+ All Categories
Home > Documents > GC Large Volume Injection Optimization · Large Volume Injection Presented By Tim Anderson GC...

GC Large Volume Injection Optimization · Large Volume Injection Presented By Tim Anderson GC...

Date post: 17-Apr-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
36
Large Volume Injection Presented By Tim Anderson GC Product Manager Phenomenex EPA Region 6 QA Conference October, 2015
Transcript

Large Volume Injection

Presented By

Tim Anderson

GC Product Manager

Phenomenex

EPA Region 6 QA Conference

October, 2015

Goal

Develop a method to use the least amount of sample and achieve the highest possible s/n response

2

Typical Analysis

1.0 µL Splitless

500 g soil

S/N = 25

Larger Injection

5.0 µL Splitless

500 g soil

S/N = 125

Larger Injection / Smaller Sample

5.0 µL Splitless

100 g soil

S/N = 25

What to Watch Out For!

1.0 µL Dichloromethane @ 250 ºC & 14 psi = 336 µL

Liner Volume 990 µL

3.0 µL = 1008 µL; exceeds liner volume! Flashback

Ghost peaks

Loss in sensitivity / linearity

3

PreliminaryAssumptions

• Pressure Pulsed injection tend to improve analyte responses

• Improves transfer of analytes from the inlet into the column

• Started with Pressure Pulse and tested this assumption during throughout the experiment

Analytes:• Started with a relatively simple list of Polycyclic Aromatic

Hydrocarbons (PAHs)

• Contains relatively wide range of retention times

• Subsequent work includes other compounds

4

Column: Zebron ZB-SemiVolatiles 30 m x 0.25 mm x 0.25 µm

Column Flow: 1.4 mL/min Helium (constant flow)

Oven Program: 100 ºC for 0.5 to 260 ºC @ 30 ºC/min to 295 ºC @ 6 ºC/min to 325 ºC @ 25 ºC/min for 2 min

Inlet Liner: Direct Connect Liner with top taper and bottom hole

Injection: Pressure Pulse @ 30 psi for 0.66 min, splitless for 0.60 min

Detector: MSD; 46-450 amu, transfer line = 320 ºC

Initial Conditions

5

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00

2000000

4000000

6000000

8000000

1e+07

1.2e+07

1.4e+07

1.6e+07

Time-->

Abundance

TIC: APAH3.D

Liner Experiments

What is the best liner?

Different styles

Compared early, mid, and late eluters

6

Liner Performance

DirectConnect Dual Taper, bottom hole

• Maximum Injection volume = 10 µL

• Maximum intensity = 1.67e7

• Better response for higher MW

• Response decreases after 10 µL!

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Are

a

Injection Volume (uL)

Fluorene

Chrysene

Benzo[g,h,i]perylene

7

DirectConnect Top Hole

• Maximum Injection volume = 12.5 µL+

• intensity = 1.40e7

• Better response for lower MW 0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Are

a

Injection Volume (uL)

Fluorene

Chrysene

Benzo[g,h,i]perylene

Liner PerformanceSingle Taper With Wool

• Maximum Injection volume = 10 µL

• Maximum intensity = 2.07e7

• Consistent response, except at larger volumes which benefit lower MW

• Response decreases after 10 µL!0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Are

a

INjectin Volume (uL)

Fluorene

Chrysene

Benzo[g,h,i]perylene

8

Cup Liner

• Maximum Injection volume = 7.5 µL

• Maximum intensity = 2.71e7

• Slightly better response for higher MW

• Response decreases after 7.5 µL 0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Are

a

Injection Volume (uL)

Fluorene

Chrysene

Benzo[g,h,i]perylene

Liner Performance

FocusLiner (single taper with wool in middle)

• Maximum Injection volume = 2.5 µL

• Maximum intensity = 6.23e6

• Much better response for lower MW

• Possible cooling of glass wool

9

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Are

a

Injection Volume

Fluorene

chrysene

Benzo[g,h,i]perylene

Average Liner Performance

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

0 2 4 6 8 10 12 14

Direct ConnectBottom Hole dualtaperDirect Connect TopHole

Cup Liner

Single Taper WoolBotom

Focusliner

10

Single Taper with Wool at bottom

provides highest response at 7.5 µL

injection volume

Analytes1. Pentachlorophenol

2. DFTPP

3. Hexadecanoic acid

4. Octadecanoic acid

5. Benzidine

6. Hexanedioic acid, bis(2-ethylhexyl)ester

7. DDT

Liner Activity

11

Relative Responses 1-taper Wool-middle Wool-bottom straight Cup Wool-bottom 2

PCP 0.44 0.70 0.60 0.43 0.80 0.32

Benzidine 0.87 1.17 1.11 0.90 1.22 1.34

DDT 1.23 1.24 1.19 0.99 1.17 1.59

7 . 0 0 7 . 5 0 8 . 0 0 8 . 5 0 9 . 0 0 9 . 5 0 1 0 . 0 0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

1 6 0 0 0 0

1 8 0 0 0 0

2 0 0 0 0 0

2 2 0 0 0 0

2 4 0 0 0 0

2 6 0 0 0 0

2 8 0 0 0 0

3 0 0 0 0 0

3 2 0 0 0 0

3 4 0 0 0 0

3 6 0 0 0 0

3 8 0 0 0 0

T im e -->

A b u n d a n c e

T I C : A G 8 4 9 9 _ 2 . D

7 .0 0 7 .5 0 8 .0 0 8 .5 0 9 .0 0 9 .5 0 1 0 .0 0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

T im e -->

A b u n d a n c e

T IC : A G 4 6 5 7 _ 2 .D

Normal Liner

Competing Liner

1

2

34

5

6

7

1

2

5 7

Inlet Temperature = 275 ºC

Ratio of over middle PAH

Benzo(g,h,i)perylene / Pyrene

Inlet Discrimination:

Reduced response of later eluting compounds due to their lower volatility at a given temperature.

Higher Inlet Temperatures = Greater Response for Late Eluting Compounds

Injection Temperature

0

0.2

0.4

0.6

0.8

1

1.2

1.4

150 170 190 210 230 250 270 290 310 330 350

Re

lati

ve

Pe

ak

In

ten

sit

y (

Be

nzi[

g,h

,i]P

ery

len

e /

Pyre

ne

)

Inlet Temperature

PAH Response vs. Inlet Temperature

12

Active Analytes vs. Temperature

13

Kinetics states that reactions occur faster at higher temperatures

Expected less relative response at higher temperatures

Liner was new and CLEAN!

Note: Conditions were for Pulsed Split injection parameters; inlet liner with wool at bottom

0

0.2

0.4

0.6

0.8

1

1.2

1.4

170 190 210 230 250 270 290 310 330 350

Rea

ltiv

e R

es

op

ns

e t

o D

FT

PP

Inlet Temperature

Relative Analyte Resopnse vs. Inlet Temperature

PCP Ratio

Benzidine Ratio

DDT Ratio

60 ºC gave much better initial peak shape

Initial peak shape still not perfect

Naphthalene at 4.5 min, last PAH at 15.2 min

Benzo[b]fluoranthene / Benzo[k]fluoranthene = 6.45% valley height (8270D requirement = 50%)

Indeno[1,2,3-cd]pyrene / Dibenz[a,h]anthracene = 15.8%

Chromatography Optimization

143.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

Time-->

Abundance

TIC: PAH005.D

Guard Columns

15

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

Time-->

Abundance

TIC: PAH006.D

4 .4 0 4 .5 0 4 .6 0 4 .7 0 4 .8 0 4 .9 0 5 .0 0 5 .1 0 5 .2 0 5 .3 00

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

5 5 0 0 0 0 0

T im e -->

A b u n d a n c e

T IC : P A H 0 0 6 .DT IC : P A H 0 0 5 .D

No Guard

Guard

Confirmation of Pressure Pulse

3 .0 0 4 .0 0 5 .0 0 6 .0 0 7 .0 0 8 .0 0 9 .0 0 1 0 .0 0 1 1 .0 0 1 2 .0 0 1 3 .0 0 1 4 .0 0 1 5 .0 0

0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

T ime -->

A b u n d a n c e

T IC: L V I0 0 3 .D

T IC: L V I0 0 4 .D

Pressure Pulse (30 p.s.i.)

No pressure pulse

Benzo[b]fluoranthene

82% Diff.

Benzo[k]fluoranthene

81% Diff.

Benzo[a]pyrene

83% Diff.

Indeno[1,2,3-cd]pyrene

88% Diff.

Dibenz[a,h]anthracene

86% Diff.

Benzo[g,h,i]perylene

85% Diff.

Optimization of Pressure PulseHigher pressures decreased initial responses

Lower pressures decreased all signals – less transfer on-column

Optimum was found to be 30 psi

Decreasing pressure time at 40 psi did NOT bring back naphthalene

17

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

Time-->

Abundance

TIC: PAH013.D

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

Time-->

Abundance

TIC: PAH011.D

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

Time-->

Abundance

TIC: PAH010.D

25 psi 30 psi 40 psi

10.00 10.02 10.04 10.06 10.08 10.10 10.12 10.14 10.16 10.18 10.20 10.22

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

3000000

3200000

3400000

Time-->

Abundance

TIC: PAH010.DTIC: PAH011.DTIC: PAH013.D

25 psi

40 psi

30 psi

Optimization of Pressure PulseZoom in on Benz[a]anthracene and Chyrsene

18

Expected that standard splitless injection might allow for longer splitless hold times to improve response

Longer splitless hold times gave better responses, but not comparable to the pulsed splitless injection

Non-Pulsed Consideration

19

1 1 . 6 0 1 1 . 7 0 1 1 . 8 0 1 1 . 9 0 1 2 . 0 0 1 2 . 1 0 1 2 . 2 0 1 2 . 3 0 1 2 . 4 0 1 2 . 5 0 1 2 . 6 0 1 2 . 7 00

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : L V I 0 0 3 . DT I C : 0 5 1 1 1 2 - M 0 1 . D

T I C : L V I 0 0 4 . DT I C : L V I 0 0 6 . D

Later Eluting PAH’s

Pulsed Splitless for 0.6 min

Splitless for 1.0 min

Splitless for 0.6 min

Splitless for 0.5 min

(5m x 0.25mm ID guard)

(5m x 0.32mm ID guard)(1m x 0.32mm ID guard)

Larger ID Guard: 0.32 mm ID

20

Later peaks NOT taller;

did not increase

loading of any peaks

Lost early

eluters

Pulsed vs. Non-pulsed 0.32 mm ID Guard

21

Non-pulse

Improved

Early

Eluters

Pressure Pulse

No pressure pulse

Non-pulse

Reduced

Later Eluters

Hoped that improved efficiency would give higher response

Retention times were earlier with last PAH before 14 minutes

All responses were lower, especially late eluting PAHs

Experimented with flow rates, pressure pulses, and injection volumes

Smaller ID Column

22

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.000

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

Time-->

Abundance

TIC: PAH011.DTIC: PAH022.D

30x0.25x0.2520x0.18x0.36

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

Time-->

Abundance

TIC: PAH011.D

Column Dimension: Zebron ZB-SemiVolatiles 30 m + 5 m Guard x 0.25 mm ID x 0.25 µm

Column Flow: 1.4 mL/min Helium (constant flow)

Oven Program: 60 ºC for 0.75 to 260 ºC @ 30 ºC/min to 295 ºC @ 6 ºC/min to 325 ºC @ 25 ºC/min for 2 min

Inlet Liner: Single Taper with wool at bottom

Injection: 7.5 µL Pulsed Splitless, Pressure Pulse @ 30 psi for 0.66 min, splitless for 0.60 min

Detector: MSD; 46-450amu, transfer line = 320 ºC

Analytes: PAHs at 5 ppm in dichloromethane

Final Conditions for PAHs

23

4 . 0 0 5 . 0 0 6 . 0 0 7 . 0 0 8 . 0 0 9 . 0 01 0 .0 01 1 .0 01 2 .0 01 3 .0 01 4 .0 01 5 .0 01 6 .0 01 7 .0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

5 0 0 0 0 0 0

5 2 0 0 0 0 0

T im e -->

A b u n d a n c e

T I C : L V IB 0 0 7 . D

Method Development for Semivolatiles• Used PAH conditions as a starting point

• 17 min run

• Lowered initial temperature to 40 ºC for 2 minutes

• 5 ppm Calibration Point with 1,4-Dioxane

• Separation of Benzo[b]/[k]fluoranthene

• Not the best separation of later PAHs

24

3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

T ime-->

Abundanc e

T IC: LVIB007.D

Pyridin

e

N-N

itro

sodim

eth

yla

min

e

1,4

-Dio

xan

e

5.5 Million Counts!

Injection Volume Effects

25

4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

T ime-->

Abundanc e

T IC: LVIG178.D \ data.ms

T IC: LVIG179.D \ data.ms (*)

Overlay of 7.5 µL (file179) and 5.0 µL (file178)

7 . 7 0 7 . 8 0 7 . 9 0 8 . 0 0 8 . 1 0 8 . 2 0 8 . 3 0 8 . 4 0 8 . 5 0 8 . 6 0 8 . 7 0 8 . 8 0 8 . 9 0 9 . 0 0 9 . 1 0 9 . 2 0 9 . 3 0 9 . 4 0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

6 0 0 0 0 0

6 5 0 0 0 0

7 0 0 0 0 0

7 5 0 0 0 0

8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : L V I G 1 7 8 . D \ d a t a . m s

T I C : L V I G 1 7 9 . D \ d a t a . m s ( * )

Middle and late chromatogram are similar

3 . 4 0 3 . 6 0 3 . 8 0 4 . 0 0 4 . 2 0 4 . 4 0 4 . 6 0 4 . 8 0 5 . 0 0

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

6 0 0 0 0 0

6 5 0 0 0 0

7 0 0 0 0 0

7 5 0 0 0 0

8 0 0 0 0 0

8 5 0 0 0 0

9 0 0 0 0 0

9 5 0 0 0 0

1 0 0 0 0 0 0

1 0 5 0 0 0 0

1 1 0 0 0 0 0

1 1 5 0 0 0 0

1 2 0 0 0 0 0

1 2 5 0 0 0 0

1 3 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : L V I G 1 7 8 . D \ d a t a . m s

T I C : L V I G 1 7 9 . D \ d a t a . m s ( * )

Early Chromatogram is NOT Similar

0.1ppm Calibration Curve

26

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

Time-->

Abundance

TIC: LVIG112.D\ data.ms

4 . 0 05 . 0 06 . 0 07 . 0 08 . 0 09 . 0 01 0 . 0 01 1 . 0 01 2 . 0 01 3 . 0 01 4 . 0 01 5 . 0 01 6 . 0 01 7 . 0 01 8 . 0 0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

1 6 0 0 0 0

1 8 0 0 0 0

2 0 0 0 0 0

2 2 0 0 0 0

2 4 0 0 0 0

2 6 0 0 0 0

2 8 0 0 0 0

3 0 0 0 0 0

3 2 0 0 0 0

3 4 0 0 0 0

3 6 0 0 0 0

3 8 0 0 0 0

4 0 0 0 0 0

4 2 0 0 0 0

T im e -->

A b u n d a n c e

T I C : L V I G 1 1 2 . D \ d a t a . m s

zoom

10.0 ppm injection

Later Peaks

(overloading)

11.5012.0012.5013.0013.5014.0014.5015.0015.5016.0016.5017.0017.5018.00

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1e+07

1.1e+07

1.2e+07

T ime-->

Abundanc e

T IC: LVIG118.D \ data.ms

Column: Zebron ZB-SemiVolatiles 30 m x 0.25 mm x 0.50 µm with 5 m Guardian

Liner: Single Taper with Wool at the bottom

Injection: 5.0 µL pulsed splitless at 30 psi for 0.66 min; 260 ºC

Column Flow: 1.4 mL/min Helium (constant flow)

Oven Program: 45 ºC for 3.0 min to 280 ºC @ 30 ºC/min to 325 ºC @ 9 ºC/min for 5 min

Calibration Curve: 0.1 – 10.0ppm; IS & Surrogate at 1.0ppm

LVI: Semivolatiles

275 .0 06 .0 07 .0 08 .0 09 .0 01 0 .0 01 1 .0 01 2 .0 01 3 .0 01 4 .0 01 5 .0 01 6 .0 01 7 .0 01 8 .0 0

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

6 0 0 0 0 0

6 5 0 0 0 0

7 0 0 0 0 0

7 5 0 0 0 0

8 0 0 0 0 0

8 5 0 0 0 0

9 0 0 0 0 0

9 5 0 0 0 0

1 0 0 0 0 0 0

1 0 5 0 0 0 0

1 1 0 0 0 0 0

1 1 5 0 0 0 0

1 2 0 0 0 0 0

1 2 5 0 0 0 0

1 3 0 0 0 0 0

1 3 5 0 0 0 0

1 4 0 0 0 0 0

T im e -->

A b u n d a n c e

T IC : L V IG 0 9 2 0 6 .D

Key Performance Characteristics

5 .0 06 .0 07 .0 08 .0 09 .0 01 0 .0 01 1 .0 01 2 .0 01 3 .0 01 4 .0 01 5 .0 01 6 .0 01 7 .0 01 8 .0 00

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

6 0 0 0 0 0

6 5 0 0 0 0

7 0 0 0 0 0

7 5 0 0 0 0

8 0 0 0 0 0

8 5 0 0 0 0

9 0 0 0 0 0

9 5 0 0 0 0

1 0 0 0 0 0 0

1 0 5 0 0 0 0

1 1 0 0 0 0 0

1 1 5 0 0 0 0

1 2 0 0 0 0 0

1 2 5 0 0 0 0

1 3 0 0 0 0 0

1 3 5 0 0 0 0

1 4 0 0 0 0 0

T im e -->

A b u n d a n c e

T IC : L V IG 0 9 2 0 6 .D

284.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65

0

2000

4000

6000

8000

10000

12000

14000

16000

Time-->

Abundance

Ion 88.00 (87.70 to 88.70): LVIG09206.D

1,4-Dioxane

4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

Time-->

Abundance

Ion 74.00 (73.70 to 74.70): LVIG09206.D

Ion 79.00 (78.70 to 79.70): LVIG09206.D

N-Nitrosoodimethylamine

Pyridine

6 .4 0 6 .4 5 6 .5 0 6 .5 5 6 .6 0 6 .6 5 6 .7 0 6 .7 5 6 .8 0 6 .8 50

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

4 5 0 0 0

5 0 0 0 0

5 5 0 0 0

6 0 0 0 0

6 5 0 0 0

7 0 0 0 0

7 5 0 0 0

8 0 0 0 0

8 5 0 0 0

9 0 0 0 0

9 5 0 0 0

T im e -->

A b u n d a n c e

Io n 9 3 .0 0 (9 2 .7 0 to 9 3 .7 0 ): L V IG 0 9 2 0 6 .D

Mass 93:

Aniline &

bis(2-chloroethyl)ether

15.0015.0515.1015.1515.2015.2515.3015.3515.4015.4515.5015.5515.6015.6515.70

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

Time-->

Abundance

Ion 252.00 (251.70 to 252.70): LVIG09206.D

15.30 15.35

Mass 252:

Benzo[b]fluoranthene &

Benzo[k]fluoranthene

1 0 .1 0 1 0 .2 0 1 0 .3 0 1 0 .4 0 1 0 .5 0 1 0 .6 0 1 0 .7 0 1 0 .8 0 1 0 .9 0 1 1 .0 00

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

1 8 0 0 0

2 0 0 0 0

2 2 0 0 0

2 4 0 0 0

2 6 0 0 0

2 8 0 0 0

3 0 0 0 0

3 2 0 0 0

3 4 0 0 0

3 6 0 0 0

3 8 0 0 0

T ime -->

A b u n d a n c e

Io n 2 6 6 .0 0 (2 6 5 .7 0 to 2 6 6 .7 0 ): L V IG 0 9 2 0 6 .D

Pentachlorophenol

Column: Zebron ZB-SemiVolatiles 30 m x 0.25 mm x 0.50 µm with 5 m Guardian

Liner: Single Taper with Wool at the bottom

Injection: 5.0 µL pulsed splitless at 30 psi for 0.66 min; 300ºC

Column Flow: 1.4 mL/min Helium (constant flow)

Oven Program: 60 ºC for 1.0 min to 280 ºC @ 30 ºC/min to 325 ºC @ 9 ºC/min for 5 min

Calibration Curve: 0.01 – 1.0 ppm; IS and Surr @ 1.0 ppm

LVI: PAHs

29

8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

0

500

1000

1500

2000

2500

3000

3500

T ime-->

Abundanc e

Ion 276.00 (275.70 to 276.70): LVIPAH 08.D

Ion 278.00 (277.70 to 278.70): LVIPAH 08.D

Ion 252.00 (251.70 to 252.70): LVIPAH 08.D

Ion 228.00 (227.70 to 228.70): LVIPAH 08.D

Ion 202.00 (201.70 to 202.70): LVIPAH 08.D

Ion 178.00 (177.70 to 178.70): LVIPAH 08.D

5 .0 0 6 .0 0 7 .0 0 8 .0 0 9 .0 0 1 0 .0 0 1 1 .0 0 1 2 .0 0 1 3 .0 0 1 4 .0 0 1 5 .0 0 1 6 .0 0

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

6 0 0 0 0 0

6 5 0 0 0 0

7 0 0 0 0 0

7 5 0 0 0 0

8 0 0 0 0 0

T ime -->

A b u n d a n c e

T IC: L V IP A H 1 4 .D

Calibration Standard of Later Eluting PAHs @ 10 ppb

(extracted ions)

This is SCAN data, not SIM!

Choice of Column

Semivolatiles are challenging compounds

Contains Bases, Neutrals, and Acids

Need very inert column for Bases, Neutrals, AND Acids

30

EPA Method Requirements

DFTPP Tune: Decafluorotriphenylphospine, Pentachlorophenol, DDT, Benzidine

Instrument must pass the DFTPP Tune before running samples DFTPP (tests MS response)

• MS must meet ion ratio criteria

Pentachlorophenol (test acidic response)• Peak skew < 2.0

Benzidine (test basic response)• Peak skew < 2.0

DDT (tests other activity)• Breakdown < 20%

31

“Pyridine may perform poorly … Therefore, if pyridine is to be determined in addition to other target analytes, it may be necessary to perform separate analyses.” – EPA Method 8270D

Labs don’t want to run additional analyses = it costs them more money!

Pyridine is also an indicator of column activity for other compounds.

Why is Pyridine Important?

32

Traditional Test Mix Efficiency

Polarity

Bleed

Activity

ZB-SemiVolatiles Test Mixes

Method Specific Test Mix Better measure of activity

This is the DFTPP Tuning Standard

Also includes Pyridine, more sensitive base than benzidine

33

The ZB-SemiVolatiles Advantage

Better peak shapes for active compounds

Better calibration RSD values

Makes the 8270D Tuning requirements easy to pass

Resists contamination = longer lifetime

Better quantitation across all concentrations Low concentrations: Stronger response

All concentrations: Better peak shape for easier and more consistent integration

35

Summary

Single Taper Liner with Wool at Bottom provides

the best results for expansion capacity and directing sample on to

the column.

Pressure pulse of 30 psi for 0.66 min for controlling

expansion volume

Guard column of same ID as analytical column

helps the peak shape of initial compounds extend

column lifetime

Constant flow of 1.4 mL/min gave the best

separation and improved run times

60°C Initial temperature to fully focus early eluters

such as naphthalene

The ZB-SemiVolatiles 30 m x 0.25 mm x 0.25 µm with a 5m integrated Guard

best separation for crticalPAH pairs in the shortest

time (<16 min)

37

Thank You

Trademarks

Zebron is a trademark of Phenomenex. Rxi and Restek are trademarks of Restek Corporation.

Agilent and DB are trademarks of Agilent Technologies, Inc.

Disclaimer

Comparative separations are not representative of all applications. Phenomenex is in no way

affiliated with Restek Corporation or Agilent Technologies, Inc.

© 2015 Phenomenex, Inc. All rights reserved.


Recommended