25 K 30 K 50 K60 K10-5

10-4360 K

)

5.0x10-6

1.0x10-560 K

70 K 80 K 90 K 100 K 110 K 120 K130 K10-7

10-610

nt (A

)

300 K

-5.0x10-6

0.0

nt (A

) 130 K 140 K 150 K 160 K 170 K 180 K190 K

320 K10-910-810

urre

n

230 K

-1.5x10-5

-1.0x10-5

Cur

re

190 K 200 K 210 K 220 K 230 K 240 K 250 K260 K10-11

10-1010

Cu

-2.5x10-5

-2.0x10-5

260 K 270 K 275 K 280 K 290 K 300 K310 K

10-1210

20WIN

-20 -10 0 10 202.5x10

Voltage (V)

310 K 320 K 330 K 340 K 350 K 360 K

-20 -10 0 10 20Voltage (V)

Page 21: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Thermionic Emission Process

6.0x10-5

cm2 )

12

2/ exp( )bqEJ TkT

4 0x10-5ty (A

/c

-15

-12

J467b

kTE meV

4.0x10

Den

sit

-18

15

Ln

2.0x10-5

rrne

t D

0.002 0.004 0.0061/T (1/K)

0 00 0 02 0 04 0 06 0 08 0 100.0Cur 1/T (1/K)

21WIN

0.00 0.02 0.04 0.06 0.08 0.101/T (1/K)

Page 22: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

MOS like basic structure for FCFM

VgVgVgVgVg

MnGe QDsAuAuAuAuAu

M O 20 Demonstrate 300 KAl2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nm

p Si ( 1018 cm-3)

Al2O3 40 nmAl2O3 40 nm

p Si ( 1018 cm-3)p Si ( 1018 cm-3)p Si ( 1018 cm-3)p Si ( 1018 cm-3)

MgO 20 Demonstrate 300 K electrical field control of PF – FM

p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3)p-Si (~1018 cm-3) transition with MgO Low power

AuAuAuAuAu

22WIN

Page 23: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

OutlineNon-Volatile ElectronicsNon Volatile ElectronicsSpintronics – collective, nanomagnetism Gate oxide in spintronics: Gate controlledGate oxide in spintronics: Gate controlled

ferromagnetism Gate controlled ferromagnetism with Al2O3

I d t t ll d f ti ith M O Improved gate controlled ferromagnetism with MgO

Tunneling oxide in spintronics: spin injection and detection Al2O3 ,MgO growth on Ge Symmetry properties Spin injection structure and spin detection in Ge Spin injection structure and spin detection in Ge

Spin torque Transfer Memory Oxide in CMOS

23WIN

Oxide in CMOS Traditional gate oxide SiO2 and high k dielectric oxides Learning from tunneling

Page 24: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Spin Injection and Detection Challengesg

Fermi level pinning of Ge surface Temperature dependent RA product Low spin injection efficiency

Our approaches Depin Fermi level using Al O or MgO Depin Fermi level using Al2O3 or MgO Use surface doping to optimize RA product Epitaxially grow high quality MgO as spin filterEpitaxially grow high quality MgO as spin filter

Fermi level depinning by

metalthin oxiden-Ge

metal

insertion of a thin oxide layer n-Ge

24WIN

Page 25: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Fermi Level Depinning Using Al2O3

• Before Al oxide insertion, the Fermi levels are closely pinned at the valence band, resulting a high Schottky barrier (~0.6 eV) for all metal/n-Ge contacts.

• After insertion of an Al oxide layer, the Schottky barrier heights decrease from ~0.6 eV to 0.39 eV, 0.23 eV and 0.18 eV for Ni, Co and Fe Schottkydiodes, respectively.

25WIN

• The reverse current of Co/n-Ge contact increases significantly due to the reduced Schottky barrier height.

Y. Zhou and et al. Appl. Phys. Lett. 93, 202105(2008).

Page 26: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Fermi level depinning of Ge surfacemetal

n-Ge

metalthin oxiden-Ge

metal

Fermi level depinning by insertion of a thin oxide layer

26WIN

Page 27: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Optimized RA Product by surface doping

Phosphorus implantation followedby rapid thermal activation

Ge

Ion implantation was performed to highly dope the Ge surface layer for tunneling transportlayer for tunneling transport.

The RA products are optimized for prospective spin injection.

27WIN Y. Zhou and et al. Appl. Phys. Lett. 94, 242104(2009).

p p p j

Page 28: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Epitaxial Growth of MgO on Ge

Why MgO?MgO enhances the spin injection efficiency due to the symmetry induced spin filtering.

Why epitaxy films?To achieve single crystalline structure and atomicallysmooth interface for spin injection.

28WIN

Page 29: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Symmetry filtering effect in Fe/MgO/Fe MTJ

y45°

y

x’y’y

x

Prerequisite for symmetry filtering:

Single crystalline structure –wavefunction theory can be appliedwavefunction theory can be applied.

45 degree in-plane rotation – leading to a much higher decay rate (filtering) for minority spin states

29WIN Ref: W. H. Butler and et al. PRB 63, 054416 (2001)

for minority spin states.

Page 30: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Single crystalline MgO grown on Ge

Fe[110](001)

MgO[100](001)

Ge[110](001) 2 nm

Fe

MgO

Single crystalline and atomicallysmooth MgO is epitaxially grownon Ge in UHV under optimized

ditiGe

condition.

The unique 45 degree rotationbetween MgO and Ge unit cellminimi es the lattice mismatch and

30WIN

minimizes the lattice mismatch andenhances spin filtering.

W. Han, Y. Zhou and et al. J. Crys. Growth. 312, 44(2009).

Page 31: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Fermi Level Depinning using MgO

M O (0 5 3 )Fe

Schottky barrier is significantly reduced by insertion of an ultrathin MgO between Fe and n Ge

n-GeMgO (0.5-3nm)

Ohmic contact

MgO between Fe and n-Ge.

MgO terminates the dangling bond at the Ge surface, leading to a depinned

31WIN

Ohmic contact

Y. Zhou and et al. Appl. Phys. Letts. 96, 102103 (2010)

Fermi level favoring electronic transport.

Page 32: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Ideal Structure for Spin Injection in Ge

Fe

High doping layer (2E19 cm-3, 15nm)MgO (2 nm)

Fe

Device layer (1E16 cm-3, 300 nm)

Transition layer (1E16 to 2E19 cm-3, 15nm)

Atlas simulation of spin injection structure based on Fe/MgO/n-Ge

Use epitaxy grown Ge device layer and highly doped layer to minimize defects and dopant diffusion caused by ion implantation and annealing

32WIN

annealing.

Use Epitaxy grown MgO and Fe to ensure high quality interface for spin injection.

Page 33: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

OutlineNon-Volatile ElectronicsNon Volatile ElectronicsSpintronics – collective, nanomagnetism Gate oxide in spintronics: Gate controlledGate oxide in spintronics: Gate controlled

ferromagnetism Gate controlled ferromagnetism with Al2O3

I d t t ll d f ti ith M O Improved gate controlled ferromagnetism with MgO

Tunneling oxide in spintronics: spin injection and detection Al2O3 ,MgO growth on Ge Symmetry properties Spin injection structure and spin detection in Ge Spin injection structure and spin detection in Ge

Spin torque Transfer Memory Oxide in CMOS

33WIN3

Oxide in CMOS Traditional gate oxide SiO2 and high k dielectric oxides Learning from tunneling

Page 34: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Magnetic memory

A 10.8×10.8 cm card of core memory of 64x64 bits, as used in a CDC6600(ca 1965)

MRAM using Osted field

Too much power!

34WIN

(ca. 1965) Too much power!

Page 35: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Illustration of magnetization switching using spin transfer torque

fixed MgO freelayer barrier layer

I I

fixed MgO freelayer barrier layerlayer barrier layer layer barrier layer

Current spin polarizationAP to P switching

Current spin polarizationP to AP switching

e

V V+ -

p p

- +e e

35WIN

Page 36: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

LLG Equation with Spin Transfer Torque

• This can give rise to oscillations and/or it hiswitching

• Jc: <106 A/cm2

P di t d bP di t d b Sl kiSl ki d B id B i

36WIN

Predicted by Predicted by SlonczewskiSlonczewski and Berger in and Berger in 1996 (1996 (J. Magnetism and Magnetic Materials 159 (1996) L 1 -L7

Page 37: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

STT spintronics = GMR, spin transfer

1. GMR:(Giant magneto-

resistance)Low R High R

resistance)

i ftorque

Predicted by Predicted by SlonczewksiSlonczewksi and and Berger in 1996 (Berger in 1996 (J. Magnetism

Fixed layer

Freelayer

2. Spin transfer:q g (g ( g

and Magnetic Materials 159 (1996) L 1 -L7

IP

Effects rely on

I AP

37WIN

Effects rely on transport + spinMagnetic tunneling Junction (MTJ): MgO

Page 38: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

STT-RAM – Current-Induced Switching

38WIN

Page 39: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

STT-RAM – Reduction of Write Energy

Sony, Qualcomm [3,4]

Magic [2]

June 2010 StatusEnergy

0.4 pJ 0.3 pJ

Delta > 60 > 60Delta > 60 > 60

Speed 0.15ns

1 ns

write time approx. write energy[1] Hitachi: T. Kahawara et al., ISSCC Tech. Dig. pp.480-481 (2007) 100 ns 20 pJ[2] Sony: M. Hosomi et al., IEDM Tech. Dig. pp. 459-462 (2005) 2 ns 1 pJ[3] MagIC: R. Beach et al., IEDM Tech. Dig. pp. 306-308 (2008) 10 ns 2 pJ[4] Qualcomm: C.J. Lin et al., IEDM Tech. Dig. p. 279 (2009) 10 ns 1 pJ

39WIN

[4] Qualcomm: C.J. Lin et al., IEDM Tech. Dig. p. 279 (2009) 10 ns 1 pJ

Page 40: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Conclusions Non Volatile Electronics Non Volatile Electronics Spintronics Oxide applications in spintronics Oxide applications in spintronics,

Gate modulation Spin injection and detection Spin injection and detection

RT FCFM was successfully demonstrated MnGe QDs can be the building block of future spin MnGe QDs can be the building block of future spin

FETs Spin Injection into Ge is realized using MgO andSpin Injection into Ge is realized using MgO and

being optimized for STT Integration with CMOS

40WIN

Integration with CMOS Low power autonomous systems

Page 41: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Contact Info

Kang Wang (Director): [email protected]; [email protected]

Kos Galatsis (COO): [email protected], [email protected]

Admin: [email protected], [email protected]

FENA Center and WINRoom 5289 Boelter HallUniversity of California Los AngelesUniversity of California, Los AngelesLos Angeles, CA 90095-1594

41WIN

Page 42: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Acknowledgments

All th FENA d WIN ti i t All the FENA and WIN participants All students, postdoctoral fellows and

visitors as well as collaborators aroundvisitors as well as collaborators around the world

Support: SRC, NSF, Marco, NERC, ARO, AFOSR, ONR, DARPA and many industrial companies

42WIN

Page 43: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

California NanoSystems Institute, UCLA:Driving Innovation for California, the US, and the World

www.cnsi.ucla.eduNew tools and methods:

Enhanced imagingAdvanced characterizationAdvanced characterizationChemical patterning

Applications of nanoscience in:BiomedicineBiomedicineDevicesEnergy

W ld l di t fWorld-leading center for:Innovation & understandingEducationCommercialization

120 faculty (science, eng, medicine, health, art)

43WIN

y ( , g, , , )17,000 m2 adjacent to science, e ng, & medicine>$120M/y grants + strong Calif. & UC support

Page 44: “Gate” Materials for Nonvolatile Electronics K Wang.pdf · 09-30-2010 “Gate” Materials for Nonvolatile Electronics W IN Nonvolatile Electronics Kang L. Wang Raytheon Professor

Developing and Applying World-Class ToolsNine core labs extend the state-of-the-art and make the tools of nanoscience available to the community

Advanced Light Microscopy (STED, multiphoton)Macro-Scale Optical Imaging Laboratoryp g g yNano and Pico Characterization (scanning probes)Electron Imaging Center for NanoMachinesMolecular Screening Shared ResourceIntegrated Systems Nanofabrication Cleanroom(includes bio suites)(includes bio suites)Integrated NanoMaterials Lab (MBE)Center for Quantum Research

44WIN

Center for Quantum ResearchGlobal Health Center


Recommended