+ All Categories
Home > Documents > GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on...

GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on...

Date post: 07-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
88
GCS HLRS
Transcript
Page 1: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

GCS HLRS

Page 2: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•MichaelResch,

Universityof Stuttgart,HLRS

2

researchworkforapplicationsonsupercomputers.

OverthelastyearsHLRShasexpandeditsresearchactivitiessubstantiallyandhasbecomeamajorresearchhubforsimulationinEurope.ThefocusofourworkisondevelopingnewmethodsandapplicationsinthefieldofHPCanddistributedcomputing.GridandCloudcomputingareonlytwoofthecornerstonesofourresearch.Visualizationisamainfieldofourresearchasitenablestheintegrationofsimulationinworkflowsbothinscienceandindustry.ThefundingfortheseprojectscomesfromtheStateofBaden-Württemberg,theFederalMinistryofScience(BMBF),theDeutscheForschungsgemein-schaft(DFG),theEuropeanCommis-sionanddirectlyfromindustry.

Abookletlikethiscanonlygivearoughoverviewofouractivities.Oursystemsareupandrunning7x24.SupportforourusersisgivenfromBarcelonatoPoznanandfromRometoStockholm.Ontheaverage80usergroupsacrossEuropehaveaccesstooursystems.Eachofthesegroupsisfocusingonresearchprojectsinthefieldofsimulation.Atthesametimemorethan30inhouseresearchprojectsinthefieldofHPCareconductedbyscientistsfromHLRS.TogethertheseactivitiescreateacenterofexcellencethatisacornerstoneoftheUniversityofStuttgartandisrenownedworldwide.

HighPerformanceComputingattheUniversityofStuttgartstartedabout50yearsago.In1996theHPCCenter/HöchstleistungsrechenzentrumStuttgart(HLRS)wasfoundedasthefirstGermannationalHPCcentre.SincethenHLRShasestablisheditselfasoneofthelead-ingcentersworldwidewithitsfocusonengineeringscienceandindustrialHPC.FromthestartHLRSwasgivingsupporttolocalindustrialleaderslikeDaimlerandPorsche.ThroughhwwGmbHHLRSprovidesindustrywithaccesstosystemsandthroughtheAutomotiveSimulationCenterStuttgart(ASCS)providesexpertiseinsimulation.Since2007HLRSisamemberintheGaussCentreforSupercomputing(GCS).TogetherwithitsfellowcentresatJülichandGarchingitsupportsEuropeanresearch-ersintheEuropeanPartnershipforAdvancedComputinginEurope(PRACE).Throughalongtermstrategichard-wareandsoftwareconceptHLRShaslaidthefoundationforthesuccessfulusageofsimulationscienceinresearchandindustry.

ThemissionofHLRStodayistoactasacentreofcompetence,supportusersandconductresearchinthefieldofHPC.ThefocusofourusersisonCom-putationalFluidDynamics.Applicationsofthistechnologyrangefromflowoverthewingsofanaircrafttotheoceancirculation.Inthisbookletwepresentthehighlightsofapplicationsoftheyears2010and2011.ManyofthemwereawardedtheGoldenSpikeAwardofthesteeringcommitteeofHLRS.Thisawardisgiveneveryyeartoyoungsci-entistswhoshowoutstandingqualityof

Welcome to the World of HLRS

Page 3: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

HLRS» GrowingScienceatHLRS–BeyondBareMetal» Industryinside» ComputingSystems

Applications» Laminar Flow Control in Vortex-deformed Swept-WingFlows:PinpointSuction» Fluid-Structure coupled Flow Simulations of Helicopter Rotors» Direct Numerical Simulation of Active Separation Control Devices» High Order large Scale Calculations» Exotic State in Correlated Relativistic Electrons» The Agulhas System as a Key Region of the global oceanic Circulation» Modelling Convection over West Africa» The Maturing of Giant Galaxies by Black Hole Activity

Projects» CoolEmAll-PlatformforOptimizingtheDesign, OperationandCoolingofmodularconfigurable ITInfrastructures» VISIONAIR » Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA)» Debugging on the next Level: Temanejo» Towards High Performance Semantic Web – Experience of the LarKC Project» plugIT – Plug Your Business into IT» GAMES (Green Active Management of Energy in IT Service centres)» Towards EXascale ApplicatTions (TEXT)

3

Contents

46

10

14

18

22

283238

4250

56

6264

6872

7680

84

Page 4: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:ProjectfundingofHLRSoverthelast10years Figure2:NumberofHLRSemployeesoverthelast7years(RAisstudentresearchassistants

Theimportanceofasupercomputingcenteristypicallymeasuredinspeedofitssupercomputer.Asoftodaythekeynumbertobeachievedis1Petaflop/sandbeyond.However,thesystemitselfisbyfarnotenough.Itisonlyatooltodevelopsolutions.Hence,systemshavetobesetinaworking,stable,andwellorganizedenvironment.Firstofall,theyneedanexcellentinfrastructuretohostthem.Second,theyneedsupportbythehostingcenterthathelpsuserstogetperformancefromthesystem.Third,ittakesalotofsystemrelatedresearchtodevelopnewmethodsandharvestthefullpotentialofasuper-computer.Finally,inordertobridgethegapbetweenpureresearchandrealworldusageofthesystems,aconceptisrequiredtointegratesupercomputingintotherealworldofresearch,devel-opmentandproduction.

HLRShasinstalledaCrayXE6systemrecently.Thepeakperformanceisintherangeof1PF/sandweseesustainedperformanceintheorderof20-25%ofthepeakperformance[1].BeyondthepurehardwareHLRShasmadefurtherstepstogrowitsHPC-ecosystem.

InfrastructurePowersupplyandcoolingareoneofthemostpressingissuesthesedays.ThereforeHLRShasbuiltnewpowerandcoolingfacilities.Theyprovideadditional4MWofpowerwhichwillbringpowersupplyofHLRStoatotalof5MW.Atthesametimeitwillprovideaveryefficientwatercoolinginfra-structurerelyingfullyonfreecoolingupto18degreesCelsiusoutsidetemperature.AnaveragePUEof1,15isexpected.EnergyoftheCrayXE6willbeusedinthenewresearchbuildingofHLRScurrentlyunderconstruction.

Withanincreaseinnumberofresearchprojectsandfunding(seeFig.1)alsothenumberofscientistshasgrown(seeFig.2)overthelastyears.InordertomeettherequirementsofHLRS,theplanningforanewresearchbuildingwasstartedin2007andtheconstructionworkstartedinJune2011.ThebuildingisanextensionoftheexistingHLRSheadquarterandwillprovideadditional1,950m²ofof-ficespaceallowingHLRStobringallemployeestogetherinasingleenviron-ment.Furthermorethenewbuilding

Growing Science at HLRS – Beyond Bare Metal

Activities

4

Page 5: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•MichaelResch,

Universityof Stuttgart,HLRS

willintegrateafive-sidedVirtualRealityenvironment.Ontheonehandthiswillallowformorerealisticvisualizationofsimulationresults.OntheotherhandthenewCAVEwillhaveadirectphysi-callinktothesupercomputersallowingmoreinteractiveusagemodelssuchassimulationsteering.

ResearchOverthelastyearsHLRShasincreasedthescopeofitsresearchtremendously.FourmajorlevelsofresearchcanbeidentifiedwhicharemergedbyHLRSintoacoherentprogramofresearchforHighPerformanceComputing.

Statelevel:AtthestatelevelHLRShasagreedwiththeStateMinistryofScienceonamajorinitiativetodevelopscalablesoftwareforHighPerformanceComputing.Theinitiativewillmakeavailableupto30Mio.Euroforthepurchaseanddevelopmentofhighlyscalablesoftware.

Federallevel:SincethestartHLRSisparticipatingintheHighPerformanceComputingsoftwareinitiativeoftheGermanFederalMinistryofScience.HLRSisworkingonavarietyofapplicationdrivenresearchprojectsthataimattransformingflopsintosolutions.AtthesametimeHLRSistakingpartinaGermanClusterofExcellencefundedbytheGermanResearchSociety(DFG)called“SimTech”[2].SimTechhasafocusonbasicmethodsinsimulationtechnologyandistheonlysuchclusterofexcellenceinGermany.WithinSim-TechtheDirectorofHLRSProfessorMichaelReschservesasaprincipalinvestigatorforHPC.

Europeanlevel:AttheEuropeanlevelHLRShasalonghistoryofprojectresearchandcollaboration.Themost

recentHighPerformanceComputingprojectCRESTAisaimingatsupportingthedevelopmentofExascalesystemsinEurope.However,projectresearchatHLRSgoesbeyondExascale.ManyofourprojectsaimatmakingHPCmoreproductiveorbringingHPCclosertotheindustrialenvironmenttowhichHLRSisconnected.

Industriallevel:ThecollaborationofHLRSwithindustryismanifold.HLRShaslongcollaboratedwithMicrosoftindevelopingsoftwareforclustersystems.RecentlyHLRSstartedaCrayCenterofDevelopment.OverthenextfiveyearsresearchersfromCrayandfromHLRSwillworkonscalableapplicationsandontoolstoharvestthepotentialoffutureHPCsystems.

SummaryBeyondtheinstallationofhardwareanditsparticipationinorganizationalcollaborationslikeGCSandinfrastructureinitiativeslikePRACE[3]HLRSisheavilyinvolvedinresearch.OverthelastyearsandintheyearstocomeHLRSissubstantiallyimprovingitsinfrastructureandhasatthesametimesetupaframe-workforresearchthatintegratesvariousscopesandlevelsoffundingtodevelopbettersolutionsforitsshare-holders.

References[1] Resch,M. NewHLRSSystemHERMIT,inSiDE, Vol.9,No.1,Spring2011

[2] SimtechExcellenceCluster, www.simtech.uni-stuttgart.de

[3] PRACE,www.prace-ri.eu

Activities

5

Page 6: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

HighPerformanceComputingiswidelyclaimedtohaveanimportantimpactontheeconomyofacountry.HPCisconsideredtobeakeytechnologyinordertostaycompetitive(seeforex-ample[1]).However,alookatthefast-estsystemsintheworldsrevealsthatstill92%ofthetop100systemsarenotindustrialsystems.Thisdiscrepancyisstriking.OnewouldexpectindustrytouseHPCasmuchaspossibleinordertoimproveitscompetitiveness.InthisarticlewedescribethemodelsuccessfullydeployedatHLRSachievingHPCintegrationinthesimulationprocessesinindustryonlargescalecomputingfacilitiesalreadyformanyyears.Furthermore,wepresentnewapproachesofhowtoextendthereachofHPCbothintypeofcompany(SME)andintypeofusage.

RoadblocksSo,whataretheroadblocksforindustrialHPCmakingitobviouslysodifficulttouseHPCinindustry?First,therearecostissues.HPCisexpensive.Whenlookingatthetop100systemsintheworldwehavetoconsiderinvestmentcostsintherangeofEuro5Mio.,andadditionalfixedoperationalcostsinasimilarrangeoveranoperationalperiodof3years.Furthermoretheincreasedpowerdemandandcorre-spondingneedforaninfrastructurewithahighlevelofpowerefficiencyleadtosubstantiallyraisedinvestmentcostsfortheinfrastructure.Foratop100systemonewouldestimatethistobeintheorderofanotherEuro5to10Mio.atleastevery5years.AllinallHPCrequiresarelativelyhighleveloffinancialeffortpotentiallydeliveringbenefitinthelongtermbuttypicallyHPCdoes

notguaranteeimmediatereturnofinvestment.AdditionallycostsforHPCinvestmentarefixedcosts.Theycanhardlybereducedintimesofcrisis.

TheobviousalternativeisoutsourcingofHPC.However,publicHPCsystemsoperateinawell-definedenvironment-whichtypicallyisexactlytheoppositeofwhatindustryrequires.ThefocusofapublicHPCcenterisonopenness(wecansafelyignorethespecialcasesofclassifiedsystemsasthese-bynature-arenotavailabletoindustry).Theserviceprovidedisbesteffortastypicallytheservicesareprovidedforfreeorbasedonaresearchgrant.Forindustryopennessisnotaproblempersebutveryoftensimulationdataandsoftwarearesensitive.So,wayshavetobefoundtoguaranteedatasecurityandsafety.Besteffortwasacceptable10to15yearsagowhensimulationinindustrywasitselfaresearchactivityoranaccompanyingmeasureatbest.Today,assimulationisonetooltodevelopnewproducts,andexperimentsareoftenmademainlytosupportresultsofextensivesimulations,simulationisacorepartofwhatindustrycallsproduction.Andasmuchasindustryisworriedaboutstoppingphysicalproductionlines,italsostartstoworryaboutitsvirtualproductionlines-ascanbefoundinHPCsimulation.

PublicHPCforIndustryHPCattheUniversityofStuttgarthasalongtradition.Atleastsince25yearsthecomputingcenterhasoperatedsystemstogetherwithindustry.Com-moninvestmentsweremadealreadybackin1986.Hence,whentheHighPerformanceComputingCenterStuttgart(HLRS)wasfoundedin1996asthefirstGermannationalsupercomputingcenter,anindustrialstrategywasan

Industry inside

News

6

Page 7: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

importantpartoftheconcept.Inthelast15yearsthisconcepthasbeenextended.GeographicallythiswasachievedbysettingupverycloserelationswiththeKarlsruheInstituteofTechnology(KIT)anditsSteinbuchCenterforComputing(SCC).Organizationwisethisisamendedbycontinuouslyworkingwithourindustrialpartnersfurtherdevelopingthenecessarytoolsandorganizationalframeworks.NotonlyprovidingHPCcyclestoindustrybutbeyondthatshapingtheprocessesandmethodsrequiredforindustrialHPCadoption.In2011thisconcepthasbeenmovedtoanewlevelintroducingacoupleofdeepchangestotheexistingco-operationmodels.ChangesthatareextremelyimportantforHLRSbutthatcanalsoserveasamodelforageneralconceptofindustrialHPCusageworld-wide.

AnindustrialSolutionIndustrialuseofHPCsystemscomesindifferentflavorsthatrequiredifferentapproachestomeettheirindividualneeds.Thereisnoonesizefitsallapproachforthis.Inthefollowingwelookatthreekeyconceptsthathavedrawnsomeattentioninthelastyears:• Simulationproductioninindustry• Improvementofindustrialin-house methods• Pre-competitiveresearch.

SimulationProductionSimulationasdescribedaboveispartofevery-daydesignanddevelopmentprocessinmanycompaniesalready.Assuchsimulationispartofprocesschainsandhastobeintegratedintooverallprocesses.HPCneedstobemadeavailableonareliableandsecurebasis.Noeffortsforresearcharerequired.

HLRSsetupasolutionforthistogetherwithindustrialpartnersalreadyin1995.

TheHöchstleistungsrechnerfürWissen-schaftundWirtschaftBetriebsgesell-schaftmbH(hww)wasestablishedtogetherwithDaimlerandPorsche.OvertimeitsownershipchangedfromDaimlertoT-Systemswhichiscurrentlyholding40%ofhww.Porscheisstillholding10%.OvertimeHLRSinvitedfurtheruniversitiestojointheminhwwsuchthattoday50%ofthesharesofhwwareevenlysplitbetweentwouniversitiesandtheStateofBaden-Württemberg.

WithHPCbecomingmoreandmorepartoftheproductionprocesstheoperationalmodelofhwwhadtobechangedtoo.Overthelast3yearstheadvisoryboardofhwwhasworkedoutanewbusinessconcept.AccordingtothisHighPerformanceComputingisnowprovidedasacommodityviahww.hwwservesasaplatformandcanpro-videaccesstovariousHPCsystemsondemandinacloud-likeway.ThesuccessofmovingtosuchaserviceorientedapproachcaneasilybeseenfromtheusageofHPCsystemsatHLRS.Overthelastyearsusagehasincreasedfromroughly2millioncorehoursin2007toanewrecordofover20Mio.corehoursin2011.Currentusagenumbersanddiscussionswithindustryindicatethatthegrowthwillcontinueoverthecomingtwoyears.

Thesuccessofhwwisbasedonanumberoffactors:• Cleartechnicalconceptforoperationincludingsecuritymeasuresconformingtoindustrialstandardsandoperationalproceduresagreeduponbetweenindustryandpubicproviders.

• Clearfinancialconceptmakingsurethatbothpublicrequirementsandeconomicnecessitiesarecombinedtofindanoptimumeconomicsolution.

News

7

Page 8: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

• Clearlegalproceduresthatensurethatalllegalregulationsaremetandthattaxissuesareresolvedinsuchawayastoeliminatethependingrisksoftaxationforthepublicsector.

Eventhoughsharingpublicresourceswithindustryimposesnewrulesandadditionalworkonthepublicsideitalsocomeswithanumberofbenefits.• ClarificationoffinancialaspectsofHPC.AcomparisonofpublicHPCser-viceswithprivatecloudofferingsiseasilypossibleandcanbedoneanytime.• Increasedlevelofoperationalsecuritywhichisalsobeneficialforthepublicusers.• StabilizationoffinancialplanningasindustrialusagegivespoliticalbackingforHPCinvestment.

Improvingin-houseMethodsImprovementofin-housemethodsisoftendiscussedinthedebateaboutprivateuseofpublicHPCresources.TheargumentgoesthatindustryneedstohaveaccesstoHPCinordertobeableco-operatewithpublicresearchtoimproveitsprocesses.InGermanythereisalongtraditionforindustrial-universityco-operationthathascreatedaframeworkthatisuniqueworld-wide.Inthefieldsofengineering,chemistry,electronicsandmanyotherappliedsciencesresearchdepartmentsofuniversitiesandresearchorganizations

typicallyworktogetherwithindustryinresearchprojects.Veryoftensuchcollaborationshavebeenestablished50ormoreyearsagoandarehandedoverfromdirectortodirectorofaninstituteovertime.Aspartofsuchwell-establishedframeworkspublicandprivateresearcharewellconnected.Currentlyweestimatethataboutonethirdofallprojectsrunningonthesys-temsofHLRShavesomerelationwithapublicindustrialresearchproject.Theverypositivethingaboutsuchprojectsisthattheresultsachievedaremadepubliclyavailable.Onlyiftheresearchisdoneprivatelyandresultsarekeptconfidential,industryhastogothroughthehwwmodelasdescribedabove.

AnotheradvantageofthismodelisthatmanymasterthesesandPhDthesesaredoneincollaborationbetweenpublicresearchdepartmentsandindustry.Throughthisprocessalotofknow-howiscreatedonbothsidesthatbenefitsbothsides.Youngresearchersgetafirstlookintoindustrialprocessesduringtheirthesis.Industrygetstoworkwiththemostadvancedmethodsandcaneasilyrecruitwelltrainedstaffthroughsuchco-operations.

Pre-competitiveResearchWhenitcomestointernationalcompetitivenessanationalapproachisimportant.But,ontheotherhand,competitionisnotonlyaninternationalissuebutalsoanationalone.So,onehastofindawaytotargetgeneralre-searchtopicsbygettingthebestresearcherstofocustheirmindonthem.Thatmaydefinethecompetitivenessofanationaleconomyinthedecadestocome.Andatthesametimeonehastofindawaytokeepindustrialcompaniesclosetosuchresearchinordertoallowaneasyandquicktransitionofresearchresultsintotheindustrial

News

8

Page 9: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•MichaelResch,

Universityof Stuttgart,HLRS

simulationprocess.HLRSandSCChavedecidedtosetup“SolutionCenters”inordertomeetbothrequirements.Todaythefollowingareactive:• AutomotiveSimulationCenter Stuttgart(ASCS)• EnergySolutionCenterKarlsruhe (ENSOC).Bothcentersbringtogetherresearchersandindustry.BothcentershaveintegratedHWandSW-vendorstomakesurethatwhatevernewmethodsareworkedoutbyresearcherscanimmediatelybeintegratedintoexistingcommercialsoftwareandcanbeoptimizedforexistinghardwarefast.

BeyondlargeScaleIndustries–SME-to-HPCUsageofHPCrequiresahighlevelofexpertise.Furthermoreitcomeswithsomecosts.Finallythereisatrustissueconcerningindustrialdata.That’swhySMEstypicallyarenotatthefore-frontofpublicHPCusage.Forthemallthreeissuesareextremelydifficulttohandle.ExpertiseforHPCistypicallynotpartofthecorebusinessofsmallercompanies.TheavailablebudgetforHPCusageistightandevensmallinitialinvestmentsmaybeprohibitivelyhigh.Finally,knowledgeanddataareveryoftenthekeyandonlyassetsofasmallcompany.

HLRSandSCCarethereforespecificallytargetingSMEsintheStateofBaden-Württemberg.InBaden-Württembergalotofinnovationisdeliveredbythesesmallcompanies.Anysupportforthemmaycreateasubstantiallocalreturnofinvestment.SupportforSMEsreliesontrust.Hence,thefocushastobeonlocalinitiatives.Trustfurthermorerequiresalotofpersonalinvolvement.Especiallyatthebeginningitisimportanttohavepeopleathandthatlistenandprovidesolutionsifproblemsoccur.HLRSandSCCthereforedecidedtoset

upanewcompany.Followingtheacro-nymofhww(providingpurecloudlikeHPCcomputeservices)thenewcompanywasnamedHöchstleistungs-rechnerundVerteiltesRechnenVerbund(HVV).OneofthekeyactivitiesofHVVwillbetoidentifySMEsinBaden-WürttembergthatmaybenefitfromHPC,toeducatethemonthebenefitsofHPC,toproposeprojects,andtosupporttheminintegratingHPCintotheirownproductionschemes.HVVwillhavetoworkcloselywithHLRSandSCCtobesuccessful.However,weexpecttoseeatremendousimpactonHPCusageinSMEsoverthenext5yearsiftheconceptworksout.

ConclusionSupportforindustryinHPCisadifficulttaskforanypubliccenter.However,experienceshowsthatonecanbeverysuccessfulandcompetitivefocusingontherightissues.ThesewhereresolvedsuccessfullyintheStateofBaden-Württembergandthefindingscanbeusefulbeyond.Goingbeyondpurecycleprovisioningspeedofinnovationisaddressedbysolutioncenters.BasedonHVVweaddresstheSME-sphere.Bothactivitieswillrequiremoreeffortsinthecomingyearsandareexpectedtodeliverahighreturnofinvestmentforsocietyandeconomy.BothapproachesshouldbeextendedbeyondtheStateofBaden-Württemberg.

References[1] Joseph,EarlC.etal. AStrategicAgendaforEuropean LeadershipinSupercomputing:HPC2020- IDCFinalReportoftheHPCStudyforthe DGInformationSocietyoftheEuropean Commission,http://www.hpcuserforum. com/EU/downloads/SR03S10.15.2010.pdf,

lastaccessedAugust14,2011

News

9

Page 10: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

ViewoftheHLRSCrayXE6"HERMIT"

FirstGermanNationalCenterBasedonalongtraditioninsupercom-putingatUniversityofStuttgart,HLRS(HöchstleistungsrechenzentrumStuttgart)wasfoundedin1995asthefirstGermanfederalCentreforHighPerformanceComputing.HLRSservesresearchersatuniversitiesandresearchlaboratoriesinEuropeandGermanyandtheirexter-nalandindustrialpartnerswithhigh-endcomputingpowerforengineeringandscientificapplications.

ServiceforIndustryServiceprovisioningforindustryisdonetogetherwithT-Systems,T-Systemssfr,andPorscheinthepublic-privatejointventurehww(HöchstleistungsrechnerfürWissenschaftundWirtschaft).Throughthisco-operationindustryalwayshasaccestothemostrecentHPCtechnology.

BundlingCompetenciesInordertobundleserviceresourcesinthestateofBaden-WürttembergHLRS

hasteamedupwiththeSteinbuchCenterforComputingoftheKarlsruheInstituteofTechnology.Thiscollaborationhasbeenimplementedinthenon-profitorganizationHVV.

WorldClassResearchAsoneofthelargestresearchcentersforHPCHLRStakesaleadingroleinresearch.ParticipationintheGermannationalinitiativeofexcellencemakesHLRSanoutstandingplaceinthefield.

Contact:HöchstleistungsrechenzentrumStuttgart(HLRS)UniversitätStuttgart

Prof.Dr.-Ing.Dr.hc.Dr.h.c.MichaelM.ReschNobelstraße1970569StuttgartGermany

[email protected]/www.hlrs.de

Computing Systems@HLRS

Centres

10

Page 11: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

ViewoftheHLRSBW-GridIBMCluster(Photo:HLRS)

ComputeserverscurrentlyoperatedbyHLRS

AdetaileddescriptioncanbefoundonHLRS’swebpages:www.hlrs.de/systems

System Size

PeakPerformance

(TFlop/s) PurposeUserCommunity

CrayXE6"HERMIT"(Q42011)

3,552dualsocketnodeswith113,664AMDInterlagoscores

1,045 CapabilityComputing

EuropeanandGermanResearchOrganizationsandIndustry

NECHybridArchitecture

1216-waynodesSX-9with8TBytemainmemory+5,600IntelNehalemcores9TBmemoryand64NVIDIATeslaS1070

146 CapabilityComputing

GermanUniversities,ResearchInstitutesandIndustry,D-Grid

IBMBW-Grid 3,984IntelHarpertowncores8TBytememory

45.9 GridComputing

D-GridCommunity

CrayXT5m 896AMDShanghaicores1.8TBytememory

9 TechnicalComputing

BWUsersandIndustry

Centres

11

Page 12: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

HLRShasalongtraditioninsupportingusersonHPCsystems.IntegratedinoneoftheleadingGermantechnicaluniversities–theUniversityofStuttgart–HLRSdrawsontheexpertiseofapplicationexpertsinmechanicalengineering,physicsandchemistryaswellasontheknow-howofcomputerscientistsandmathematicians.ItisonlynaturalthatwithintheGaussCentreforSupercomputing(GCS)HLRStakesaleadingroleforengineeringapplicationsandindustrialusageofHPC.However,usageofHLRSsystemsgoesbeyond.Inthefollowingwepresentthehigh-

lightsofapplicationsofthelasttwoyears.ManyofthemwereawardedtheGoldenSpikeAwardofthesteeringcommitteeofHLRS.Thisawardisgiveneveryyeartoyoungscientistswhoshowoutstandingqualityofresearchworkforapplicationsonsupercomputers.

ThebiggestshareinusageofHLRSsystemsisforapplicationsusingCom-putationalFluidDynamics.Applicationsofthistechnologyrangefromflowsinmechanicalengineeringtooceancirculationtoastrophysicalapplications.InthisbookletyouwillfindanumberofexamplesfortheapplicationofCFDinturbulenceresearch.Turbulenceisoneofthebigchallengesinengineering.Turbulentflowsincreasetransportationcostandmakesystemslessmanageable.

Averygoodexamplefortheapplicationofturbulenceresearchistheinvestigationofturbulenceoverthewingofanaircraft.Thereductionofturbulenceresultsinareductionoffuelconsumptioninairtraffic.ResearchersoftheInstitutefor

User App licationsUser Applications

12

Page 13: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•MichaelResch,

Universityof Stuttgart,HLRS

Aero-andGasdynamicsoftheUniversityofStuttgartwereabletodevelopanewwingshapethatwillhelptoreducefuelcostsforairplanesbyabout15%.ThiswillresultnotonlyinareductionoffuelcostsforairlinesbutalsoinasubstantialreductionofCO²emissions.

Attheotherendofthespectrumwefindlargescalesimulationsofoceancirculationthatisessentialtobetterunderstandtheinteractionsbetweenoceanandatmosphereinclimateresearch.Suchlargescalesimulationsrelyheavilyonthelargememoryofsupercomputersandonthehighlevelofperformance.Largememoryisessentialtoadequatelyresolvethefeaturesofalargeregion.Highperfor-manceisrequiredtobeabletostudylongtermphenomenathatarecrucialfortheworldclimate.

Furtherapplicationspresentedheredealwithphenomenainphysics.Againwepresenttwosidesofthespectrum.Ontheoneendwefindthesimulationofatoms.Suchsimulationsareneces-

sarytobetterunderstandthebehaviorofmaterials.Withincreasingmemorysizeandperformancenextgenerationsystemsareabletosimulatelargernumbersofatomsandhenceincreaseourunderstandingofcomplexmaterialbehavior.Attheotherendofthespec-trumwefindastrophysicalsimulations.Theunderstandingoftheprocessesthatactintheuniversecanbeusefultobettergraspthegenesisoftheworldasweknowittoday.

TheexamplespresentedherewerechosenfromourjournalInSiDEwhichispublishedtwiceayear.TheyaimtoreflectthespectrumofapplicationsdevelopedandsimulationsconductedattheHLRS.However,theycanonlygivethereaderaglimpseintothewealthofapplicationsthataredevelopedinover80ofourusersprojectsallyearround.

User App licationsUser Applications

13

Page 14: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Improvingthefuelefficiencyofaircrafthasbecomeanimportanttaskwithinthelastdecades.Notonlydoairlinesbenefitfromsavingincreasinglyexpensivefuelbutalsotheenvironmentalaspecthasgainedgrowinginterestanditwillonlybeamatteroftimeuntilenviron-mentallawslimitinggreenhousegasemissionswillbeapproved.Currentcommercialsfornewlydesignedair-craftsshowthedemandformoreeffi-cientairplanes:“The787Dreamlinerisusing20%lessfuelthananyotherair-planeofitssize”(Boeing)or“TheA380providesthelowestfuelburnperseat–whichallowsairlinestosubstantiallyreduceCO2-emissionswhileachievingprofitable,sustainablegrowthforde-cadestocome”(Airbus).

Todate,realizedoptimizationsfornewairplanesarelimitedtoenhancedshaping,avoidingtooroughsurfaces,andengineimprovement,butlittlepotentialisthoughttobeleftinthese

fieldsexceptsurfacequalityonaerodynamicsurfaces.New

conceptshavethereforetobeenvisagedthatcon-

sidertheunderlyingfluiddynamics

phenomena

indetail.Inflighttestswithakindofshark-skinsurfacestrivingforturbulentboundary-layerdragreductionhaveshownimprovementsonlyintherangeofveryfewpercents.Laminarflowcon-trol(LFC)ontheotherhandprovidesatotaldragreductionpotentialofe.g.16%byrealizing40%laminarboundary-layerflowonwingsandcontrolsur-facesofacurrentairliner[5].There-foreitisthemostpromisingcandidateforexpedientdragreduction.

Maintaininglargeregionsoflaminarboundary-layerflowhasbeenprovenfordecadesnowintwo-dimensionalsituationsbyapplyingboundary-layersuctionwhichefficientlydelayslaminar-turbulenttransition.Atypicalairlinerwing,however,issweptback(cf.figure1)toallowforhighercruisespeedatacceptablepressuredrag.Theevolv-ingcrossflowcomponentinsidetheboundarylayercausesanew,dominantinstabilitymechanism,andastraight-forwardimplementationofthetwo-dimensionalsuctionsetupsisnotpossible.Forathree-dimensionalboundarylayeritturnsoutthat-typicallysteady-longitudinalcrossflowvorticesevolveduetothenewprimaryinstabil-ityoftheflow.Whilestillbeinglaminarthesevortices-ifgrowntolargeampli-tudes-arehighlyunstabletoubiquitousunsteadybackgrounddisturbances.Duetotheextremelylargegrowthratesofthisso-calledsecondaryinstability

Laminar Flow Control in Vortex-deformed Swept-Wing Flows: Pinpoint Suction

Golden Spike Award by the HLRS Steering Committee in 2010

Applications

14

Page 15: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Consideredintegrationdomainwithinviscidflowstreamline.

Figure2:Vortexvisualization(snapshots)intheboundary-layerflowonanaircraftwingofareferencecase(left)andacasewithpinpointsuction(right).Toscale.Thecolorschemeshowsthewall-normalcoordinate.Suc-tionholesaremarkedbyblackcirclesatthewall.Themainflowisfrombottomlefttoupperright,andthemaincrossflowfromrighttoleft.

laminar-turbulenttransitionsetsinrapidly,typicallyafteronlyfewpercentsoftheairfoilchordlength.Thecrossflowvorticesaregeneratedbyevenminutesurfacenon-uniformity.

Boundary-layersuctiondiminishesthecrossflowbysuckinghigh-momentumfluidtothewall,andthusalsoattenu-atescrossflowinstability.However,thetypicallyapplieddiscretesuction

Applications

15

Page 16: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure3:Vortexvisualization(snapshots)ofthreesetupstoillustratethepinpointsuctionconcept.Toscale.Red:refer-encecasewithoutsuction.Green:vorticesgeneratedbysuctionholeswithoutoncomingvortices.Blue:(non-linear)superposi-tion–appliedpinpointsuction.

holescan

generate,ontheother

hand,relativelylargeinitialcross-

flow-vortexdistur-bances,jeopardizing

theLFC.

Improvedsuctionconceptsforthiskindofthree-dimensional

wingflowshadthereforetobedeveloped.Messing&Kloker[4]

proposedanideacalleddistributedflowdeformation(DFD),inparticularformativesuction.Bydesigningasuit-ableslot-suctionpanelusefulvortices-withamuchcloserspanwisespacingthantheturbulence-triggeringones-arecontinuouslyexcitedandmain-tainedthatareknowntobestablewithrespecttosecondaryinstabilityandsuppressthenocentvortices.Laminar-turbulenttransitioncouldbedelayedsignificantly.

Anewideaofdirectlyinfluencinglarge-amplitudecrossflowvorticesandsecondaryinstabilitiescalledpinpointsuctioniscurrentlydeveloped[1,2,3].Thescenarioconsideredcontainstheharmful,secondarilyunstablecross-flowvorticesthatdevelopnaturally.Localized,strongsuctionthroughfewholesonlyattheupdraftsideofeachvortex,i.e.thelocallymostunstableregionwithhigh-shearlayers,directlyreducesthesecondarygrowthwhilealsoreducingthevortexstrength.

Iftheexactpositionofthevortexisknownthissuctionsetupturnsouttobeveryeffectiveandthetransi-tionlocationcanbeshiftedfardown-stream.Notethatthisisaninherentlynon-linearthree-dimensionalprocesscomparedtostandardsuctionwithitsmuchlowersuctionvelocity.

Figure2showstwosnapshotsofvorticalstructures.Ontheleftsideareferencecaseisshownwherethreesteadycrossflowvorticescanbeob-served.Apulse-likedisturbanceistrig-geredupstreamoftheshowndomainatextremelylowamplitudes,eventu-allyundergoingsecondaryinstability.Thesedisturbancesgrowrapidlyandsoonfinger-likesecondarystructurescanbedetectedthattriggerlaminar-turbulenttransition.Ontherightsidethedevelopmentofthesamevorti-ces(containingtheidenticalpulse)isshown,nowbeingsubjecttopin-pointsuction(cf.alsofigure3).Ninecloselyspacedholespervortexareplacedattheupdraftsideoftherespectivevortex(blackholesatthewall)andtransitionispreventedintheconsidereddomain.

Applications

16

Page 17: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•TillmannA.Friederich•MarkusJ.Kloker

InstitutfürAerodynamikundGasdynamik,UniversityofStuttgart

References[1] Bonfigli,G.,Kloker,M. Secondaryinstabilityofcrossflowvortices: validationofsecondaryinstabilitytheoryby DNS,2007,JournalofFluidMechanics, 583,pp.229-272

[2] Friederich,T.,Kloker,M. DirectNumericalSimulationofSwept-Wing LaminarFlowControlusingPinpoint Suction,in:HighPerformanceComputing inScienceandEngineering'10 (eds.Nagel,W.E.,Kröner,D.B.,Resch,M.M.), TransactionsoftheHLRS2010, pp.231-250,Springer

[3] Friederich,T.,Kloker,M. NumericalSimulationofCrossflow- TransitionControlusingPinpointSuction, 2011,in:NewResultsinNumericaland ExperimentalFluidMechanicsVIII(eds.n.n.), NNFM,reviewedcontributionstothe17. STAB/DGLR-Symposium,Nov.2010, 8pages,inpress,Springer

[4] Messing,R.,Kloker,M. Investigationofsuctionforlaminarflow controlofthree-dimensionalboundary layers,2010,JournalofFluidMechanics, 658,pp.117-147

[5] Schrauf,G. Statusandperspectivesoflaminarflow, 2005,TheAeronauticalJournal(RAeS), 109,no.1102,pp.639-644

Setupswithidenticalover-allsuctionbutthroughslitsor

homogeneouslypermeablewallemployingasmallermaximumsuctionvelocityonalargerareaturntobefarlesseffective.

Allresultswereob-tainedusingspatialdirectnumericalsimula-tionswith(incompressibleandalsocompressible)in-housecodesoftheIn-stitutfürAerodynamikundGasdynamikattheUniversity

ofStuttgart.Ourlargestset-upsofupto109gridpointsrequire0.4TBRAMonNECSX-8andSX-9vectorcomputersoperatingatover1.1TFlop/s.Scenarioswithmorecomplexdomains,e.g.containingsuc-

tionchannels,willrequirelargercomputationaldomainsandhencemorepowerfulsupercomputersinthefuture.

Applications

17

Page 18: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

IntroductionToday,helicoptertechnologystillposesseveralunsolvedproblemsinaero-dynamics.Theaccuratenumericalpredictionofcertainfluid-structureinteractionalflowphenomenaofflightdynamicrelevanceisoneexampleforsuchproblemareas.PrototypingofhelicopteraircraftisincrasinglydonebasedonComputationalFluidDynamics(CFD).Helicopteraeromechanicalstud-iescallforamorewholisticapproachinthesimulationofflowfieldsinthattheyrequiretheincorporationofelasticdeformationsofflexiblestructuressuchasthemainrotorbladesintothecom-putationaltoolchain.ThisresultsinaCFD-CSD(ComputationalStructural

Dynamics)coupledsimulation.Addi-tionally,aprocedurefortrimmingtherotortowardssomeprescribedflightdynamicstatehasprovenessential.Onlyinfulfillmentofthesepresuppositionscanreasonablecomparabilityofsimula-tionandexperimentbeguaranteed.

Moststate-of-the-artsimulationen-vironmentstodayuseaaso-calledstructuredgridapproach,i.e.thefluidvolumetobesimulatedissubdividedintocuboidalelementsforwhichtheequationsofmotionforthefluidcanbesolvedinannicelyorderedmanneralongthedirectionsofthree-dimensionalspace.Recently,CFDsolutionmethodsfollowingadifferentapproachtermed

Fluid-Structure coupled Flow Simulations of Helicopter Rotors

Golden Spike Award by the HLRS Steering Committee in 2010

Applications

18

Page 19: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Rotorwake/tailinterationsofthetailshakephenomenon

Figure2:Verticalforcesontherotordisk;left:unstructured,right:structuredsolver

unstructuredhavegainedpopularity.Here,theelementsforthediscretiza-tionofthevolumetobesimulatedcanbeofquitearbitraryshape,givingupthenicestructureofthesystemofequationsinreturnofincreasedgeo-metricalflexibility.

Asmentionedabove,quantitativenu-mericalinvestigationsofinteractionalphenomenaproblemsisoneoftheto

dateunsolvedissuesinhelicopteraero-dynamics.Anexamplewithinthisfieldistheso-calledtailshakephenomenon[1],whereinfastforwardflightconditionsinterationsofthemainrotorwakeandthetailboomandfinstructureexcitealateralbendingclosetothefrequen-ciescorrespondingtothelowerelasticmodesofthefuselagestructure.Figure1displaysthisscenario(figuretakenfrom[1]).Thisphenomenonexhibitsan

Applications

19

Page 20: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure3:Vortexsystem(greyshadesandcolorfulverticalplanes)oftheflowfieldinslowforwardflight.Colorsontherotorbladesshowthepressuredis-tribution(blue:low,red:highpressure)

undesirablerandomcharacterofunsteadynaturewhichcanbefeltbytheflightcrewaslateral“kicks”[1].Todate,CFDmethodsareincapableofpredictingandexplainingthecharacteroftailshakeevenbeforeearlyprototypeflighttestingandasaconsequencemanywell-knownhelicoptertypessuchastheEurocopterEC135[2]ortheBoeingAH-64D™LongbowApache™[3]showedthiseffectinearlyflighttesting.

SimulationTheCFDsimulationofsuchphenomenarequiresaverydetailedmodellingofthestructureoftheflowfieldandthushighgeometricaldetailespeciallyinthehubareaofthemainrotorisdesired.Here,theabovementionedconventionalstruc-turedgridapproachsuffersfromthedrawbackofexcessivemanualtimecon-sumptionandeventuallybecomesimpos-sible.Therefore,anewtoolchainbasedontheunstructuredgridapproachhasbeendeveloped.Firstresultsofthenewsimulationenvironmentarecomparedtothealreadyexitingstandardstructured-gridbasedtoolchain[4].Inbothcases,afluid-structurecouplingproceduretermedtheweakcouplingapproach[5]hasbeenemployed.Here,periodicdataisexchangedbetweenCFDandCSD.Inparalleltothis,analgorithmfortrimmingtherotorensuresthatspecifiedrotorforcesandmomentsaremet.Hereby,controlinputswhichareusuallysteeredbythepilotsuchasthecollectiveandcyclicpitchanglesareadaptedinordertoeventuallymeettheseloadsalsotermedtrimobjectives.

Inapresentstudy,helicopterrotorCFD-CSDcalculationswhereperformedmakinguseofthestandardstructuredaswellasthenewunstructuredapproach.Thebasisofthecurrentinvestigationwerewindtunnelexperimentsofa

generichelicopterconfigurationwhichwereperformedintheopentestsectionoftheGerman-Dutchwindtunnel(DNW).Thesimulationcontainedafour-bladedrotorinslowforwardflightconditions.

Figure2showsthecomparisonbetweenthetworespectivetoolchainsintheverticalforcesontherotordiscplanewheretheflightdirectionisdirectedfromrighttoleft.Bothapproachesyieldaverysimilardistributionofthe

forcesontheadvancing(0..180°)aswellasontheretreatingside(180..360°).CFDmethodsalsoallowforadetailedanalysisofthefluidvolume.InFigure3avortexvisualizationofthecomplete

Applications

20

Page 21: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•FelixBensing•ManuelKeßler

InstitutfürAerodynamikundGasdynamik,UniversityofStuttgart

flowfieldpasttherotorisdisplayed.Thevorticesshedatthetipandtheinnerrootsectionofthebladesaswellasthegreatrolled-upvorticestotheleftandrightoftheentirerotorpropagatingbackwardsareclearlyvisible.Therotorisrotatinginaclockwisesense,showingdistinctsuctionareasoflowpressureattheouterfrontpartsoftheblades(bluecolorontheblades).Twoverticalslicesthroughthevortexsystemindicatethevortexcorelocations(bluecolor).

rescalabilityofthecomputationalsetuptodifferentnumbersofcomputingunits,thenewunstructuredapproachallowsforeasyrepartitioningandcustomizationtoalmostarbitrarynumbersofcomputingprocesses.Additionally,thenewtoolchainshowedgreatpotentialinthescalabilitytoseveralhundredsofcomputingpro-cessesincomparablysmallsetups.Performanceofthecodeamountedto11GFlopswhichtranslatesintoanode-widepeakperformanceof12%makinguseoftheNECNehalem'sIntelXeonX5560processor.Thisflexibilitywillallowforthecomputationofextremelychallengingsimulationsinthefieldofhelicopteraerodynamicsbothintermsofproblemsizeaswellasgeometricalcomplexibilityintheadventoftheaccesstoevenlargercomputationalresources.

References[1] deWaard,P.G.,Trouvé,M. Tailshakevibration,1999,NLR-TP-99505, NLR,TheNetherlands

[2] Kampa,K.,Enenkl,B.,Polz,G.,Roth,G. AeromechanicAspectsintheDesignofthe EC135,1999,Proceedingsofthe23rd EuropeanRotorcraftForum,Dresden, Germany

[3] Hassan,A.A.,Thompson,T., Duque,E.P.N.,Melton,J. ResolutionofTailBuffetPhenomenonfor AH-64D™LongbowApache™,1997, Proceedingsofthe53rdAnnualForumof theAmericanHelicopterSociety,Virginia, USA

[4] Kroll,N.,Eisfeld,B.,Bleecke,H.M. FLOWer,in:NotesonNumericalFluid MechanicsViewegBraunschweig,1999, Vol.71,pp.58-68

[5] Altmikus,A.,Wagner,S.,Beaumier,P., Servera,G. AComparison:WeakversusStrong ModularCouplingforTrimmedAeroelastic RotorSimulations,AmericanHelicopter Society,58thAnnualForum,Montreal, Canada,2004

PerformanceThepresentcalculationswereperformedontheNECNehalemclusterattheHighPerformanceComputingCentre(HLRS)inStuttgart.Whilethestandardstruc-turedtoolchainposeslimitationsonthe

Applications

21

Page 22: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Aircraftdesignhasalwaysbeenastruggleforthemost“efficient”formormethod.Themostefficienthasbeendefinedeitherbyincreasedpeakper-formanceorinmorerecenttimesbyreducedoperationalcost.Inengineeringtermsreducedoperationalcostequalsreducedorconstantdragwithconstantorincreasedlift.Today'scommercialairlinerscommonlyencountersocalledflowseparationonthewingflapsduringlandingwhichledtotheemploymentofrathercomplexandheavyflapmechan-icswhichbecamenecessarytocom-pensateforthereducedlift.Thereforethesuppressionofsuchflowseparationconstitutesavitalsteptowardsmoreefficientwingandflapdesign.Thecauseforflowseparationarepositivepres-suregradientsalongthestreamlinewhichactasobstacletotheoncom-ingfluid.Inordertoenablethefluidtoovercomelargeradversepressuregradientsithastobeenergized(seeFig-ure1).Onemethodtodosoistomovehighenergyfluidoutoftheundisturbed

freestreamtowardsthesurface.ThenecessaryvorticalmotionisinducedbyalargelongitudinaleddycreatedwithsocalledVortexGenerators(VG).Alreadyinusearepassivevortexgenerators,i.e.smallsheetsattachedtothewingsurface.IndeedtheseVGsarewellabletogenerateaforementionededdiesbuttherearealsodisadvantagesduetothefactthatthepassiveVGsareoptimizedforaspecificpointofoperationandinduceparasiticdragatallotherflightattitudes.In1992experimentalworkbyJohnstonetal.[1]hasshownthegen-eralabilitytosuppressflowseparationusingso-calledJetVortexGenerators(JVG).ThemajoradvantageoversolidVGsstemsfromthefactthatJVGsareactivelycontrollableandthusdisposeofanyadditionaldragoutsideofthepointofoperation.ThesepromisingfindingsledtointensiveresearchinJVGsandcumulatedinexhaustiveexperimentalparameterstudiescoveringmanyas-pectssuchasvelocityratio,radiusandblowingangle.

Albeittheoutcomesoftheseexperi-mentsyieldaverygoodgeneralideaofthemechanismsofactiveflowcontroldevicestherearestillanumberofopenquestionsinvolvedasnodetailedpictureoftheformationofthevortexanditsinteractionwiththeboundarylayercouldbegainedfromexperimentsyet.Therefore,anydesignsugges-tionsrelyheavilyonempiricaldataandaredifficulttotransposetodifferentconfigurations.Duringindustrialde-signprocessesparameterstudiesarethusoftenundertakennumericallybyFigure1:SchemeofJetVortexActuator

Direct Numerical Simulation of Active Separation Control Devices

Golden Spike Award by the HLRS Steering Committee in 2009

Applications

22

Page 23: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Thecomputationaldomainconsistsofarectangularbox.Boundarycondi-tionsareappliedtodefineaninflow,outflow,freestreamandwallregion.Thefundamentaldifferentialequationsareconvertedintoapproximatedif-ferenceequationsusingfinitediffer-encesonastructuredgrid.Thefinitedifferencestencilsarechosentobeofcompactform,i.e.informationofbothflowvariableanditsderivativeistakenintoaccountresultinginanumericalschemeofspectral-likewaveresolutioninspace.Theevolutionintimeissimu-latedbyanexplicitRunge-Kuttatimeintegrationschemewhichmaintainstheaccuracyofthespatialresolution.Theresultinglinearsystemofequa-tionscanbesolvedveryefficientlyonvectorCPUsupercomputersliketheNECSX-9atHLRSStuttgartbecauseofthestronglystructuredform.Fur-thermorethedomaincanbesplitintoboxesofequaldimensionswhicharethenassignedtoonecomputational

Figure2:Instantaneousstreamwisevelocitycontoursandisosurfacesofvorticityvisualizedbyl2criterion(b=150°)

meansofReynoldsAveragedNavier-Stokes(RANS)methods.ThecruxofRANSliesinthefactthattheinvolvedmodelassumptionshavetobeadaptedtoeverynewconfigurationandinthefactthattheunderlyingequationsareinherentlysteadystateandthusdonotreallyallowforsimulationoftransientprocesses.WithinthiscontextthepresentedworkcoverssimulationsofagenericJVGconfigurationbymeansofhighlyaccurateDirectNumericalSimulation(DNS)methods.TheDNSapproachisusedforitslackofanymodelassumptions.Therefore,itiswellsuitedtoprovideareferencesolutionforcoarseror“moreapproxi-mate”numericalschemes.Further-more,DNSallowsforacomputationoftheunsteadyflowformationespe-ciallyinthebeginningofthevortexgenerationanddetailedanalysisofthefluiddynamicsinvolved.

Navier-Stokes3DThenumericalsolverNavier-Stokes3D(NS3D)hasbeendevelopedattheInstitutfürAero-undGasdynamik(IAG)atStuttgartUniversity[2].TheprogramisbasedonthecompleteNavier-Stokesequation,i.e.noturbu-lenceorsmallscalemodelsareused.

Applications

23

Page 24: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

processeach.Interprocesscom-municationisrealizedbyuseofMes-sagePassingInterface(MPI)routines.WithineachMPIprocessthedomainisfurthermoreparallelizedemployingNECMicrotaskingshared-memorypar-allelization.AllcomputationsdescribedherehavebeenrunononenodeoftheNECSX-9within12hrscomputingtime.

JetVortexGeneratorSimulationsNumericalsimulationshavebeendonefortwoJet-in-Crossflowconfigurationswhichdifferinthejetexit’sorienta-tiononly.Theconfigurationswerechosentocloselymatchexperimentsdescribedin[3]andarerepresenta-tiveforseparationcontroldevices.ThecrossflowrepresentsalaminarboundarylayeronaflatplatewithzeropressuregradientatfreestreamMachnumberofMa=0.25whichcorre-spondstolandingspeedforcommer-

cialairliners.Thejetisdescribedbyasteadyvelocitydistributionatthewallboundaryofthecomputationaldomainandresemblestheprofileofapipeflow.Thejet-to-crossflowvelocityratioissettoR=3.Thejetsareinclinedbyanangleofattacka=30°andskewedtothedownstreamdirectionbyanglesb=30°andb=150°respectively.Onecanimagineanobliquejettobeblowneitheragainsttheoncomingmainfloworinlinewithit.Altogether18.4mgridnodesareusedandcomputationshavebeencarriedoutfor31flowthroughtimes.Albeitthisdoesnotsufficetoprovidedataforstatisticalanalysis,ityieldsagoodpictureoftheevolutionoftheperturbedflowfield.Eventhoughboththejetandthelaminarboundarylayerareinitiallyinasteadystatetheresultingflowregimebecomeshighlyunsteadywiththejetexhibitingun-stablemodesleadingtotheformationoflargetransientvortexstructures

Figure3:Instantaneousdownstreamvelocitylocityandstreamlines(b=30°)

Applications

24

Page 25: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

reachingfaroutoftheboundarylayer(Figure2).Thejetaffectsthebound-arylayerbymainlytwomechanismsnamelytheblockageoftheoncomingfluidandthestrongshearatthejetslopes.Theblockageleadstoflowstructuressimilartothewakesfoundbehindsolidobstacles,i.e.periodiceddysheddingclosetothewallandasocalledhorseshoevortexwhichwrapsaroundthejet.Furthermoretheoncomingflowdeflectsthejetintothemainstreamwisedirectionwhichleadstoadditionalflowfeaturesuniquetojetsincrossflowsuchastheentrain-mentofnearwallfluidlayersupwardsintothejetwake.Boththeinducedperturbationsofthecrossflowbehindthejetexitaswellasthefluidentrain-mentevidentlydependonthejetpa-rameters.Theshearontheslopeofthejetontheotherhandinducesaro-tationalmotionwhichisprolongedandfortifiedbehindthejetexitandleads

totheformationofalargelongitudinaleddyabovethewall.Inordertogainaninsightinthefluiddynamicssnapshotsoftheflowfieldarerecordedandevaluated.Figures3and4depicttheflowatthelastrecordedtimestep.Incaseofaskewangleofb=30°twolon-gitudinalvorticesestablishintheflowandwraparoundeachotherduetotheinducedvelocitiesinthetransver-salplane.Thedevelopmentofahigh-speedstreakclosetothewalltakesplacewithaninclinationtothecenter-lineoftheflow.Thetwolongitudinalvorticesseemnotsubjecttoinstabili-tiesatthatpointintime.Theystretchratherwell-defineddownstreamandupwardsalongtheplate.Theoncom-ingfreestreamdeflectsthejetinbothspanwiseandwall-normaldirection.Thusastrongshearlayerdevelopsonthetopsideofthejet.Thesweepofthejetovertheboundarylayerresultsinthenear-wallfluidlayersbeingen-

Figure4:Instantaneousdownstreamvelocityandstreamlines(b=150°)

Applications

25

Page 26: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

trainedupwardsintothetrajectoryofthejet.Theentrainmentregiondoesnotextentveryfardownstreamthoughandtheexchangeofhigh-andlow-speedlayersinsidetheboundarylayerisnotverystrong.Adifferentflowcanbeobservedwhenthejetisblownagainstthemainflow.Firstlytheblock-ageisalotstrongerthanintheprevi-ouscase.Secondlythewakeexhibitsinstabilitieswhichleadtoamixingofthefluidlayersinalldirections.Againthejetwakegetsdeflectedbutaddi-tionallytheentrainmentregionextentsfurtherdownstreamandthewakerollsintoalongitudinalvortex.

BoundaryLayerControlAsalreadymentioned,Jet-in-Cross-flowconfigurationsareinvestigatedasameanstosuppressboundarylayerseparation.Thisistobeachievedbymovingfasterfluidlayersclosertothewallandtherewithincreasingthewallfriction.Figuredepictsacompari-sonofthetime-averagedwall-shear-stressdistributionforthesimulatedcases.Bothconfigurationsleadtoanetincreaseofwallshearstressinaconfinedstripebehindthejet.Thisareaoverlapsthetrajectoryofthejetonlymarginallythoughincaseofajetangleofb=30°.Theadditional

Figure5:Comparisonofmeanwallsheardistributioninactuatedflow(top:b=150°,bottom:b=30)

Applications

26

Page 27: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

• BjörnSelent• UlrichRist

Instituteof Aero-and Gasdynamics, University ofStuttgart

energyisfedtotheboundarylayerinanoverlystraightforwardfashionbyaddingmomentum.Inordertoexploitsuchamechanismwithreasonableinput-to-outputratioatangentialjetseemsmoreadvisable.Ontheotherhandwhenthejetisdirectedagainstthemainflowtheregionofincreasedshearextendspromisinglyinbothdownstreamandspanwisedirection.Thereasonbeingthedifferentfluiddy-namicsatwork.Firstlythejetactsasturbulatorwhichleadstofullervelocityprofilescomparedtotheunperturbedflowandfurthermorethejet-crossflowinteractionleadstotheformationofalongitudinalvortexwhichtransportsfastfluidlayersclosertothewall.Thereforethisconfigurationseemsfeasibleforactiveflowcontroldeviceseveninalreadyfullyturbulentshearflowsastheyarefoundonaircraftairfoilsandflaps.

ConclusionSimulationsoftwodifferentJet-in-CrossflowconfigurationshavebeencarriedoutinordertoinvestigatetheeffectonaboundarylayeratMa=0.25.Thejetshavebeenskewedandinclinedbyvaluestypicallyfoundinactive-flow-controldevicesetups.Thesimulationsgaveinsightintothegenerationofajet-vortexsystemandwakeperturbations.Incaseofajetalignedwiththemeanflowastableflowestablishedinwhichtheboundarylayerwasonlypoorlyenergizedbythejet.Askewofthejetagainstthemainflowledtothegenera-tionofalongitudinalvortexwhichinturnledtosignificantlyincreasedwallfriction.Followingsimulationsmayin-cludefurthervariationofthepitchandskewanglesofthejetaswellasveloc-ityratiovariation.Alsoofinterestisachangeofinitialconditionstowardsafullydevelopedturbulentboundarylayer.

AcknowledgementsWethanktheHighPerfomanceComputingCenterStuttgart(HLRS)forprovisionofsupercomputingtimeandtechnicalsupportwithintheproject“LAMTUR”.

References[1] Johnston,J.P.,Nishi,M.

“VortexGeneratorJets–aMeansforFlowSeparationControl”,AIAAJournal,28(6),pp.989–994,1990

[2] Babucke,A.,Kloker,M.,Rist,U.“DirectNumericalSimulationofaSerratedNozzleEndforJet-noiseReduction”,inM.Resch(Eds.),HighPerformanceComput-ing,inScienceandEngineering2007,Springer,2007

[3] Casper,M.,Kähler,C.J.,Radespiel,R.“FundamentalsofBoundaryLayeraControlwithVortexGeneratorJetArrays”,in4thFlowControlConference,numberAIAA,pp.2008-3995,2008

Applications

27

Page 28: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Hybridblock-unstructuredmeshforthespherecalculation

Thisarticledescribestwocalculationsperformedforthenumericalsimulationofascram-jetintakeatahighMachnumberofM=8ontheHLRBIIatLRZ.ThisprojectispartoftheDFGGradui-ertenkollegGRK1095/2,-conceptionofascram-jetdemonstrator-anditspartnersatTUMünchen,RWTHAachen,UniversitätStuttgartandtheDLR.Inordertopavethewayforthesimulationoftheverycomplexintakeflowfield,preparatorycalculationswereperformedtotestcertaincodefeaturesandtoprovideinsightintolargeparallelcomputations.Thesecalculationsaredescribedinthisarticle.

NumericalCodeSinceallpresentednumericalproblemscontainstronglytimedependentin-stationaryphenomena,weareusingaspecialunstructuredexplicitdiscontinu-ousGalerkincode,calledHALO(HighlyAdaptiveLocalOperator).Thiscodeisofhighorderofaccuracyinbothspaceandtimeandcanhandleunstructuredhybridgridswithhangingnodes,consistingoftetrahedra,hexahedra,prismsandpyramidsin3Dandevenpolygonsin2D.Itisalmostfullyparal-lelizedandrequiresonlyaminimumofinter-processorcommunicationduetoitsexplicitcharacter.Amainfeatureofthiscodeisitstimediscretizationmethod[1,2,3],thatallowsahighorder

High Order large Scale Calculations

Applications

28

Page 29: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure2:Instantaneousl2isosurfaceofthesphere

timeconsistentlocaltimesteppingmechanism,whereineachgrid-cellcanadvancewithitsownmaximumpossibletimestep.Variousequationsystemsareimplemented,suchasEulerorNavier-StokesequationsaswellasviscousMagnetohydrodynamic(MHD)equations.AllpresentedcalculationsemploytheNavier-Stokesequations.Tosuppressoscillationsatdiscontinuitiessuchasshocks,artificialviscosityisaddedtosmeartheshockprofileresultinginstablecomputations.

Scale-upEfficiencyTotestthescalingcapabilitiesoftheHALOcode,wesetupanexampleforwhichaperfectloadbalancewasachievable.Wewereusingtheso-calledmanufacturedsolutiontechniqueforthe3DcompressibleunsteadyNavier-Stokesequations:InsertingananalyticalfunctionintotheNavier-Stokesequa-tionsleadstoarighthandsidethatisprescribedasasourceterminthenumericalcode.

Theproblemwassetupwithperiodicboundariessothattheboundarycom-municationwillnotdifferfromtheinter-processorcommunications.Thesizeofthecomputationalproblemwasincreasedinparallelwiththenumberofprocessorsforcalculation.Thisway,wekeptaconstantloadincomputationaswellasincommunication.

Table1showsthegoodscale-upeffi-ciencyoftheHALOcodeforupto4,080processorswithaconstantloadperprocessor.

Nb.ofprocs 1 1,000 2,197 4,080

Efficiency(%) - 99.1 97.8 98.8

Table1:Scale-upefficiencyoftheHALOcode

TheefficiencywhencalculatingonNprocessorsiscalculatedasthecalculationtimeononeprocessordividedbythetimeneededforacalculationonNprocessors.

PerformedCalculationsInordertobeabletoperformalargecalculationofthescram-jetwithfea-tureslikehp-adaption,shockcapturingandVMS,preparatorycalculationsweresetuptotestcertainfeaturesandpre-parethecodeforefficientcomputationonalargenumberofprocessors.Thesecalculationstacklephysicalproblemsandwillbedescribednext.

3DFlowaroundaSphereThelaminartimeperiodicflowaroundaspherewassetuptotestthecodesabilitytohandleunstructuredhybridgridsandap-adaptionmechanisminthreespacedimensions.WeweresolvingtheunsteadycompressibleNavier-Stokesequationswithafree-streamMachnumberofMa=0.3andaReynoldsnumberofRe=300.Theproblemwasdiscretizedwithablock-

Applications

29

Page 30: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure3:Distributionofthelocalpolynomialdegreeatendtimeofthespherecalculation

unstructuredgridconsistingofprismsfortheboundarylayer,tetrahedraandhexahedraelsewhere.Figure1showsthedifferentgridblocksanddimensionsofthecomputationaldomain.P-adaptionwasarrangedsothateachgridcellwasallowedtoadaptitspolynomialdegreebetween1and5every500timesteps.

Todemonstratethecalculationresults,Figure2showsa3Dviewoftheinstan-taneousvortexmeasureλ2forthistestcase.Thecolorlevelsindicatetheveloc-itymagnitude.Here,onecaneasilyseethattheverylargecellsattheendofthewakecannotprovidethenecessaryresolutionandarethereforeproducinglargeintercelljumpsofthesolution.

Finally,Figure3showsthedistributionofthelocalpolynomialdegreepatendtimetend=1,000.

3DFreestreamInjectorThiscalculationtargetsshockcapturingandp-adaptioncapabilitiesofthescheme,aswesimulateaMa=1.4,Re=30,000injection.

Theinjectionnozzleisdesignedaccord-ingtospecificationsforgasinjectiondevicesusedintheautomotiveindustry.Thisproblemalsocontainscomplexcurvedgeometriesthatarechallengingforhighorderschemes.Theobjectiveofthiscalculationistheaeroacousticsimulationoftheinstationaryinjectionprocess,includingthestartupoftheprocess.Resultscanbevalidatedwithcalculationsperformedwithothercodes,bothatourinstituteaswellasinindustry.Preliminary2Dcalcula-tionsalreadyprovidedinsightintothenecessarygridresolutionsandshockcapturingstrategies.Inourcase,theproblemwascalculatedonagridwithover16millionDGdegreesoffreedom

Applications

30

Page 31: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure4:Densitydistributionandvelocitystreamlinesofthe3Dfreestreaminjector

•ChristophAltmann•GregorGassner•MarcStaudenmaier•Claus-DieterMunz

InstituteofAero-andGasdynamics,UniversityofStuttgart

(4millionofhexahedralelements)on500to1,000processors.Figure4showsa2Dsliceplaneofthecalculation(densitydistributionandvelocitystream-lines)togetherwithanisosurfaceplotofthedensitythathighlightsthedevelop-mentoftheflow.

Toillustratetheflowdevelopment,severalstreamlineshavebeenadded.Pleasenotethatthepicturepresentsanearlyphaseofsimulation.Thegeom-etryitselfisrathercomplex,consistingoffourkidney-shapedinjection“nozzles”withinthecylindricalinjectorandisas-sembledwithunstructuredhexahedra,allowinghangingnodesandpolygonsatconnectionsurfaces.

CodePerformanceTheHLRBIIprovidesaneasyjobperformancesummarydirectlyinthecommandline.Thistoolcanprovideafirstinsightintotheperformanceofthecalculationsandhelptodeterminethecomputationalefficiencyofthenumeri-calcode.Weherebydiscoveredstrongperformancedifferences,dependingonthetestcase.Especiallythescale-uptestsaswellasthespherecalcula-tionwhereabletoperformwithupto700MFlop/sperprocessor.Thelatterperformancewasdiscoveredforthe4,080processorscale-upcalculationresultinginatotalofabout3TFlop/s.Itwasfoundthatcertainsettingsofp-adaptivityandmeshstructuresdohaveasignificantinfluenceonthecodeperformance.

OutlookThepresentedcalculationsdidnotonlyshowthepotentialoftheHALOcodebutalsogaveaninsightintothephysicstheywereaddressingandhelpedtoimprovethecode.Thecodeshouldnowbereadytotargetthefullintakesimulation.

References[1] Lörcher,F.,Gassner,G.andMunz,C.-D. AdiscontinuousGalerkinschemebased onaspace-timeexpansion.I.Inviscid compressibleflowinonespacedimension. In:JournalofScientificComputing,Vol.23, No.2,pp.175-199,2007 DOI=http://dx.doi.org/10.1007/s10915- 007-9128-x

[2] Lörcher,F.,Gassner,G.andMunz,C.-D. AdiscontinuousGalerkinschemebasedon aspace-timeexpansion.II.Viscousflow equationsinmultidimensions.In:Journal ofScientificComputing,Vol.34, No.3,pp.260-268,2008 DOI=http://dx.doi.org/10.1007/s10915- 007-9169-1

[3] Lörcher,F.,Gassner,G.andMunz,C.-D. AContributiontotheConstructionof DiffusionFluxesforFiniteVolumeand DiscontinuousGalerkinSchemes.In: JournalofComputationalPhysics,Vol. 224,No.2,pp.1049-1063,2007 DOI=http://dx.doi.org/10.1016/ j.jcp.2006.11.004

Applications

31

Page 32: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Thehoneycomblatticewithitsunitcell,displayedbythedashedredline.Theunitcellcontainstwoatoms,eachonebelongingtoadifferentsublat-tice.Therefore,thehoneycomblatticehasabipartitestructure,wheretheatomsofagivensublatticearesurroundedbysitesoftheotherone.

Intherecentpastcondensedmattersystemsdisplayedanumberofexoticstateslikeunconventionalsupercon-ductivityinhigh-temperaturesupercon-ductors,supersolidityin4He,andspinliquidsinfrustratedmangnets,thatemergeduetocorrelationsinmany-bodysystems[1].Ofparticularinterestarespinliquids,wherequantumfluctu-ationsprecludeorderingfromtheliquidstatetoasolid,i.e.toaperiodicorder-ingofthemagneticmoments,evenatzeroabsolutetemperature.Generallyitisexpected,thatsuchstrongquantumfluctuationsariseduetocompetingin-teractionsthatfrustratetheformationofanorderedstate[1].

Asystemwherequantumfluctuationsmayplayadominantroleisgraphenethatwasrecentlyobtainedexperimen-tallybyexfoliationofgraphite[2].Bymeansofsuchamicromechanicalcleavage,singlelayersofcarbonatomswithahoneycombstructure,

schematicallydisplayedinFigure1,areproduced,that,remarkably,subsistasfree-standingtwo-dimensionalcrystals.Thehoneycomblatticeisabipartiteone,i.e.itconsistsoftwosublattices,wherethenearestneighboursofthesitesofoneofthemaresitesbelongingtotheothersublattice.Hence,insuchalatticegeometricfrustrationisabsent,sincee.g.antiferromagneticorderispossiblebyplacingmagneticmomentspointinginonedirectionononesublat-ticeandpointingintheoppositeoneontheothersublattice.However,duetothefactthatthehoneycomblatticehasthesmallestcoordinationnumberintwodimensions,theeffectofquan-tumfluctuationsisthestrongest.

Afurtherremarkablefeatureofthehoneycomblatticeappears,whenelec-tronsareplacedonit.Assumingforthemomentnon-interactingelectrons,thecorrespondingbandstructureisasshowninFigure2.There,itcanbeseeninthefirstplace,thattheelectron(particle)statesandthehole(antiparticle)statesaresymmetricallyplacedaroundthezeroofenergy,suchthatparticle-hole(chargeconjugation)symmetryispresent.ThezeroofenergycorrespondstotheFermienergywhentheaveragedensityofelectronsisunityperlatticesite,i.e.forahalf-filledband.Moreover,thelowenergystatesaroundparticularpointsinthetwo-dimensionalBrillouinzonedisplayarelativisticdis-persionandcanbereadilydescribedbyDirac’sequation[2].Wetherefore,willrefertothosepointsasDiracpointsinthefollowing.Therelativisticdispersioninthelowenergysectorathalf-fillingleadstoavanishingdensityofstates

Exotic State in Correlated Relativistic Electrons

Applications

32

Page 33: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure2:Energydispersionoftheelectronicstatesfornon-interactingelectronsonahoneycomblattice.Closetothezeroofenergythedispersioncorrespondstotheonecharacteristicofrelativisticfermions,asdisplayedbytheportionzoomedin.

attheFermienergy.Therefore,afinitestrengthforinteractionspromotingaspontaneoussymmetrybreakingisnecessary,enhancingthus,theroleoffluctuations.

Inordertostudytheeffectsofcorrela-tionsinelectronsonthehoneycomblat-ticeinitsmostbasicform,weconsidertheHubbardmodel,whereonlyanon-siteinteraction,termedU,ispresent.Suchamodelisaparadigmforstronglycorrelatedelectrons,asinthecaseofhightemperaturesuperconductors[3],andgivesanaccuratedescriptionofultra-coldfermionicatomsinopticallattices[4,5].ForlargevaluesoftherepulsiveinteractionU,andathalf-filling,theground-statecorrespondstoaMott-insulator,i.e.aninsulatingstateduetointeractionsincontrasttothemetallicstateofthenoninteractingsystem.Furthermore,inthislimitan-tiferromagneticcorrelationsdominateduetoPauli’sexclusionprincipleandthenecessityofgainingkineticenergy.Therefore,onabipartitelattice,theywillleadtoanantiferromagneticallyorderedground-state.However,asthe

interactionstrengthdiminishes,acompe-titionbetweenthetendencytoorderandquantumfluctuationswillsetin,sothatadetailedanalysisofcorrelationsisneededtocharacterizethepossiblephases.

Needlesstosay,anunbiasedstudyasdelineatedaboveisonlypossiblebynumericalmeans.Amongthedifferentmethods,QuantumMonteCarlo(QMC)simulationsarethemostappropriateonesinceacarefulextrapolationtothethermodynamiclimit,inthiscaseintwodimensions,ismandatorytodeterminewhetheraspontaneoussymmetrybreak-inghastakenplace.Weimplementedaprojective(temperature T=0)determi-nantalQMCalgorithminthecanonicalensemblethatisfreeofthesign-problemathalf-filling[6].Thisalgorithmallowsthecalculationoftheexpectationvalueofanyphysicalobservableintheground-statebyperforminganimaginarytimeevolutionofatrialwavefunctionthatisrequiredtobenonorthogonaltotheground-state.ThevalueΘreachedintheimaginarytimeevolutioncorre-spondstoaprojectionparameter[6].Foraspin-singlettrialwavefunction,

Applications

33

Page 34: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure3:PhasediagramfortheHubbardmodelonthehoneycomblatticeathalf-filling.Thesemimetal(SM)andtheantiferro-magneticMottinsulator(AFMI)areseparatedbyagappedspinliquid(SL)phaseinanintermediatecouplingregime.Δsp(K)denotesthesingle-particlegapatoneoftheDiracpoints(K),andΔsthespingap.msdenotesthestaggeredmagnetizationwhosesaturationvalueis1/2.

wefoundΘ=40/ttobesufficienttoobtainconvergedground-statequanti-tieswithinstatisticaluncertainty.Inthepresentedsimulations,weusedafiniteimaginarytimestepΔτ=0.05/t.Weverifiedbyextrapolating Δτ→0thatthisfiniteimaginarytimestepproducesnoartefacts.Thephasesdescribedinthefollowingweredeterminedbyafinite-sizeextrapolationtothethermo-dynamiclimitwithlatticesofN=2L2siteswithperiodicboundaryconditions,andlinearsizesLintermsoftheunitcellcontainingtwosites,withL≤18.Lwastakenasamultipleof3inordertobeabletoincludetheDiracpointsinourBrillouinzones,suchthatthelowenergyphysicsiscorrectlyrepre-sented.IntermsofasimulationofaclassicalIsingmodel,inourcasewithlong-rangeinteractions,thelargestsys-temssizescorrespondtoalatticewith518,400sites.

Afirstinsightinthepossiblephasesofthesystemisobtainedbyconsideringthesingle-particleexcitationgapΔsp(k)thatweextractedfromtheimaginary-timedisplacedGreenfunction(seeRef.[7]fordetails).Δsp(k)givesthemini-malenergynecessarytoextractonefermionfromthesystem,andcorre-spondstothegapthatcanbeobserved

inphotoemissionexperiments.AsshowninFigure3,Δsp(K)=0forU<Uc≈3.6t,wheretisthehoppingamplitudeintheHubbardmodel.Thevanishinggapcorrespondstoametal,thatiscommonlycalledasemimetal(SM)duetothefactthattheFermisurfaceisinthiscasereducedtoapoint.BeyondUc,thesystementersintoaninsulatingphaseduetointerac-tions,andhence,asexpectedforlargevaluesofU,thesystembecomesaMott-insulator.ThevaluesofthegapareobtainedviaanextrapolationoftheQMCdatatothethermodynamiclimitwithenergiesgiveninunitsoft[7].

Asexplainedabove,forvalueslarge

enoughofU,oneexpectslong-range

antiferromagentic(AF)correlations.We

thereforemeasuredtheAFspinstruc-

ture-factorSAFthatrevealslong-rangeAF

orderiflimN→∞ SAF/N>0.Theresultsof

afinite-sizeextrapolationarealsopre-

sentedinthephasediagramofFigure

3.AForderappearsbeyondU/t≈4.3.

Hence,contrarytotheusualexpectation

forabipartitelattice,AFlong-range

ordersetsinlaterthantheinsulating

phase,leavinganextendedwindow

3.6U/t4.3,withinwhichthe

systemisneitherasemimetal,noran

AFMott-insulator.

Applications

34

Page 35: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure4:SpingapinunitsoftasafunctionofU/tforvarioussys-temssizes.Thelowestcurvecorrespondstotheextrapolationtothether-modynamiclimit(TDL).

Furtherdetailsonthenatureofthisintermediateregionareobtainedbyexaminingthespinexcitationgap,ex-tractedfromthelong-timebehaviouroftheimaginary-timedisplacedspin-spincorrelationfunction[7].WeconsiderfirstthespingapΔsinthestaggeredsectoratk=0,whichvanishesinsidetheAFphaseduetotheemergenceoftwoGoldstonemodes,aswellasinthegaplessmetallicphase.Figure4showsfinitesizeestimatesofΔsfordifferentvaluesofU/t,alongwithanextrapolationtothethermodynamiclimit.AfinitevalueofΔspersistswithinanintermediateparameterregime3.5U/t4.3,whileitvanishesbothwithinthemetallicandtheAFphase.WealsocalculatedtheuniformspingapΔubyextrapolatingthespingapobservedatthesmallestfinitek-vectoroneachclustertothethermodynamiclimit.ΔuisfoundtobeevenlargerthanΔsinsidetheintermediateregion(e.g.Δu=0.101(8)atU/t=4),andvan-ishesinthemetallicandtheAFphase[7].

TheobservationofafinitespingaprulesoutgaplessphasessuchastripletsuperconductivityaswellasquantumspinHallstates.Theremain-ingpossibilitiescanbeenumeratedbyconsideringthecouplingtoorderpa-rametersthatleadtotheopeningofamassgapinDiracfermions,andhencetoaccountforthesingle-particlegapobservedintheQMCdata:(i)singletsuperconductivity,(ii)aquantumHallstate(QHS),(iii)chargedensitywave(CDW)order,and(iv)avalencebondcrystal(VBC).OurQMCresultsexcludeallthosestates,asdiscussedbelow.Thereby,theintermediatephaseisgen-uinelyanexoticstateofmattersinceitcannotbeunderstoodatthesingleparticlelevelwithinamean-fieldtheorywithalocalorder-parameter.

Furthermore,sincenospontaneoussymmetry-breakingisobserved,whileaspingapispresent,itcorrespondstoaspinliquidstate.

Inordertoassess,ifsuperconductivityarisesinthevicinityoftheMott-transition,weusedthemethodoffluxquantizationwhichprobesthesuper-fluiddensityandishenceindependentofthespecificsymmetryofthepairwavefunction[7].LetΦbeamagneticfluxtraversingthecentreofatorusonwhichtheelectronicsystemliesandE0(Φ/Φ0)thetotalgroundstateenergy, Φ0beingthefluxquantum.AsuperconductingstateofCooperpairsispresentifinthethermody-namiclimit,themacroscopicenergydifferenceE0(Φ/Φ0)−E0(Φ/Φ0 =1/2)isafunctionwithperiod1/2.Incontrast,ametallic(insulating)phaseischarac-terizedbyan(exponential)vanishingofE0(Φ/Φ0)−E0(Φ/Φ0=1/2)asafunctionofsystemsize.TheQMCdataisconsis-tentwiththevanishingofthisquantityinthethermodynamiclimit.Inaddition,wemeasuredsingletsuperconductingorderparametersof(extended)s-,p-,andf-wavesymmetry,whichturnouttoallvanishinthethermodynamiclimit[7].Hence,bothfluxquantizationaswell

Applications

35

Page 36: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure5:Realspaceplotofthespindimer-dimercorrelations.Rightside:thedimer-dimercorrelationfunc-tioninthespin-channelfora L =6systematU/t=4.Leftside:thesamecorrelationfortheisolatedHubbardhexagonalsoatU/t=4.Thereferencebondsaredressedwithstripes.Numbersinparenthesisindicatethestandarderrorofthelastdigit.

asadirectmeasurementofpairingcorrelationsinvarioussymmetrysectorsleadtonosignofsuperconductivity.

BoththeCDWandQHStriggerabreakingofthesub-latticesymmetryandtherebyopenamassgapatthemeanfieldlevel.Adetailedanalysisofthecharge-chargecorrelationfunctionsrulesoutaCDW.Furthermore,wehavefoundnosignatureforthepresenceof(spin)currentsintheground-state.ThisrulesoutthebreakingofsublatticeandtimereversalsymmetriesasrequiredfortheQHS[7].

ToexaminetheoccurrenceofaVBC,weprobefordimer-dimercorrelationsbetweenadimerformedbynearestneighboursites<ij>andadistantbondformedbysites<kl>[7].WehavefoundnoVBC,neitherinthecharge,norinthespinsector.TheleftsideofFigure4showstheresultsofthismeasurementinthespinsector,i.e.thecorrelationbetweensingletdimersat U/t=4.0.Thestripedbondistheonewithrespecttowhichcorrelationsweredetermined.Theyarefoundtobeshort-ranged,andconsistentwiththedominanceofaresonatingvalencebond(RVB)statewithinthehexagonsofthehoneycomblattice.Thiscanbeseenby

comparingthesinglet-correlationswiththoseofanisolatedhexagon(rightsideofFigure4),theclassicalexampleoftheresonancephenomenoninconju-gated-electrons[8].Accordingly,wefindnolong-rangedorderfromthedimer-dimerstructurefactorsinFourierspace.Ourresultsthusrevealagenuinelyexoticstateofmatter,wherenospontaneoussymmetry-breakingisobserved,whileaspingapispresent.ItcorrespondstoaspinliquidRVBstateintheintermediatecouplingregimeinthevicinityoftheMott-transition.

ThepresenceofaspinliquidintheHubbardmodelonthehoneycomblatticeclosetoanantiferromagneticMott-insulatorwashithertounex-pected,duetothebipartitenatureofthehoneycomblattice,andhence,theabsenceoffrustration.However,ourresultsindicatethatstrongenoughfluctuations,thatdevelopclosetothequantumcriticalpointwhereAFordersetsin,leadtosuchanexoticstateofmatter.Itcouldbeexpected,thatsuchfluctuationswouldpromotesomebrokensymmetrystateslikesuper-conductivity.However,thevanishingdensityofstatesattheFermienergymayberesponsibleforitsabsence,

Applications

36

Page 37: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•ZiYangMeng1

•ThomasC.Lang2

•StefanWessel1

•FakherF.Assaad2

•Alejandro Muramatsu1

1Institutfür Theoretische PhysikIII, Universität Stuttgart, Germany

2Institutfür Theoretische Physikund Astrophysik, Universität Würzburg, Germany

sinceinthiscase,afinitecouplingstrengthisneeded,atleastintheBCS-frame.

Havinganunexpectedrealizationofashort-rangeRVBstate,itwouldbehighlyinterestingtoexploretheconsequencesofdoping,inaspiritratherclosetotheoriginalscenarioproposedbyAnderson[3]andKivelsonet al.[9]forthecuprates.Inparticular,forthefullygappedshort-rangeRVBstate,thefinitespingapsetstheenergyscaleofpairinginthesuperconductingstate[9].Inthisrespect,thevalueobtainedforthespingapisratherpromizing.ThelargestvalueattainedisΔs∼0.025t(Fig.1),thatfortintherangeof1.5to2.5eV(ingrapheneist=2.8eV[2])correspondstoatemperaturescalerangingfrom400to700K.

AlthoughstudiesofdopingarebeyondthepowerofourquantumMonteCarloapproachduetothesignprob-lem,theycouldopeninterestingper-spectivese.g.infutureexperimentswithultra-coldatomsonahoneycombopticallattice,orwithhoneycomblatticesbasedongroupIVelementslikeexpandedgraphene(toenhancetheratioU/t)orSi,wherethenear-estneighbourdistanceisexpectedtobeapproximately50%largerthaningraphene[10],suchthatcorrelationseffectsareenhanced.

AcknowledgmentsWethankL.Balents,S.Capponi,A.H.CastroNeto,A.Georges,M.Hermele,A.L̈ auchli,E.Molinari,Y.Motome,S.Sachdev,K.P.SchmidtandS.Sorellafordiscussions.WearegratefultoS.A.Kivelsonforthoroughlyreadingourmanuscriptandprovidingimportantsuggestions.F.F.A.isgrateful

totheKITPSantaBarbaraforhospital-ityandacknowledgessupportbytheDFGthroughAS120/4andFG1162.A.M.thankstheAspenCenterforPhysicsforhospitalityandacknowledgespartialsupportbytheDFGthroughSFB/TRR21.S.W.acknowledgessup-portbytheDFGthroughSFB/TRR21andWE3649.WethankNICJülich,HLRSStuttgart,theBWGrid,andtheLRZMünchenfortheallocationofCPUtime.

References[1] NatureInsight ExoticMatter,Nature464,175, 2010

[2] Neto,A.H.C.,Guinea,F.,Peres, N.M.R.,Novoselov,K.S.andGeim,A.K. Rev.Mod.Phys.81,109,2009

[3] Anderson,P.W. Science235,1196,1987

[4] Jördens,R.,Strohmaier,N.,Günter,K., Moritz,H.andEsslinger,T. Nature455,204,2008

[5] Schneider,U.,Hackermüller,L.,Will,S., Best,T.,Bloch,I.,Costi,T.A.,Helmes,R.W., Rasch,D.andRosch,A. Science322,1520,2008

[6] Assaad,F.F.andEvertz,H.G. ComputationalMany-ParticlePhysics, LectureNotesinPhysics,p.739, Springer-Verlag,Berlin,2008

[7] Meng,Z.-Y.,Lang,T.,Wessel,S., Assaad,F.F.andMuramatsu,A. Nature464,847,2010

[8] Pauling,L.C. TheNatureoftheChemicalBondandthe StructureofMoleculesandCrystals:an IntroductiontoModernStructural Chemistry,CornellUniversityPress, 20thEdition,Ithaca,NewYork,USA, 1986

[9] Kivelson,S.A.,Rokhsar,D.S. andSethna,J.P. Phys.Rev.B35,8865,1987

[10]Cahangirov,S.,Topsakal,M.,Aktürk,E., Sahin,H.andCiraci,S. Phys.Rev.Lett.102,236804,2009

Applications

37

Page 38: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Surfacecirculation(snapshot)aroundSouthAfrica.TheAgulhasCur-rent(redband)flowsalongtheeastcoastofSouthAfrica,retroflectingbackintotheIndianOcean.DuringthisprocessAgulhasringsarecutoffanddriftintotheAtlanticOcean.

TheoceancurrentsaroundSouthAfricaareanimportantelementintheglobaloceancirculation.UnderpresentclimateconditionstheflowofwarmandsaltywatersfromtheIndianOceanintotheAtlanticOceanaroundthesoutherntipofAfrica,the“Agulhasleakage”,pro-videsthebulkoftheupperlimbofthethermohalinecirculationintheAtlanticOcean.PartsofthiswaterlaterfeedintotheGulfStreamsystemoftheNorthAtlanticthatisresponsibleforthemildclimaticconditionsinEurope.TheunderstandingofthedynamicalfactorsdeterminingtheintensityandvariabilityofAgulhasleakageisstillincomplete,andsoisitsbehaviourunderachangingclimate.

Incontrasttoitslarge-scaleimportancethecirculationintheAgulhasregionisadynamicalmixtureofdifferenttimeandspacescales(Fig.1):Astrongwesternboundarycurrent,theAgulhasCurrent,transportsthewarmandsaltywatersouthwardintheIndianOcean.SouthofAfricaitovershootsthecontinentalslopeandabruptlyturnsbackintotheIndianOcean,whilesheddingenormousmesoscaleringsofseveral100kilo-metresindiameterandextendingoverlargepartsofthewatercolumn.Theseringstransporttheheatandsaltaspul-satingelementsintotheAtlanticOcean.Thecirculationdynamicsintheregionalsoincludessmall-scaleupstreamperturbationsasanimportantelement.EddiesareformedintheMozambiqueChannelandeastofMadagascar;

thesedriftsouthwardstowardstheAgulhasCurrent,displacing

itupto200kmoffshore.Thecorrespondingmeanders

rapidlyprogressdown-streamandtriggerthesheddingofAgulhasringsandthereforeAgulhasleakage.

ToexaminetheroleofAgulhasleakageintheglobaloceaniccirculation,aninnova-

tiveoceanmodellingprogramhasbeenset

upthatadvancesnewmethodologiesdeveloped

ininternationalcooperationwithFrenchandSouthAfrican

colleagues,aspartoftheEuropeanmodelcollaborationDRAKKAR[1].

The Agulhas System as a Key Region of the global oceanic Circulation

Golden Spike Award by the HLRS Steering Committee in 2010

Applications

38

Page 39: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure2:SchematicsofAGRIFnesting.Time-step-pingofthebase(left)andnested(right)grids.Thegreenboxesandarrowsin-dicateaninterpolationfromthebasegridontotheouterboundariesofthenest,theredonesanaveragingoftheouterandsurfaceboundariesofthenestontothebasegrid;themeshindicatesanaveragingofthewholenestontoitsbasegridpointsintheAgulhasregion.Greyar-rowsandnumbersindicatethetimestepsofbase(Bn)andnest(Nn)andtheirre-spectiveupdates(Bn’,Nn’).

Themodelhierarchyisbasedonthe“NucleusforEuropeanModellingoftheOcean”(NEMO,v.2.3)[2],consistingofacoupledocean/sea-icemodel.Theoceancomponentisafinite-differencediscreti-zationofavariantoftheNavier-StokesEquations(the“primitiveequations”),steppingthree-dimensionalvelocities,temperaturesandsalinitiesforwardintime.Afreesurfaceformulation(e.g.byaconjugategradientsolver),ahigh-order

polynomialfitofthedensityequationandlotsofparameterizationsfordif-ferentoceanphysicsandsmall-scaleprocessesletthecompleteprogramappearwithawiderangeofdifferentnumericalmethods,thoughflexibleinitsuseduetothemodularformulation.ItiswritteninFORTRAN90andhasgeographicaldomaindecompositioninthehorizontalforMPIparallelization.Traditionallythegridspacelayoutand

Golden Spike Award by the HLRS Steering Committee in 2010

Applications

39

Page 40: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure3:Large-scaleimpactoftheAgulhasdynamics.Temperaturesandcurrentsat450mdepthinthehigh-resolutionnestanditsembeddingintheglobalmodel.AsimilarfigurewasthebasisfortheNaturecoverpageonNovember26,2009[8].

theuseoftheverticalaxisinformofvectorsleadtoagoodperformanceonvectorsystems(upto33%ofthepeakperformance).Withabout37×106gridpointsandahightemporal(5-daily)resolutionneededtheoutputofatypi-cal50-yearexperimentiswithmorethan5TBquitelarge.

TheAgulhasmodelisacombinationofacoarse-resolutionglobalbasemodelandahigh-resolutionnestaroundSouthAfrica(Fig.1).Withanominalgridsizeof1/2°thebaseconfigura-tion(ORCA05)successfullysimulatesthelarge-scalewind-drivenandther-mohalinecirculation[3].Itisforcedbyobservedatmosphericconditionsduringtheperiod1958-2004.However,forafullrepresentationoftheAgulhasdynamicsahighspatialresolutionwithgridscaleslessthan10kilometresareneeded;thisisachievedherebynest-inga1/10°gridintothebasemodelusingAGRIF(“AdaptiveGridRefinementInFortran”,[4]).

AGRIFrecombinesthesubroutinesinthemodelcodeviaapreprocessingstepandprovidesroutinesforinter-polationandaveragingbetweenthetwogrids(Fig.2).Itallowsbothmodelstointeractatanygivenbasemodeltimestepwhere(i)thebaseupdatestheboundariesofthenest,(ii)thenestupdatesthecoarsergridpointsofthebase.Duetothedifferentresolutionofphysicalprocessesthenestedmodelhastoperform4-5timestepsbeforethebasemodelissteppedforwardintime.Thiseffectiveandnovel“two-way”nestingapproachassuresthatthissystemnotonlysimulatesthecurrentsystemaroundSouthAfricawithgreatverisimilitude;italsoallowsunravellinghowtheexplicitlysimulatedmesoscalevariabilityintheAgulhasdynamicsfeedsbacktotheglobalocean.

Firstanalyzesaddressedtheimportanceofmesoscaleprocesses,notonlyintherepresentationofthecirculationaroundSouthAfrica[5],butalsointhenetvolumetransferbetweentheIndianandAtlanticOcean(theAgulhasleak-age)[6].Comparisonwiththecoarse-resolutionbasemodelaloneconfirmedthatAgulhasleakageissignificantlyoverestimatedatcoarseresolution,andthereforeincurrentIPCC-typecoupledclimatemodels.TheexplicitsimulationoftheupstreameddiesoriginatingfromtheMozambiqueChannelandeastofMadagascarthatdrifttowardstheAgulhasCurrentanddotriggerthesheddingofAgulhasRings,however,donotmakeasignifi-cantimpactonthevariabilityofAgulhasleakageontimescalesofafewyearsandlonger.

Applications

40

Page 41: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•ArneBiastoch

Leibniz-InstitutfürMeeres-wissenschaften(IFM-GEOMAR),Kiel

WhatistheeffectoftheAgulhasCurrentsystemonthelarge-scalecirculationintheAtlanticOcean?Comparingthecirculationinsolutionswithandwith-outthehigh-resolutionAgulhasnestallowedidentifyinganintriguingcon-tributionofthemesoscaleAgulhasdy-namicsondecadalcurrentfluctuationsreachingfarintotheNorthAtlantic[7].ThedynamicalsignaloriginatingsouthofAfricarapidlytravelsnorthwardbyboundarywaves.InthetropicalandsubtropicalNorthAtlantictheAgulhas-inducedvariabilityhassimilaramplitudesasthevariabilityintroducedbysubpolardeepwaterformationsevents,amecha-nismthathasbeenknownforitsclimaticimpactandthathasbeenextensivelystudiedinthepast.

InadditiontothedecadalfluctuationsbytheAgulhasmesoscaleanothercli-mate-relevantprocessemergesfromtheAgulhasdynamics.ObservationsreportontheprogressivepolewardmigrationoftheSouthernHemispherewesterlywindsduringthelasttwo-threedecadesandlinkedthosetoanthropogenicforcing.Becauseofthesparseobservationalrecordsithasnotbeenpossibletodeterminewhethertherehasbeenaconcomi-tantresponseofAgulhasleakage.ResultswiththenestedAgulhasmodelshowedthatthetransportofIndianOceanwatersintotheSouthAtlanticviatheAgulhasleakagehasincreasedduringthelastdecadesinre-sponsetothechangeinwindforcing[8].Theincreasedleakagehascon-tributedtotheobservedsalinificationofSouthAtlanticthermoclinewaters.BothmodelandhistoricmeasurementsofSouthAmericasuggestthattheadditionalIndianOceanwatershavebeguntoinvadetheNorthAtlantic,withpotentialimplicationsforastabili-zationofthethermohalinecirculation.

ThefindingshighlighttheimportanceforstudyingtheAgulhasregimeanditsassociatedinteroceanictransportasaprominentkeyregionoftheglobalthermohalinecirculation.

References[1] TheDRAKKARGroup Eddy-PermittingOceanCirculationHind- castsofPastDecades.ClivarExchanges 12,8-10,2007

[2] Madec,G. NEMO=theOPA9oceanengine.Technical report,NoteduPoledemodelisation, InstitutPierreSimonLaplace(IPSL), France,2008

[3] Biastoch,A.,Böning,C.W.,Getzlaff,J., Molines,J.-M.,Madec,G. Causesofinterannual-decadalvariability inthemeridionaloverturningcirculation ofthemid-latitudeNorthAtlanticOcean, J.Climate21,6599-6615,2008

[4] Debreu,L.,Vouland,C.,Blayo,E. AGRIF:AdaptivegridrefinementinFortran, ComputersandGeosciences34,8-13,2008

[5] Biastoch,A.,Beal,L.,Casal,T.G.D., Lutjeharms,J.R.E. VariabilityandcoherenceoftheAgulhas Undercurrentinahigh-resolutionocean generalcirculationmodel,J.Phys. Oceanogr.39,2417-2435,2009

[6] Biastoch,A.,Lutjeharms,J.R.E., Böning,C.W.,Scheinert,M. Mesoscaleperturbationscontrolinter- oceanexchangesouthofAfrica,Geophys. Res.Lett.35,L20602,2008

[7] Biastoch,A.,Böning,C.W., Lutjeharms,J.R.E. Agulhasleakagedynamicsaffectsdecadal variabilityinAtlanticoverturningcirculation, Nature456,489-492,2008

[8] Biastoch,A.,Böning,C.W., Lutjeharms,J.R.E.,Schwarzkopf,F.U. IncreaseinAgulhasleakageduetopole- wardshiftoftheSouthernHemisphere westerlies,Nature462,495-498,2009

Applications

41

Page 42: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

IntheAfricanSudanian(10°N-15°N)andSahelianclimatezones(15°N-18°N)convectivesystemsplayakeyroleinthewatercycle,becausetheycon-tributetoabout80%totheannualrainfall.Theconvectivesystemsarethunderstormcomplexeswithahori-zontalextentofseveralhundredsofkilometers.TheyarepartoftheWestAfricanmonsoon(WAM),whichalsoimpactsthedownstreamtropicalAtlanticbyprovidingtheseedlingdis-turbancesforthemajorityofAtlantictropicalcyclones[1].

TheWAMsystemischaracterizedbytheinteractionoftheAfricaneasterlyjet(AEJ),theAfricaneasterlywaves(AEWs),theSaharanairlayer(SAL),aswellasbythelow-levelmonsoonflow,theHarmattan,andthemeso-scaleconvectivesystems(MCSs).TheAEJcanbeobservedbetween10-12°Nandataheightofabout600hPaandhasatypicalwindspeedofabout12ms-1.TheAEJdevelopsasaresult

ofthereversedmeridionaltemperaturegradientduetotherelativelycoolandmoistmonsoonlayerandthehotanddry

SAL,whichislocatedabovethe

monsoonlayer.

TheAEWsaresynoptic-scaledistur-bancesthatpropagatewestwardsacrosstropicalWestAfricatowardtheeasternAtlanticandtheeasternPacific.TheAEWsarecharacterizedbypropagationspeedsof7-8ms-1,aperiodof2-5days,andawavelengthofabout2,500-4,000km.Importantparametersfortheinitiationofconvec-tionarethespatialdistributionandtemporaldevelopmentofwatervapourintheconvectiveboundarylayer(CBL).Besidesadvectiveprocesses,watervaporismadeavailableintheatmo-spherelocallythroughevapotranspi-rationfromsoilandvegetation.ManyresearchfindingsshowthatthesoilmoistureexertsgreaterinfluenceontheCBLthanvegetation.

InthescopeoftheAfricanMonsoonMultidisciplinaryAnalyses(AMMA)pro-jectweinvestigatethedevelopmentofMCSs,thesensitivityoftheirlifecycletodifferingsurfaceproperties,theroleoflarger-scaleweathersystems(AEWs,theSaharanHeatLow)intheirevolution,andthedevelopmentoftro-picalcyclonesoutofsuchsystems.Inaddition,westudytheinteractionoftheSALwithAfricanmonsoonweathersystems.

TosimulatetheweathersystemsoverWestAfricaweusetheCOSMO(COnsortiumforSmallscaleMOdelling,www.cosmo-model.org)model[2,3].COSMOisanoperationalweatherforecastmodelusedbyseveralEu-ropeanweatherservices,e.g.the

GermanWeatherService(DWD).Additionally,we

Modelling Convection over West Africa

Golden Spike Award by the HLRS Steering Committee in 2009

Applications

42

Page 43: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

useCOSMOcoupledwiththeaerosolandreactivetracegasesmodule(COSMO-ART)toinvestigatetheinteractionoftheSALwithWAMsystems.COSMO-ART[4,5]wasdevelopedinKarlsruheandcom-putestheemissionandthetransportofmineraldust.Weusedthecom-puterfacilitiesattheHPXC4000attheSteinbruchCentreforComputing(SCC)astheCOMSOmodelrequiressubstantialsupercomputerresources.Inthefollowing,wefocusontwodif-ferenttopics.OntheonehandthelifecycleofanMCSoverWestAfricaismodelledwithrespecttothesoilcondi-tions.OntheotherhandthefocusliesoncomparisonbetweenthesimulatedMCSsoverWestAfricaandovertheEasternAtlantic.

Thefirstpartofthisstudyinvesti-gatesthesensitivityofthelifecycleofanMCStosurfaceconditions[6].TheanalysisisbasedonsimulationsofarealMCSeventon11June2006whichoccurredinthepre-onsetphaseofmonsoonwhenvegetationcoverislowandtheimpactofsoilmoistureisassumedtobedominant.Differentconditionsforsoilmoisturewereap-pliedforinitializationofthesoilmodelTERRA-ML.TherunbasedontheCOSMOsoiltypedistributionandonoriginalECMWFfieldswasdenotedwithMOI.

However,comparisonwithAMSR-EsatellitedatashowedthattheMOIfieldcontainedtoomuchsoilmoistureintheuppersurfacelayer.Therefore,wereducedthevolumetricsoilmoisturecontentinalllayersby35%compared

totheinitialconditionsofMOI.Thisresultedinasimilarsoilmoisturecon-tentintheuppermostlevelofTERRA-ML,comparedtothesoilmoisturevaluesofabout12%derivedbytheAMSR-Esatelliteandin-situmeasurementsofabout18%fortheuppermost5cmtakenatDano(3°Wand11°N)[7]fortheregionaround11°N,wheretheMCSwasobserved.ThecorrespondingsimulationwasdesignatedasCTRLexperiment.Toeliminatetheeffectofspatialsoilmois-turevariabilityontheinitiationofcon-vection,anadditionalsimulationwithahomogeneous(HOM)distributionofsoilmoistureandsoiltexturewasperformed.InthiscasethevolumetricsoilmoisturewasspecifiedasameanvalueofthevolumetricsoilmoistureintheCTRLexperimentalong11°Nfrom4.5°Wto4.5°E.Toinvestigatetheeffectofdryregionsonconvec-tivesystems,wherethesoilmoisturestructureislesscomplexthanthecon-ditionspresentintheCTRLrun,adrybandof2degreelongitudinalextensionwasinsertedintothehomogeneoussoilmoisturefield.Inthisbandthevol-umetricsoilmoisturewasreducedby35%comparedtothehomogeneousenvironment.Thecorrespondingex-perimentwasdenotedasBAND.

Golden Spike Award by the HLRS Steering Committee in 2009

Applications

43

Page 44: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

IntheCTRLcasethreeseparatecellswereinitiatedinthesouth-easternpartofBurkinaFaso.Precipitationofupto6mmh-1wassimulatedat17UTC(Figure1a).Thesouth-westernmostcelldevelopedintheleeofanareawithorographicallyinducedupwardmotion.TriggeringofconvectionoftenoccursinthiswayinWestAfrica.Twofurthercellsdevelopedintheeast,at1.9°Eand11.9°Nandat2.2°Eand11.6°N.InFigure1atheprecipitationpatternoftheCTRLcaseat17UTCisoverlaidonthesoilmoisturedistributionintheuppermostlayerat15UTC.Thisfigureshowsthatallthreecellsdevelopedinthetransitionzonefromawettertodryersurface,whilethecentresoftheprecipitatingcellswerepositionedoverthedryersurface.IncomparisontotheCTRLcase,onlytwoprecipitatingcellshaddevelopedat17UTCintheHOMcase(Figure1b).

ThesetwocellswereobservedatroughlythesamelocationsasthemostintensivecellsintheCTRLcase.However,theprecipitationofbothcellswaslessintensethanthatoftheCTRLcaseatthesametime.IntheMOIcasethefavorableconditionswithhighcon-vectiveavailableenergy(CAPE)andlowconvectiveinhibition(CIN)valuesweremorelimitedinspacethanintheothercases.Inaddition,thesurfacetempera-tureintheregionofinterestintheMOIcasewasabout3°ClowerthanintheCTRLcase.Undertheseconditionsonlyoneweakprecipitatingcellhaddevelopedat17UTC.

Oncetriggered,theconvectivecellsdevelopedquicklyintheCTRLandHOMcaseandmovedwiththeAEJtowardsthewest.Abouttwohoursafteritsini-tiation,thecellshadalreadyorganizedintoanMCSintheCTRLrun.Inthe

Figure2:24-haccumulatedprecipitationinmm(colorshaded)startingfrom06UTCon11June2006(a),Hovmöllerdiagramofprecipitationinmmh-1(colorshaded)averagedbetween10.5°Nand13.5°NonJune11and12,2006(b),andCIN(c)inJkg-1(colorshaded)onJune11,2006at18UTCforBANDcase.Thesolidlinesenframetheareaofthedryband.Takenfrom[6].

Applications

44

Page 45: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

HOMcasethreeseparatecellscouldstillbedistinguishedat19UTC,whichwerelessintensethanintheCTRLcase.TheMOIrunshowedonlyweakconvectiveactivity.Theimpactofthedrybandwithavolumetricmoisturecontentof8.3%,surroundedbyaho-mogeneousmoisturecontentof12.7%onthemodificationofamatureMCSisshowninFigures2aand2b.Precipita-tionwassignificantlyreducedbetween0and2°W,i.e.shiftedbyaboutonedegreetotheeastofthedryband.Precipitationwasinterrupted,whentheMCSapproachedthedryband,butre-generatedwhenthesystemreachedthewesternpartoftheband(Figure2b).Convectionwasalsoiniti-atedinthewesternpartofthedryband(around3°W)atabout19UTC.Thecloudclusterwasaccompaniedbysignificantrainfallandmovedtothewest.At18UTCanareawithlower

CAPEvalueshaddevelopedwithinthedryband,whileCINincreasedtotheeastandwestofit(Figure2c).Eastoftheband(0.83°W,12.2°N)CINfur-therincreasedduringthesubsequenthours.Insidetheband(1.8°W,12.2°N)CINwassignificantlylower.ThelowerCAPEinsidethedrybandresultedmainlythroughlowernear-surfacehumidity.Eastofthedrybandalowernear-surfacetemperatureledtoahigherCIN,whichinhibitedtheconvec-tionoftheapproachingMCS.Thein-creaseofCINinsidethedrybandlaterthatnightyieldedfromthenocturnaldecreaseofnear-surfacetemperatureandthepassageoftheMCSinthesurrounding.

Thesimulationsshowedthatconvec-tionwasinitiatedinallmodelexperi-ments,regardlessoftheinitialsoilmoisturedistribution.Theareawhere

Figure1:Volumetricsoilmoisturein%at15UTCintheuppermostlayer(colorshaded)andprecipitationinmmh-1(isolines,interval2)onJune11,2006at17UTCforCTRL(a),HOM(b),andMOI(c)case.Takenfrom[6].

Applications

45

Page 46: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

convectionwasinitiatedinthesimula-tionscorrespondedroughlywiththeobservations.IntheCTRLcaseallthreecellswereinitiatedalongsoilmoistureinhomogeneitiesandshiftedtowardsthedrysurface.TriggeringofconvectionandoptimalevolutionwassimulatedinareaswithlowCIN,highCAPEandlowsoilmoisturecontent(<15%)orsoilmoistureinhomogene-ities.InCTRLandHOMthecellsde-velopedquicklyandmergedintoorga-nizedmesoscalesystemswhilemovingwestwards.TheMCSintheCTRLrunexperiencedasignificantmodification.Theprecipitationdisappearedwhen

theMCSreachedaregionwhichwascharacterizedbyhighCINvalues(>150Jkg-1),reducedtotalwatercon-tentandsoilmoistureinhomogeneities.

Inconclusion,triggeringofconvec-tiononthisdaywasfavouredbydriersurfacesand/orsoilmoistureinhomo-geneities,whileamaturesystemweak-enedinthevicinityofadriersurface.Thismeansthatapositivefeedbackbetweensoilmoistureandprecipitationexistedforamaturesystemwhereasanegativefeedbackwasfoundfortrig-geringofconvection.Thetwomecha-nismsareillustrativeforthecomplexity

Figure3:ComparisonbetweentheRapidDevelopingThunderstormProduct(RDT)(left)andCOSMOmodelruns(right)onSeptember10,2006at04UTC(upperrow)andonSeptember12,2006at8UTC(lowerrow).Left:ConvectiveobjectsaresuperimposedovertheMeteosatinfraredimagesusingshadingsofgreyupto-65°C,orange–redcolorsbetween-65°and-81°C,andblackabove-81°CintheRDTimages.CourtesyofMétéoFrance.Right:Theverticalintegralofcloudwater,cloudiceandhumidity(kgm-2),indicatingtheconvectiveupdraughtcores,fromthe2.8-kmCOSMOrunwhichwasinitializedonSeptember9,2006at12UTC.Takenfrom[10].

Applications

46

Page 47: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

ofsoil-precipitationfeedbacksinanareawherehighsensitivityofprecipita-tiononsoilmoisturewasproven.

Thesecondstudyinvestigatesconvec-tivesystemsoverWestAfricaandtheeasternAtlantic.TheconvectivesystemsareembeddedintheAEWoutofwhichahurricanedeveloped.IntheafternoonhoursonSeptember9,2006anMCSwasinitiatedoverlandaheadofthetroughofthisAEW.Theconvectivesystemincreasedquicklyinintensityandsizeanddevelopedthreewestwardmovingarc-shapedconvectivesystems(Figure3a,b).Thenear-surfacewindsdepictthemostlywesterlymonsooninflowandtheweakeasterlyinflowintothesystem.Asthesystemdecayed,newconvectiveburstsoccurredintheremainsoftheoldMCS.ThisleadtostructuralchangesoftheformofasqualllinecrossingtheWestAfricancoastlineataroundmidnightonSeptember11,2006.Duringthenext24hours,in-tenseconvectiveburstsoccurredovertheeasternAtlantic.Theseconvectiveburstswereembeddedinacycloniccir-culationwhichintensifiedandbecameatropicaldepressiononSeptember12,2006,12UTCoutofwhichHurricaneHelenedeveloped.Thelargestandlongestlivedconvectiveburstinthisintensificationperiod(Figure3c,d)wasanalyzedhereandcomparedtotheconvectivesystemoverland.Theconvectivesystemsmodifytheiren-vironmentandthesechangescanberelatedtothestructureofthesystemitself.

AseriesofCOSMOrunsoverlargemodeldomains(1000x500gridpoints)with2.8kmhorizontalresolutionwerecarriedoutsuchthatthemodelareawascentredaroundtheMCS.Asthe

systemmovedacrossWestAfricathepositionofthemodelregionwasad-justedforeachsubsequentrun.Thisenabledustoidentifystructuralfea-turesofconvectivesystemsoverWestAfricaandtheEasternAtlantic,andtoanalyzeanddiscusstheirdifferences.Alltherunsare72hinduration.Theparameterizationofconvectionisswitchedoff.Themodelsourcecodewasadaptedtoprovideinformationformoisture,temperatureandmomentumbudgets[8,9,10].

Themodelwasabletocapturetheabovedescribedconvectivesystemsaswellastheirstructureandintensitychangesverywell.WeidentifiedthreestagesinthelifecycleoftheMCSoverWestAfrica:thedeveloping,thema-ture,andthedecayingphase.Toana-lyzethestructureoftheseconvectivesystemsinmoredetail,aneast-westcrosssection(Figure4a)isdrawnthroughtheconvectivesystemshowninFigures3a,b.Duringthematurephase,low-levelconvergenceoccursbetweenastrongwesterlyinflowandaneasterlyinflowfrombehindthesys-temandispartlyenhancedduetothedescendingairfromtherearsystem.Theassociatedascentregionextendsuptoabout200hPaandistiltedeast-wardswithheight(Figure4a).Thecon-vergencecontinuesupto700hPa.Atthisstagestrongdowndraughtshavedevelopedaround7.5°Wjustbehindthelow-levelconvergencezonethatislocatedunderthetiltedupdraughtregion.Thearea

Applications

47

Page 48: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

ofthewesterlyinflowreachesdeepintothesystemuptoabout700hPaandtheAEJhasitsmaximumaround600hPa.Divergenceassociatedwiththeupper-leveloutflowcanbeseenataround200hPawithverystrongeasterlywindsaheadofthesystemandwesterlywindsintherear.Thus,thereisstrongmid-levelconvergenceeastofthetiltedupdraught.

Thecrosssectionthroughaconvec-tivesystemembeddedinthedevel-opingtropicaldepressionovertheeasternAtlanticisshowninFigure4b.AmajordifferencebetweentheMCSoverWestAfricaandtheconvectiveburststhatareembeddedinthecircu-lationovertheAtlanticistheirlifetime.TheMCSoverlandlastedforabout3daysandthesuccessionofMCSsovertheoceanonlyforabout6to24hours.Theregionofmaximumheat-ingandascentisverticalandnottiltedasintheconvectivesystemoverland.TheAEJseemstooccurataround700hPawestoftheconvectivesys-

tem.Thisisabout100hPalowerthanfortheMCSoverWestAfricawheretheairisacceleratedduetoairthatexitedtheupdraughtcoreatlowerlev-elsandslightlydescends.Itisalsoap-parentfromthecrosssectionthatthedowndraughtsarenotasstrongasfortheMCSoverland.Furthermore,thelow-levelconvergencecoversamuchbroaderregionthanoverthecontinent.

Toquantifythedifferencebetweentheconvectivesystemsoverlandandoverwaterandtoassesstheinflu-enceoftheconvectivesystemsontheenvironment,potentialtemperature,relativevorticity,andpotentialvorticitybudgetsforregionsencompassingtheconvectiveregionwerecalculated.De-tailsandtheresultsforthebudgetcal-culationscanbefoundin[10].Infuturestudiestheanalysiscouldbeappliedtoothercasesinordertogeneralisetheseresults.

Figure4:Crosssectionsthroughtheconvectivesystemoverland(a)andovertheocean(b).Theverticalvelocity(shaded)andzonalwind(contourintervalis3ms-1)areshown.Thecrosssection(a)isalong13.1°NonSeptember10,2006,05UTC,and(b)along12.8°NonSeptember12,2006,09UTC.Takenfrom[10].

Applications

48

Page 49: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

• Juliane Schwendike• Leonhard Gantner• NorbertKalthoff• SarahJones

Institutfür Meteorologieund Klimaforschung, Karlsruher Institutfür Technologie

AcknowledgmentThisprojectreceivedsupportfromtheAMMA-EUproject.BasedonaFrenchinitiative,AMMAwasbuiltbyaninter-nationalscientificgroupandfundedbyalargenumberofagencies,especiallyfromFrance,UK,USandAfrica.Ithasbeenthebeneficiaryofamajorfinan-cialcontributionfromtheEuropeanCommunity’sSixthFrameworkRe-searchProgram.

Detailedinformationonscientificcoor-dinationandfundingisavailableontheAMMAInternationalwebsite:http://www.amma-international.org

References[1] Avila,L.A.,Pasch,R.J.

“AtlanticTropicalSystemsof1993”,MonthlyWeatherReview,123:887-896,1995

[2] Steppeler,J.,Doms,G.,Schättler,U., Bitzer,H.W.,Gassmann,A., Damrath,U.,GregoricG.

“Meso-gammaScaleForecastsusingtheNonhydrostaticModelLM”,MeteorologyandAtmosphericPhysics,82:75–97,2003

[3] Schättler,U.,Doms,G.,Schraff,C.“ADescriptionoftheNonhydrostaticRegionalModelLM”,partVII:User’sguide,DeutscherWetterdienst,www.cosmo-model.org,2008

[4] Vogel,B.,Hoose,C.,Vogel,H., Kottmeier,C.

“AModelofDustTransportAplliedtotheDeadSeaArea”,MeteorologischeZeitschrift,15:DOI:10.1127/0941–2948/2006/0168,2006

[5] Vogel,B.,Vogel,H.,Bäumer,D., Bangert,M.,Lundgren,K.,Rinke,R., Stanelle,T.

“TheComprehensiveModelSystemCOSMO-ART–RadiativeImpactofAerosolontheStateoftheAtmosphereontheRegionalScale”,AtmosphericChemistryandPhysics,9:14483–14528,2009

[6] Gantner,L.,Kalthoff,N.“SensitivityofaModelledLifeCycleofaMesoscaleConvectiveSystemtoSoilConditionsoverWestAfrica”,QuarterlyJournaloftheRoyalMeteorologicalSociety,136(s1):471-482,2010

[7] Kohler,M.,Kalthoff,N.,Kottmeier,C.“TheImpactofSoilMoistureModificationsonCBLCharacteristicsinWestAfrica:ACase-StudyfromtheAMMACampaign”,QuarterlyJournaloftheRoyalMeteorologi-calSociety,136(s1):442-455-,2010

[8] Grams,C.M.“TheAtlanticInflow:Atmosphere-land-oceanInteractionattheSouthWesternEdgeoftheSaharanHeatLow”,Master’sthesis,InstitutfürMeteorologieundKlimaforschung,UniversitätKarlsruhe,Karlsruhe,Germany,March2008

[9] Grams,C.M.,Jones,S.C., Marsham,J.H.,Parker,D.J., Haywood,J.M.,Heuveline,V.

“TheAtlanticInflowtotheSaharanHeatLow:ObservationsandModelling”,Quar-terlyJournaloftheRoyalMeteorologicalSociety,136(s1):125-140,2010

[10]Schwendike,J.,Jones,S.C.“ConvectioninanAfricanEasterlyWaveoverWestAfricaandtheEasternAtlan-tic”:aModelCaseStudyofHelene(2006).QuarterlyJournaloftheRoyalMeteorolo-gicalSociety,136(s1):364-396,2010

Applications

49

Page 50: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Extragalacticjetsareamongstthemostspectacularphenomenainastrophysics:thesedilutebuthighlyenergeticbeamsofplasmaareformedintheenvironsofactiveblackholes,movingwithspeedsverynearthespeedoflight.Theyrunintothehotgassurroundingthegalaxy,wheretheyareeventuallydeceleratedandheatupthegasconsiderably,dig-ginglargecavities(theso-calledjetco-coon)intotheextragalacticgas.

Boththejetsandthecavitiesareob-servabletodaywithradioandX-raytelescopesonearthorinspace.Theseobservationshaverevealedthatthepowerofthesejetsisevengreaterthanwasthoughtbefore:morethanonetrilliontimesthetotalpowerofoursun(1039watts)forthemostpower-fulones–withactivitydurationsofsometenmillionyears.Thispowerultimatelyoriginatesfromtheactivesupermassiveblackholeofthegalaxy,sincethejettapstheenormousro-tationalenergyoftheblackhole.This

hugeamountofenergyclearlyhasaconsiderableimpactontheenergybudgetoftherespectivegalaxyanditsenvironment.Sinceextragalacticjetsaremostfrequentinthemostmas-sivegalaxies(observedinroughlyeverythirdamongthem),theyhavebecomeacommonexplanationforcosmo-logicalsimulationsfailingtoreproducegiantgalaxiescorrectly,despitetheirotherwisegreatsuccessinmodelingtheevolutionofouruniverseanditsgalaxies.Whileastronomicalobserva-tionsshowthatgiantellipticalgalaxiesconsistofoldandredstars,showingalmostnosignsofcurrentformationofnewstars,thesegalaxiesstillgrowincosmologicalsimulationsandthereforearemuchbluer,activelyformingstarsandhaveconsiderablygreatermasses.Thishascausedanincreasedinterestinjetphysicsandinresearchprojectsfocusingontheinteractionofjetswiththeirhostgalaxyanditsenvironment,nowreferredtoas“jetfeedback”.Yet,thedetailedprocessesinvolvedand

Figure1:Velocityfieldofajet(densitycontrast0.001)after30millionyears.Thejetbeam(inred)reachesouttothejetheadandthenturnsback,inflatingaturbulentcocoon(mostlygreen).

The Maturing of Giant Galaxies by Black Hole Activity

Golden Spike Award by the HLRS Steering Committee in 2009

Applications

50

Page 51: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

theexactimportanceofjetsisstillun-known.Thisbecomesobviousintwoopposingprocessesthatareinvokedinthecurrentliterature:positiveandnegativefeedback.

ThinkPositive–orNegative?Denseandverycoolcloudsofgasarethebirthplacesofstarssinceonlythencangravitysurmountthermalpressureandcausethecloudstocollapse,ulti-matelyformingnewstarsasnuclearfu-sionsetsin.Ifcloudsarehitbyajetoritsprecedingbowshock,theyarecom-pressedbytheimpactandcanbecomegravitationallyunstable.Thiswouldresultinanincreasedrateofstarformation(positivefeedback).Ontheotherhand,thesameimpactcouldaswelldisruptthecoldcloudsandtherebydestroytheseedsnecessaryfortheformationofnewstars(negativefeed-back).Additionally,thejetwouldheatupthehotgassurroundingthegalaxytohighertemperaturesandpreventitfromcoolingdown,gettingcompressedandformingnewcoldclouds.Bothpro-cesseshavebeendemonstratedtobepossible,andonlyadetailedstudywitharealisticunderlyingmodelcanhelpusrevealtheirrealimportance.

Observationsofdistantradiogalaxies,showingthemastheywere10billionyearsago,giveadditionalhintsontheinteractionbetweenthejetandthedisk.There,extendedemission-linenebulaealignedwiththejetaxisareobservedanditisconjecturedthatthesenebulaeareactuallycreatedbytheinteractionofthejetwithagalaxy'sgaseousdisk.

ComputationalChallengesWehaveconductedaseriesofmagne-tohydrodynamicjetsimulationstoex-aminetheinteractionofjetswiththeirenvironmentatveryhighresolution

assumingaxisymmetry.Thesecompu-tationsareextremelydemandingifre-alisticparametersareused:althoughthejetplasmamoveswithalmostthespeedoflight,itsdensityismuchlowerthantheambientdensityoftheextra-galacticgas(inoursimulationstypically1,000timessmaller),whichresultsinamuchslowerpropagationofthejet.Also,aconsiderablerangeofspatialscaleshastobecovered.Whilethejetsextendovermorethan100kpc(1kpc=3x1016km),thejetbeamsare100timesnarrowerandhavetoberesolvedindetail.Allthisresultsinsimulationswithmorethan6millioncellsandmorethanonemilliontimestepsnecessary.Theverylargenum-beroftimestepsmakessimulationstime-consumingbutdoesnotallowamassivelyparallelapproachsincethe“problemperprocessor”wouldbecometoosmallthenandcommunicationcostsbetweenprocessorswouldbe-comeunwieldy.Thesesimulationswere

Figure2:3Dsimulationshowingtheinteractionofajetandagalacticgaseousdisk(volumerenderingofdensity)

Applications

51

Page 52: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

thereforeonlypossibleonapowerfulsupercomputersuchastheNECSX-8attheHighPerformanceComputingCenterStuttgart(HLRS),towhichwehaveadjustedandoptimizedourcode.Duetoitsvectorcapabilitiesandsharedmemoryarchitecturepernode,thecoderanveryefficientlyandallowedustoreachrealisticsizesforthejets.

Wefoundthattheexpansionofthejetcocoonfollowsself-similarmodelsonlyatearlytimes,butdeviatesfromthatsignificantlyoncethecocoonap-proachespressurebalancewithitsenvironment.Wefoundthistobeconsistentwithobservationsandalsoachievedbowshockshapesandstrengthssuchasthoseobservedtypically.Magneticfieldsturnedouttobeimportanttostabilizethecontactsurfacebetweenthejetandtheambi-entmediumandweremoreoverfoundtobeefficientlyamplifiedbyashearingmechanisminthejethead.

TheMistofDistantGalaxiesWithrespecttotheriddleoftheemission-linenebulae,wewereabletotesttwomodelsforthelocationandkinematicsoftheline-emittingcloudsagainstobservedpropertiesandfoundthatcloudsembeddedinthejetcocoonwereabletomuchbetterreproduceobservedvelocitiesandmorphologiesthancloudsembeddedintheshockedambientgas.

About10percentofthetotaljetpowerwasmeasuredaskineticenergyinthejetcocoon,whichmadeitpossibletolinkthesefindingstosimulationsofmulti-phaseturbulencethatmodeltheamountsandemissionpowerofthecoolgasphaseembeddedinthesetur-bulentregions.Theexpectedemissionlineluminosities,however,disagreeconsiderablywiththeobservedrangeofluminositiesandweconcludedthatthemodelsarestilltoosimpletoin-cludeallthenecessaryphysics.Thiswas,admittedly,nottoosurprisingsincethemodelsreliedoncloudspas-sivelyadvectedwithandspreadallacrossthecocoonplasma,whiletheinteractionofrealcloudsofcoldgaswouldbeconsiderablymorecomplex.

Movingon–Simulationsin3DToimproveourmodelofthejet–cloudinteraction,wehadtoextendoursimu-lationstofullthreedimensionssinceaclumpygalacticorintergalacticgascannotbemodeledproperlywithinaxi-symmetry.Thisalsomadeitnecessarytomovetoanothercode:RAMSES,anadaptivemeshrefinementcode,thatin-cludescooling,gravity,starformation,cosmologicalevolutionandmagneticfields.Themeshrefinementishighlysuitableforresolvingsmallcloudsinanotherwiselargecomputationaldomain,

Figure3:Thegaseouscloudsinthedisk(green)arecompressed(blue)bytheactionofthejetandtheremaininggasispushedoutwards.

Applications

52

Page 53: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

• VolkerGaibler

Max-Planck- Institutfür extraterres- trischePhysik, Garching

incontrasttoauniformlyresolvedmesh.Thecurrentimplementationallowsamaximumdynamicrangeinlengthscaleof6ordersofmagnitude.ThecodeisparallelizedbyMPIandin-cludesdynamicload-balancingbetweenthedifferentMPIprocesses.The3Dsimulationsareclearlycomputationallyverydemanding,sinceanadditionaldimensionresultsinamuchlargernumberofcells,eveniftheresolutionissomewhatlower.Ontheotherhand,ahighernumberofcells(incontrasttotimesteps)generallycanbehandledbymassiveparallelizationifanefficientmethodisused.

OutlookWehavesuccessfullytestedRAMSESonboththeNehalemclusterattheHLRSandtheHLRB-IIattheLeibniz-Rechenzentrum(LRZ),andfoundittobescalingalmostlinearlywithupto4,000cores,ifsufficientbandwidthisavailable.OntheNehalemcluster,theperformancewas~50percentsmallerthanexpectedfromthesingle-coreperformancesincememorybandwidthbecomeabottleneckformorethan4corespernode;scalingthenincreasedalmostlinearlyforalargernumberofnodes.HLRB-II,however,didnotsufferfromthisandshowedexcellentscalingbehaviour.WeconjecturethatthememorybandwidthbottleneckontheNehalemclustermayberelatedtode-tailsoftheMPIimplementation,sinceMPIadjustmentsonalocalHarper-townBeowulfclusterwereabletogetaroundthislimitation.

Forasmalltestsimulation,wehavesuccessfullysetupaclumpygalacticgaseousdisk,similartodisksactuallyobservedindistantgalaxies.Ajetispositionedinthecenterofthegalaxyandinteractionofthejetwiththecold

gascloudsembeddedintheambientmediumiscomputedexplicitly.Prelimi-naryresultsindicatethatactuallybothpositivefeedbackbycompressionofcloudsinthecenteraswellasnega-tivefeedbackbyremovalofgasalongthejetaxismaybeactingatthesametime.Sofar,thesimulationshaveonlycoveredatimemuchshorterthanourprevioussimulations,butrunsonalargenumberofprocessorswillallowustoeventuallyexaminetheactionofjetfeedbackindetailandoverrealisti-callylongtimes.

References[1] Gaibler,V.,Krause,M.,Camenzind,M. “VeryLightMagnetizedJetsonLarge Scales–I.EvolutionandMagneticFields”, MonthlyNoticesoftheRoyalAstronomical Society,400,pp.1782-1802,2009

[2] Krause,M.,Gaibler,V. “PhysicsandFateofJetRelated EmissionLineRegions”,Conference contribution,atarXiv:0906.2122

[3] Gaibler,V.,Camenzind,M. “NumericalModelsforEmissionLine NebulaeinHighRedshiftRadioGalaxies”, WolfgangE.Nagel,DietmarB.Kröner, MichaelM.Resch(Eds.),Springer2010, HighPerformanceComputinginScience andEngineering‘09

[4] Gaibler,V. “VeryLightJetswithMagneticFields”, PhDThesis,Ruprecht-Karls-Universität Heidelberg,2008

Applications

53

Page 54: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Thevalueofleadingedgehighperfor-mancecomputingsystemscanonlyberevealediftheprogrammingenviron-mentforapplicationdevelopersallowstherealizationofefficientsimulationprograms.Usersofsuchapplicationsexpectareliableandrobustoperatingenvironmentwithagoodratiobetweenperformanceandenergycosts.

Thefastdevelopmentonthehardwaresectorandthecomplexityofthetasktoexploitmoreandmorecomputingcoresforsolvingincreasinglylargeproblemsorsolvethesameprobleminshortertimecannotbeaddressedwithcommodityoftheshelfproductsbutrequiresintensiveresearchactivitiesinclosecollaborationofapplicationdevel-opers,hardwarevendorsandsuper-computingcentressuchasHLRS.ConsequentlyHLRSisinvolvedinawiderangeofresearchactivitiesandhasestablishedclosevendorcollaborationssuchastheTeraflopWorkbenchandtheCrayExascaleResearchCentre.

StartingfromprojectsprovidingtheinfrastructuresuchasthePartnershipforAdvancedComputinginEurope(PRACE),VISIONAIRorHPC-Europa,moreshorttermorientedresearchprojectsaimtorealizeanefficientoperatingenvironment.AsexampletheprojectsGAMESandCoolEmAlldevelopindicators,methodsandsolutionsforrealizingenergyefficientdatacentres.Realizingreliableserviceprovisiondemandsforcontrolledprocessesandmanagedinfrastructures.TheplugITprojecthasbeenaddressingtheneedforalignmentofbusinessgoalsandtheITinfrastructurelayer.

Anotherimportantpartoftheresearchactivitiesisfocusedondevelopertools.HLRSisnotonlyinvolvedintheMPIstandardizationprocessandanactivedeveloperoftheOpenSourcereferenceimplementationOpenMPI,buthasdevelopedinnovativedebuggingtoolssuchasTemanejoforemergingnewtaskbasedprogrammingmodels.

Research ProjectsResearch Projects

54

Page 55: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•StefanWesner,

Universityof Stuttgart,HLRS

Themajorchallengeforthenexteighttotenyearsistofindsolutionsforexascalecomputingsystems.Thesignificantchangesonthehardwareleveldemandforradicallynewapproachesandanevenclosercollaborationwithapplicationdevelopers.HLRSisaleadingpartnerinCRESTA(CollaborativeResearchintoExascaleSystemware,ToolsandApplications),oneofthethreeexascaleprojectsattheEuropeanlevel.Inthislargescaleprojectallaspectsoftheproblemfromnewmathematicalmodelsandapproachesoverapplicationsandlibrariesdowntothehardwarelevelareinvesti-gated.AnotherexascaleprojectofHLRSisTEXT(TowardsEXascaleApplicaTions)validatinghowhybridcomputingapproachesmixingexistingandnewprogrammingmodelssupportincreasedscalability.

TheexamplesonthefollowingpageswerechosenfromourjournalinSiDEandcanonlypresentashallowimpressionoftheresultsachievedinmorethan40currentlyrunningresearchprojectswithmorethan60researchersatHLRSworkingontheseprojectsonstate,national,andEuropeanlevel.

Research ProjectsResearch Projects

55

Page 56: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:CoolEmAllConcept

ITinfrastructuresareresponsibleforatleast2%oftheglobalenergyconsump-tionmakingitequaltothedemandoftheaviationindustry.Furthermore,inmanycurrentdatacentrestheITequipmentusesonlyabouthalfofthetotalenergyforcomputing,whilstmostoftheremainingenergyisrequiredforcoolingandairmovement.ThisoftenresultsinpoorPowerUsageEffec-tiveness(PUE)valuesandsignificantCO2emissions.Forthisreasonissuesrelatedtocooling,heattransfer,andITinfrastructurelocationaregainingmoreattentionandarecarefullystudiedduringplanningandoperationofdatacentres.

Inthiscontext,theconstructionofdatacentresbyusingmodularbuildingblocksisgainingmoreandmoreattention,inparticularasapotentialantipoletospecializedfacilities.Thismodularapproachisbecomingincreasinglypopularduetoflexibilityofdesign,lowercostsandshorterbuildingtimes.Thismodularapproachcanrefertoavarietyofapproaches-oneofthemostpopulararedatacentreshousedinstandardshippingcontainers.Inaddition,thismodularapproachcanalsorefertopre-configuredunitswhicharejoinedtogethertobuild-uplargecomputingfacilities,withe.g.,hundredsofsquaremetersinsize.

CoolEmAll - Platform for Optimizing the Design, Operation and Cooling of modular configurable IT Infrastructures

Projects

56

Page 57: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

blocks,andenergyre-usedbyfacilitiesconnectedtoITinfrastructuresareallcrucialtounderstandandimprovetheenergyefficiencyofdatacentresasawhole.Tocarefullystudytheseissues,simulation,visualization,anddecisionsupportingtoolsareneeded,supportingtheoptimizationofthedesignandopera-tionofnewenergy-efficientmodularITinfrastructuresandfacilities.

ToaddresstheaforementionedITenergyefficiencyissues,themaingoalofCoolEmAllistoprovideadvancedsimu-lation,visualizationanddecisionsupporttoolsalongwithblueprintsofcomputingbuildingblocksformodulardatacentreenvironments.Oncedeveloped,thesetoolsandblueprintsaregoingtoallowtominimizetheenergyconsumption,andconsequentlytheCO2emissionsoftheentireITinfrastructure,takingintoaccountthecorrespondingfacilitiesaswell.Thiswillbeachievedby:

1.thedesignofdiversetypesofmodularcomputingbuildingblocks(ComputeBoxBlueprints),whicharegoingtobewelldefinedbyenergyefficiencymetrics

2.thedevelopmentofasimulation,visualizationanddecisionsupporttoolkit(SVDToolkit)thatwillenabletheanalysisandoptimizationofITinfrastructuresassembledwiththesebuildingblocks.

Therefore,thesemodularcomputingmodulesaswellasthetoolkitaregoingtotakeintoaccountthreeaspectsreflectingthemajorimpactonactualenergyconsumption,namelythecoolingmodel,theaccordingapplicationpro-pertiesandworkloads,aswellaswork-loadandresourcemanagementpolicies.

Tothisend,theenergyefficiencyofcom-putingbuildingblockswillbepreciselydefinedbyasetofnovelmetricsex-

However,whilespecialisedfacilitiesareestablishedincurrentenvironments,thereisasignificantneedtoanalysetheenergyefficiencyaspectsofsuchamodularapproachinordertoallowforacomparisonoftheseapproaches.Inparticular,adeepinsightintothetotalenergyconsumptionofboth,largedatacentresandsmallerfacilities,enforceadditionalresearchtodeterminehowefficientthisapproachis.Animportantaspectwhenconsideringtheenergyefficiencyofmodulardatacentresisthecoolingtechnique.Theuseofap-proachessuchas“freeaircooling”whereexternalairisusedtocoolsystemsratherthanelectricalchillerscanhelptoimproveefficiencyandachievePUEratingsclosetotheidealof1.0.

Thecoolingandheattransferprocessesarenottheonlyimportantaspectsinfluencingtheenergyefficiencyofdatacentres.ActualpowerusageandeffectivenessofenergysavingmethodsheavilydependsonthetypesofITapplicationsandworkloadproperties.However,totakefulladvantageofthesemethods,

(i) applicationpowerusageand performancemustbemonitored inafine-grainedmanner,and

(ii)parametersandmetricscharacter- isingboth,applicationsandresources, mustbepreciselydefined.

Consequently,thereisalargeamountofparametersimpactingtheenergyefficiencyofITinfrastructures.Alltheseparametersshouldbetakenintoaccountduringthedesignandconfigurationofdatacentres.Issuessuchastypesandparametersofapplications,workloadandresourcemanagementpolicybasedscheduling,hardwareconfiguration,metricsdefiningefficiencyofbuilding

Projects

57

Page 58: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure2:Airflowvisualisationinadatacentre

pressingrelationsbetweentheenergyefficiencyandessentialfactorslistedabove.Inadditiontocommonstaticapproaches,theCoolEmAllplatformwillenablestudiesofdynamicstatesofITinfrastructuresbasedonchangingwork-loads,managementpolicies,coolingmethod,andambienttemperature.ThemainconceptoftheprojectispresentedinFigure1.

Therefore,CoolEmAllisgoingtoaddressthefollowingtechnicalobjectives:

1. Thedevelopmentofasimulation,visualization,anddecisionsupporttool-kit(SVDToolkit),allowingforanalysinganddesigningmodularITinfrastructuresandfacilitieswithresource-efficientcooling.ThisplatformwillsupportITinfrastructuredesigners,decisionmakersandadministratorsintheprocessofplanningnewinfrastructuresorimprovingexistingones,likeexemplaryshowninFigure2.TheintendedmodularapproachtobuildandmodelITinfra-structuresandfacilitiesallowsformanyextensionpossibilitiesandhighlevelofcustomization.CoolEmAllwilldevelopa

flexiblesimulationplatformintegratingmodelsofapplications,workloadschedulingpolicies,hardwarecharacter-istics,coolingandairandthermalflowsusingComputationalFluidDynamics(CFD)simulationtools.Theflexibilityofthesemodels,basedonmodelparam-etersettings,willensureflexibilityoftheentireCoolEmAllSVDplatform,allowingcapturingrequiredmodelsettingsandsimulatethesemodelsforawiderangeofapplications,workloadschedulingpolicies,IT-Infrastructureandhardwarecharacteristics.AdvancedvisualizationtoolsanduserinterfaceswillallowuserstoeasilyanalysevariousoptionsandoptimizeenergyefficiencyofplannedITinfrastructuresandfacilities,asshowninFigure3.

2.Theprovisioningofblueprintsofcomputingmodulesandabasicproto-type.Thebasicversionofthismodulewillenabletestsandreal-lifeexperimentsprovidingrealisticbehaviouralinforma-tionforthesimulationmodels,allowingcapturingthermalandenergyefficiencybehaviouronnodeandracklevel,andwillalsoenabletheverificationofthese

Projects

58

Page 59: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure3:VisualisationWorkflow

virtualizationandHPCapplications.Theproposedpolicieswillbeappliedinsimulationstostudytheirimpactonenergy-efficiencyindiverseconfigura-tionsandinlargescale.

4.Theanalysisandparameterizationofapplicationsandworkloads.TheCoolEmAllsimulationsaswellaswork-loadmanagementtechniqueswilltakeintoaccountspecificworkloadandapplicationcharacteristics.Tothisend,CoolEmAllwillpreparebenchmarksandclassificationofapplicationsandwork-loads.Thisknowledgeaboutapplicationpropertieswillbeusedto(i)simulatetheirimpactonthermalissuesandenergyefficiencyand(ii)toproposethermalawaremanagementpolicies.

5.Thedefinitionofspecificenergyefficiencymetrics.Precisedefinitionsofmetricsexpressingtrade-offsbetweenenergyandperformancewillbedefined.Thesemetricswillgobeyondexistingones(e.g.thosedefinedintheCodeofConductonDataCentersEnergyEf-ficiency).Withthisrespect,CoolEmAllisgoingtotakeintoaccountmetrics

models.Thisprototypewillincludefine-grainedmonitoringcapabilities,allowingforadetailedinspectionoftheentireenvironment.Basedonthisevaluation,arefinedandoptimizedprototypewillbedesignedfordiversescenariosinclud-ingvarioushardwaredensities,coolingmethods,workloadsandrequirements(Figure4).

3. Thedefinitionandevaluationofthermal-andenergy-awareworkloadschedulingandresourcemanagementpolicies.Theproposedpolicieswillincludeintelligentworkloadschedulingandresourcemanage-ment(e.g.dynamicswitchingoffnodes,loweringfrequencyandvoltagetoavoidexcessiveheatgeneration).Thecor-respondingdecisionswillbebasedonfine-grainedhardwareandapplicationmonitoring.Theselectionandsetupofthecorrespondinghardwarewilldependonapplicationstypes,workloadrequire-ments,coolingmethod,andambienttemperatures.InordertoreflecttheevaluationoftheCoolEmAllapproachwithinarealisticenvironment,twomajortypesofworkloadwillbeconsidered:datacentrecloudworkloadsusing

Projects

59

Page 60: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure4:SVDArchitecture

definedbyotherprojectsaswell,extendthemorproposeadditionalmetricsexpressingclassesofefficiencyincludingrelationbetweenenergyefficiencyandapplicationcharacteristics,workloadproperties,ambienttemperatures,requiredheatre-useefficiency,etc.Inparticular,themetricsdefinedandevaluatedwithintheGAMESproject[1]aregoingtobetakenintoaccount.

6.Verificationofsimulationtoolsandtheirapplicationforspecificscenarios.Theverificationoftheproposedmethodsandsoftwarewillbeperformedbytestsinrealenvironmentsusingabasicprototypemodule,realapplications,aswellasenhancedmonitoringsystemsbasedonsensors.CoolEmAllwillalsoperformcoupledsimulationsforseveraldiversesettingsincludinglargescaleITinfrastructuressuchaswholedatacentres.Thesesimulationswillusecollectedtraces(e.g.fromtheEUproject–GAMESorpartners)toplan,designandoperatenewandexistingITinfrastruc-turesandfacilities.Inthisway,thefinalblueprintsofthecomputingmoduleswillbeevaluatedandoptimizedinspecificsettings.

SimulationandvisualizationtechnologiesareessentialpillarsoftheCoolEmAllconcept,asitallowstoleverageandexplorenewdatacentrearrangementsandsolutions.Therefore,theopensourceCFDpackagecalledOpenFoam[3]andtheCOVISEsoftware[4],developedbyHLRS,willbetheintegrationandenhancedtoprovideareal-timeCFDmodellingcapability.Theresultingpackageenablesintegrationofcollectedoperationaldataintoasimulationtoachieveoptimalenergy-efficientandthermal-awaredesignofdatacentresconsistingofmodularcomputingunits.ThefirstprototypesofthesemodularcomputingunitsaregoingtobedevelopedbasedontheexistingexperienceofChristmannwiththeirRECS(ResourceEfficientComputingSystem[2]).

TheuseofthesemodularcomputeunitsisentirelyinlinewithCoolEmAll’sresearchintoimpactofcoolingsolutionsontheenergyefficiencyofITinfra-structures–inparticularleveragingoutsideairventilationforcoolingwithoutartificialequipmentaswellasreusingwasteheatgeneratedbycomputation.Themodularcomputeunitsdeveloped

Projects

60

Page 61: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•AlexanderKipp•UweWössner Universityof Stuttgart,HLRS

schedulingofworkloads,takingadvantageofcoldermachinesorspecifichardwarebestsuitedforagivenjob,cansignifi-cantlyinfluencetheairflowinsideadatacentre,reducingoreveneliminatingtheneedforartificialcooling.TheimpactoftheworkloadmanagementbasedontheSVDToolkit-designeddatacentresemphasisestheCoolEmAll’sgoalofaholisticapproachtonextgenerationgreendatacentres.

HLRScontributestoCoolEmAllbyactingasthetechnicalmanagerofthisprojectaswellassimulationandvisualizationexpert.Inparticular,HLRSisgoingtocoordinatethedesignandrealizationoftheSVD-platformandcontributewithitsbroadexperienceinsystem-monitor-ingandmanagementexpertise.Finally,HLRSisgoingtocontributewithitsknowledgeinthedefinitionandanalysisofenergy-efficiencyrelatedmetrics.

Participants• InstytutChemiiBioorganicznej PAN,PL• HighPerformanceComputing CentreStuttgart(HLRS),D• UniversitePaulSabatier,F• ChristmannInformationstechnik+ MedienGmbH&Co.KG,D• The451GroupLTD,UK• InstitutdeRercercaenEnergiade Catalunya,E• AtosOrigin,E

References[1] http://www.green-datacenters.eu[2] http://shared.christmann.info/download/ project-recs.pdf[3] http://www.openfoam.com/[4] http://www.hlrs.de/organization/av/vis/ covise

aspartofCoolEmAllcanbeusedinasymbiosisdeploymentscenario,wherecomputingfacilitiesbenefitotherbuild-ingsthatsurroundthem,resultinginimprovedoverallenergy-efficiencyofanurbanarea.AnotherresultoftheCoolEmAllresearchandsimulationsofthemodularcomputeunitdesignanddeploymentscoulddirectlybenefitthefieldofhigh-densityserverracksbymodellingtheairflowaroundthemandhelpinfindingsolutionsforthecoolingproblemofdenseHPCdatacentres.Bothmodularhigh-densitydatacentresandsymbiosisdeploymentsdirectlybenefitfromtheSVDToolkit(simulation,visualizationanddecisionsupport),whichisoneofthemajoroutcomesoftheCoolEmAllproject.

Software,especiallyapplicationsplaysignificantrolesbothintermsoftheperformanceandenergy-efficiencyofcomputations.Therefore,theCoolEmAllprojectaimstoenhanceexistingandtodevelopandstandardizenovelfine-grainedenergyandthermal-awareap-plicationandhardwaremetrics.Thesewilltakeintoaccountboth,theenergybudgetandthermalairflowimpactsofanapplicationrunningonaparticularhardware.Duetothegranularityofthesemetrics,theexistingmonitoringplatformsareinsufficientduetoexces-sivebandwidthandprocessingpowerrequirements,thusCoolEmAllwilldevelopnewmonitoringsolutionstofacetheproblemfornextgenerationgreenITinfrastructure.

Giventhesemetricsandprovidedafine-grainedmonitoringofbothhard-wareandsoftware,CoolEmAllisgoingtoadvancethefieldofclusterschedul-ingwithnewworkloadmanagementalgorithmsandpoliciesleveragingappli-cationcharacteristicsandenergyandthermalmeasurements.Proper

Projects

61

Page 62: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

VISIONAIRisestablishingaEuropeaninfrastructureforhighlevelvisualizationfacilitiesthatisopentoresearchcom-munitiesacrossEuropeandaroundtheworld.Byintegratingexistingfacilitiestoapan-Europeannetwork,itwillcreateaworld-classresearchinfrastructureenablingtoconductcutting-edgeresearch.Currentscientificchallengessuchasclimateevolution,environ-mentalrisks,molecularbiology,health,andenergyrequirethemanagementofincreasinglycomplexandvoluminousinformation,thuscallingforthedevelop-mentofevermorepowerfulvisualizationmethodsandtools.OnmanysitesacrossEurope,itisinfeasibletofundthenecessaryvisualizationfacilitiesthatareneededtotacklehighfidelity,largescreenand/orimmersivevisualization.VISIONAIRistargetedtofillinthisgapbyprovidingaccessto

thepartnerfacilities,openingitsdoorsforinterestedre-searcherstousethemultitudeofser-vicesavailableacrosstheEuropeanvisu-alizationfacilities.Aftersubmittingasuccessfulresearchproposal,interna-tionalresearchers

areinvitedtovisitthepartnerfa-cilityoftheir

choiceorwhatfitsbesttothescien-tificgoalstheyhaveinmindtoconducttheirresearch.Theyarenotonlygivenaccesstothetopvisualizationfacili-tiesinEurope,butarealsosupportedintheirresearchbyfundingtheirlivingandtravelexpenses.Researcherscanchoosefromover20facilitieslocatedin12countriesinEuropeandIsrael.

Theprojecttargetsdifferentfieldsofvisualization.ScientificVisualizationoffersaccesstomethods,softwareandhardwareneededforsuccessfullyvisualisingscientificdata,including-butnotlimited-toengineering,medicalvisualization,biology,chemistryandphysics.Ultra-High-Definitionfacilitiesconnectedbyhighspeednetworksaretargetedatusersthatwanttocreatehighresolution,highqualityimages(upto8k)andaccessthosebyhighspeednetworks.VISIONAIRprovidesthehardwareandtheuniquenetworkdis-tributionservicesneededfortrans-missionoftheimagestotheirend-points.Thenetworkservicesenablemultiplehigh-resolutiondigital-mediastreamstobetransportedamongglobalsites,usingdynamicallyprovisionedopticallightpathsacrossmultipledomains,whichcanbeusedonascheduledoron-demandbasis.WhileScientificandUltra-High-DefinitionVisualizationcanbedoneinanyenvironments,researchersspecificallytargetingVRcanalsoapplyatamultitudeoffacilities.Here,thefocusisonimmer-sive-possiblyalsohaptic-experiencesinvirtualenvironments.Equipmentavailableforresearchersrangesfrom

headmounteddisplaystofullyfledgedstereoscopicPower-

WallsandCAVEs.Further

VISIONAIR

Projects

62

Page 63: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•UweWoessner Universityof Stuttgart,HLRS, Germany

specializedequipmentavailableallowstocarryoutresearchbyusingAug-mentedReality,atechniquethatallowstooverlaytherealenvironmentwithcontextdependentcomputergeneratedimages.Researchersalsohaveaccesstothelatestdevelopmentsindisplaytechnology,likeholographicdisplaysortheabovementioned8kdisplays.

Theprojectmaintainsanalreadyhugedatabaseofvisualizationsoftwareandmodelsthatisavailableforallresearch-ersforfree.Thus,expertscanexplorethemultitudeofvisualizationpackagesthatarealreadyavailable.Softwarecoveredhererangesfromprocessingfilters,convertersandreaderstofullyfledgedmodellersandvisualizationpackages.VISIONAIRisroundedupbyseveralresearchactivitiesconcerningtheusabilityandaccessibilityofthefacilitiesandtheirsoftwareforexternalresearcherswithastrongfocusoncollaboration.

VISIONAIRisacommoninfrastructurethatgrantsresearchersaccesstohighlevelvisualisationfacilitiesandresources.Bothphysicalaccessandvirtualserviceswillbeprovidedbytheinfrastructure.Fullaccesstovisualization-dedicatedsoftwareisorganized,whilephysicalaccesstohighlevelplatformsisaccessibletootherscientists,freeofcharge,basedonthequalityoftheprojectsubmitted.Indeed,researchersfromEuropeandaroundtheworldarewelcometocarryouttheirresearchprojectsusingthevisualizationfacilitiesprovidedbytheinfrastructure.BycreatingthisEuropeanvisualizationnetworkitwillbepossibletocreatealandmarkthatwillhaveabroadvisibilitythroughoutthere-searchcommunitiesaroundtheworld.

Withinthisproject,theHLRSisprovidingaccesstoitsCAVE,Power-Walls,headmounteddisplaysanditshapticdrivingsimulator.Visitorswillbeabletointeractivelyvisualizelargesimulationresultsorevenrealizecomputationalsteeringandinteractivesimulationsbyleveragingthepowerofa40nodesvisualizationcluster.ThevisualizationsoftwareCOVISEwillnotonlyallowvisitorstoanalysetheirdatainVirtualRealitybuttheycanalsooverlaytheirvisualizationoverphysicalprototypesortestbedsusingAugmentedRealitytechniques.Thecollaborativefeatureswillallowthemtoanalysethesimulationstogetherwiththeircolleaguesathomeorwithremotescientists.

Projectcallsareexpectedtoopenendof2011.Interestedresearchersareinvitedtosubmitaproposalat www.infra-visionair.eu

PartnersINPGGrenoble(F),GrenobleINP(F),UniversityofPatras(GR),CranfieldUniversity(UK),UniversiteitTwente(NL),UniversitätStuttgart(D),PSNCPosnan(PL),UniversitédelaMediterranéMarseille(F),CNRGenova(I),INRIARennes(F),KTHStockholm(S),TechnionHaifa(IL),RWTHAachen(D),PoznanUniversityofTechnology(PL),ENSAMAix-en-Provence(F),TUKaiserslautern(D),UniversityofSalford(UK),FraunhoferIPKBerlin(D),i2catBarcelona(ES),UniversityofEssexColchester(UK),MTASZTAKIBudapest(HU),ECNNantes(F),UniversityCollegeLondon(UK),PolitecnicodiMilano(I),EMIRACLEBrussels(B).

Projects

63

Page 64: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Forthepastthirtyyears,theneedforevergreatersupercomputerperformancehasdriventhedevelopmentofmanycomputingtechnologieswhichhavesubsequentlybeenexploitedinthemassmarket.Deliveringanexaflop(or10^18calculationspersecond)bytheendofthisdecadeisthechallengethatthesupercomputingcommunityworld-widehassetitself.TheCollaborativeResearchintoExascaleSystemware,ToolsandApplicationsproject(CRESTA)bringstogetherfourofEurope’sleadingsupercomputingcentres,withoneoftheworld’smajorequipmentvendors,twoofEurope’sleadingprogrammingtoolsprovidersandsixapplicationandproblemownerstoexplorehowtheexaflopchallengecanbemet.CRESTAfocusesontheuseofsixapplicationswithexascalepotentialandusesthemasco-designvehiclestodevelop:thedevelopmentenvironment,algorithmsandlibraries,usertools,andtheun-derpinningandcross-cuttingtechnolo-giesrequiredtosupporttheexecutionofapplicationsattheexascale.TheapplicationsrepresentedinCRESTAhavebeenchosenasarepresentativesamplefromacrossthesupercom-putingdomainincluding:biomolecularsystems,fusionenergy,thevirtualphysiologicalhuman,numericalweatherpredictionandengineering.

Nooneorganization,betheyahard-wareorsoftwarevendororserviceprovidercandeliverthenecessaryrangeoftechnologicalinnovations

requiredtoenablecomputingattheexascale.Thisisrecognizedthroughtheon-goingworkoftheInternationalExascaleSoftwareProject[1]and,inEurope,theEuropeanExascaleSoft-wareInitiative[2].CRESTAwillactivelyengagewithEuropeanandInternationalcollaborativeactivitiestoensurethatEuropeplaysitsfullroleworldwide.Overits36monthdurationtheprojectwilldeliverkey,exploitabletechnologiesthatwillallowtheco-designapplicationstosuccessfullyexecuteonmulti-petaflopsystemsinpreparationforthefirstexascalesystemstowardstheendofthisdecade.

OverallConceptandObjec-tivesoftheCRESTAProjectHPCsystemsexisttodeliverresultstotheirusersfromnumericalsimulationandmodellingapplications.AtthecentreofCRESTAarethereforesixapplicationsdesignedtoexecutewellonpetascalesystemstodayandthatwillbeexpectedtoexecutewellonexascalesystemstomorrow.

Co-designbyApplicationsEachoftheseapplicationshasbeencarefullychosen(a)asanapplicationthatcanbereasonablyexpectedtoneedtorunattheexascale(forrea-sonsofproblemsize,timetocomputeetc.)and(b)torepresentakeyusercommunitywithagrandchallengewhohavetheneedtocomputeattheexascaleinordertodelivertheirscientificorengineeringresults.

Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA)

Projects

64

Page 65: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Table1:CRESTA’sco-designapplications

Byunderstandingthecurrentstateofthelimitationsofthealgorithmsandproblemsizesforeachoftheseapplica-tions,CRESTAwillbeabletodevelopimprovedapplicationperformanceatthepetascaleonthencurrentsystems(perhaps100petaflop/sby2014)anddefineaclearroadmapforeachappli-cationtogetittotheexascalebytheendofthisdecademappedagainsttheexpectedhardwaredesignsweexpecttoseebytheendofthedecade.

SystemwareforExascaleHowever,applicationoptimizationandalgorithmicmodificationsonlyrepre-sentpartoftheexascalechallenge.

Systemsofthescaleenvisagedpresentenormouschallengesintermsofpowerrequirements,operatingsys-temissuessuchasresiliencyandprocessmanagement,communicationandprogramminglibraries,languages,compilers,debuggersandprofilers.Applicationsmustinteractwithmanyoftheseaspectsoftheexascalesys-temwarerequiredtocompile,link,run,debugandprofileapplicationcodes.

CRESTAwillthereforeusetheknow-ledgeavailablefromourtargetCrayplatform,withestimatesofwhatanexascalesystembuiltusingthesehardwaretechnologieswilllooklike

Application nameScientific grand

challenge domainPartner responsible

GROMACS Biomolecular systemsKUNGLIGA TEKNISKA HOEGSKOLAN (KTH)

ELMFIRE Fusion energyABO AKADEMI UNIVERSITY (ABO)

HemeLBVirtual Physiological Human

UNIVERSITY COLLEGE LONDON (UCL)

IFSNumerical Weather Prediction

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS (ECMWF)

OpenFOAM Engineering

THE UNIVERSITY OF EDINBURGH, UNIVERSITY OF STUTTGART (HLRS, IHS), CENTRALE RECHERCHE SA (CRSA)

Nek5000 EngineeringKUNGLIGA TEKNISKA HOEGSKOLAN (KTH)

Projects

65

Page 66: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Table2:Roleofapplicationsfordifferentresearchchallenges

fromasystemsperspective,andtherequirementsandformofeachofourapplicationscodes,tobuildandexploreappropriatesystemware.Inadditiontooperatingsystemfeatureswewilllookatcompilerandlibraryissues,howtodebugattheexascale(withAllinea’sDDTdebugger),howtooptimizeap-plicationperformanceattheexascale(withTUD’sVampirtool-suiteandKTH’sperfminer)andhowtomanagethepre-andpost-processingofdataresultingfromsimulations(anoftenneglectedareainsystemsdesign).ThebalanceoftechnicalworkinCRESTAwillbeapportioned40%onapplicationsand60%onsystemware.

Incrementalvs.disruptiveApproachesAkeyfeatureofCRESTAisitsuseofdualpathwaystoexascalesolutions.ManyproblemsinHPChardwareandsoftwarehavebeensolvedovertheyearsusinganincrementalapproach.

Mostoftoday’ssystemshavebeendevelopedincrementally,growinglargerandmorepowerfulwitheachproductrelease.However,weknowthatsomeissuesattheexascale,particularlyonthesoftwareside,willrequireacom-pletelynew,disruptiveapproach.Forexample,thecommunicationsoverheadofaparticularnumericalsolvermaygrowquicklywiththenumberofcores.Withmillioncoresystemsonthehorizon,theperformanceofsuchalgorithmsmaybesopoorthatallspeedupstops.Inthesecasesadifferentmethodofnumericalsolutionwillberequired.Thismaybehighlydisruptivetotheapplica-tioncodebutitwillsetitonthepathtoexecutingattheexascale.

CRESTAwillthereforeemployincre-mentalanddisruptiveapproachestotechnicalinnovation-sometimesfollowingbothpathsforaparticularproblemtocompareandcontrastthechallengesassociatedwitheachapproach.

GROMACS ELMFIRE HemeLB IFSOpen-FOAM

Nek5000

Underpinning and cross-cutting technologies

Significant Significant Significant Significant Significant Significant

Development environment

Significant Essential Essential Essential Significant Significant

Algorithms and libraries

Essential Useful Useful Essential Essential Essential

User tools (including pre and post processing)

Useful Significant Essential Useful Essential Useful

Application

ResearchChallenge

Projects

66

Page 67: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•MarkParsons1

•StefanWesner2

1 EPCC, TheUniversity ofEdinburgh

2Universityof Stuttgart,HLRS, Germany

TheCo-designProcessAttheheartoftheproposalistheco-designprocess,involvingguidanceandfeedbackbetweentheco-designappli-cationsandthesystemwareworkpack-ages.Ahighlevelroadmaptoachievingexascaleforeachco-designvehiclewillbedevelopedaswillamoredetailedneedsanalysistoguidedevelopmentworkinthesystemwareWPs.Theyinturnwillinputexpertiseandprovidesolutionstothechallenges.Thiswillbeacyclicalprocess,theneedsanalysiswillbedynamicandupdatedregularlybasedonexperiencesofallthedevelop-ersacrossWPs.

Thesolutionstothechallengeswillbedifferentforeachapplicationandtheirintegrationwithdifferentworkpack-ageswilldependonthese.Foreachapplicationwehavecharacterizedtheirinteractionwitheachworkpackageonathree-pointscale.TasksareeitherEssential,SignificantorUsefulbasedonhowcriticalthedevelopmentistoenablingtheapplicationforexascale.

CollaborationandExploitationNooneorganization,betheyahard-wareorsoftwarevendororserviceprovidercandeliverthenecessaryrangeoftechnologicalinnovationsrequiredtoenablecomputingattheexascale.Thisisrecognizedthroughtheon-goingworkoftheInternationalExascaleSoftwareProjectand,inEurope,theEuropeanExascaleSoft-wareInitiative.Atthesametime,thePRACEResearchInfrastructure(PRACE-RI)[3]givesEurope,forthefirsttime,aleadership-classHPCresearchinfrastructureaccessiblebyanysuitablyqualifiedEuropeanscien-tistwithasuitableproblemtosolve.

Withinthisdecade,thePRACE-RIwillprovideexascalecomputingresourcesforEurope’sscientists.AsfouroftheleadingpartnersinthevariousPRACEprojects,thesupercomputingcentresrepresentedinCRESTAwillensureex-ploitationoftheresultsoftheCRESTAprojectbythePRACE-RI.

CRESTAwillcollaboratewithEESI[4]andanysubsequentprojecttoensurethatEurope’sexascaleresearchcom-munityhasanaturalmeetingplacetosharediscoveriesanddemonstrateleadershipontheworld-stage.TheCRESTApartnerswhoareinvolvedinIESPwillcontinuethisactivityandseek,whereappropriatetocollaborateontheInternationalstageasevidencedbythelettersofsupportincludedwiththisproposal.

AllnewsoftwaredevelopedbyCRESTAwillbemadeavailableasOpenSourceSoftware.

References[1] TheInternationalExascaleSoftware Project,http://www.exascale.org/ [LastaccessedAugust23,2011][2] TheEuropeanExascaleSoftwareInitiative, http://www.eesi-project.eu/ [LastaccessedAugust23,2011][3] PRACERI,http://www.prace-ri.eu/[4] EuropeanExascaleSoftwareInitiative, http://www.eesi-project.eu/

Projects

67

Page 68: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

IntroductionSupercomputersnowadaysconsistofhundredsofthousandsofprocessingunits.ForexampleHLRSwillinstalla1PFlopsCrayXE6withdual-socket16-coreAMDInterlagosnodesinover3,500nodes,i.e.112,000cores.Theparallelizationtechniquesofthepro-gramswhichrunonthesemachines,e.g.MPIandOpenMP,justtonametwoofthemostused,havehoweverbeendesignedwhenthelargestcom-puterswere100timessmaller.Duetoconstantdevelopment,thesetech-niquesstillwork,buttheyhavetobeexpandedbyadditionalprogrammingmodelsinordertokeepupthescalability.

ApromisingapproachistocombinethewidelyusedMPIwithsharedmem-oryparallelizationusingtaskbasedparallelizm,forinstanceSMPSs[1].Inthisprogrammingmodel,piecesofcode,e.g.functions,arespecifiedaspotentiallyparallelusingspecialmarkers.Giventhetasks'datadepen-dencies,eitherprovidedbythepro-grammerorextractedautomaticallybythecompiler,theprogram'stasksarescheduledtoworkerthreadsatrun-time.Programmingthreadsalreadyishard,dueitssharingofressourcesduetopossibleraceconditions-addtothatissuesofidentifyingandcorrectlystatingthetasks's

Debugging on the next Level: TEMANEjO

Projects

68

Page 69: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Asimpledependencygraph

withtentasksintwoindependentsub-

treesvisualizedbyTEMANEJO.Thenode's

interiorcolorrepresentthetask(the

taskifiedfunction),thesurrounding

margin'scolorrepresentthetask'sstate,

e.g.queued(yellow)orrunning(green).

Theredmarginsindicatethatthetask

hasunfulfilleddependenciesandcan

thereforenotbequeuedyet.Thenode

shapes(heretriangleandbox)denote

twodifferentworkerthreadsforrunning

tasks,whichmaybescheduledtodifferent

cores.Thetextlabelsandcoloursofthe

edgesindicatethememoryaddressesof

thedependencies.

dependenciesandperformanceimplicationsmakesitdifficultfortheprogrammertocomeupwithanefficientparallelizationstrategyofagivenprogram.

Wedevelopedagraphicaldebugger[2]whichiscapableofdisplayingtherelevantinformationinanaccessiblemannerandgivingtheprogrammermanypossibilitiesforinteractionwiththerunningprogram.

Thedifferencebetweentask-basedprogrammingmodelsandotherwaysofparallelisingapplicationsisthatitisnotknownaprioriwhenataskwillbeexecutedorwhichcorewillexecuteit.Theonlyinformationpertaskisthedatadependencies(basicallythedata'smemoryaddress),andthereforewhichothertasksdependonit.Asaresultadependencygraph,tobepreciseadirected-acyclicgraph(DAG)

iscreatedatruntime,withnodesbeingtasksandedgesbeingthede-pendenciesasseeninFigure1.

Newtaskswillbeaddedtothedepend-encygraphwhiletheprogramisrun-ningandfinishedtasksareremovedfromit.Whenforagiventaskallthedependenciesarefulfilleditcanbeexecutedbyanythreadatanytime.Thereforeeveryrunofanap-plicationcanresultinadifferentorderofexecutionondifferentpro-cessingunitsinthesystem.Thismakestaskbasedparallelprogramsextremelyhardtodebugwithnormaldebuggerssuchasgdb.Twoexamplesoftask-basedprogrammingmodelsareSMPSsandOMPSs.Botharede-velopedintheTEXTprojectwithparticipationoftheApplication,ModelsandToolsgroupattheHLRS[3].

AnewDebuggerTraditionaldebuggersworkcommandbasedonaperthreadbasis-toswitchbetweenconcurrentlyexecutingthreads,theprogrammerneedstoissuecommandsandretrievethestateofthethread.

Thatmeansonestepsthroughlinesofcodeandswitchesfromonethreadtoanother.Intaskparallelprogramming,onecannotseewhyataskcanorcannotbeexecuted.Moreover,uptonowtheprogrammerwaslefttoherowndevicesimaginingthedependencygraphorviewingpostprocessedgraphsfromprogramoutputs.

Wedevelopedagraphicaldebuggerfortaskparallelprogramsinorderenabletheprogrammertovisualizethedependencygraphandinteract

Projects

69

Page 70: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

withtheruntimewhiletheprogramisexecuting(seeFig.2).

Debuggingtheparallelcodecanbesepa-ratedintotwophases.Analysisofthedependencygraphandcontrolling,i.e.changingtheactualexecutionoftheapplication.Fortheformertheinfor-mationaboutthenodes(tasks)andedges(dependencies)ofthedependencygraphhavetobeextractedandcom-municatedtoavisualizationtool.Forthelatteracontroltool(whichcanbethesameasthevisualizationtool)willenabletheprogrammertosendcommands(inthefollowingcalledrequests)totheapplication.

Insteadofsteppingfromlinetolineorputtingbreakpointsatcertainlinesorfunctions,theprogrammerofatask-basedapplicationwantstostepthroughthedependencygraphandinhibitorforcetheexecutionoftasks.

Thisissupplementedbyattachingadebuggerlikegdbtotherunningprocessontheactualcomputenode.

Inordertoanalyzeandcontroltheexecutionofanapplicationweinstru-mentedtheruntimedeveloppedbyBarcelonaSupercomputingCenter(BSC)witheventhandlersatcertainpointsofthetaskslifecycle.Theeventhandlerisimplementedasaweakreferencetoalibraryfunctionwhichisdynami-callylinkedtotheapplicationusingtheLD_PRELOADenvironmentvariable.

ThiseventhandlerisimplementedasalibrarycalledAYUDAME(Spanishforhelpme)andiscalledatdistinctmomentsduringruntime.Itperformsnumeroustasks,topasstheinfor-mationtoanexternaltool,likeTEMANEJOviaTCPconnectionorreacttotheeventitself.

Projects

70

Page 71: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•SteffenBrinkmann•ChristophNiethammer•JoséGracia•RainerKeller Universityof Stuttgart,HLRS

Figure2:ScreenshotofTEMANEJOrunninga

sparsematrixinversionparallelizedwithSMPSs.

Onthefrontendsideanytoolmayattachviatheopenprotocol-thedebuggerTEMANEJO(SpanishforIhandleyou)performstwotasks:

1.ItvisualizesthedependencygraphoftheStarSsapplicationgivingtheuserthepossibilitytoverifythecorrectnessofthetaskinterdependenciesandtooptimizethedependencystructure.

2.ItcontrolstheStarSsruntimeen-vironmentbysendingrequeststothelibrary.Requestscanbetopausetheruntimeunderspecificconditions,toblocktasks,orsingle-andmulti-stepthroughthegraph,orattachingadebuggerlikegdb.

FordisplayingthedependencygraphTEMANEJOneedsatleasttwopiecesofinformation:Whichtasksexistandwhataretheirdependencies.Theformerisreceivedwhentheprogramframeworkcreatestaskswhilethelatterisgatheredwhenthedependenciestothepredecessorsofeachnewlycreatedtaskareanalyzed.Furtherinformationpassedisthestatusofeachtask,i.e.whethertheyarequeued,runningorfinished,thememoryaddressofade-pendencyvariableandatimestamp.

AllofthisinformationisstoredinadatastructureinTEMANEJOforfurtheranalysis(e.g.numberofdependenciesofatask,longestandshortestpathsthroughthegraph,executiondurationoftasksetc.).Usingthenodecolour,nodemargincolour,nodeshapeandedgecolourasconfigurableindicators,

theprogrammercanaccesstheneededinformationinaconvinientandintuitiveway,allowingreductionofinformation,e.g.color-codingtheexecutingthread,showingimbalance.

ConclusionsWithAYUDAMEascalableandexten-sibleframeworkfortoolsfortaskbasedprogrammingmodelshasbeendevelopped.IthasbeentestedwithSMPSsandOMPSs,butcanbeusedwithanytaskbasedparallelizationmodelaslongasitisinstrumentedwithcallstotheAYUDAMEeventhandler.TheTEMANEJOdebuggerallowsvisualisingthedependencygraph,steppingthroughthetaskgraph,blocktasksandprioritisetasks.

Offeringthisfunctionality,TEMANEJOempowerstheprogrammeroftaskparallelapplicationstodebugandopti-mizetheapplicationefficiently.

References[1] Marjanovic,V.,Labarta,J., Ayguade,E.,Valero,M. Overlappingcommunicationand computationbyusingahybridMPI/SPMSs approach.InICS'10:Proceedingsofthe 24thACMInternationalConferenceon Supercomputing,pages5-16,NewYork, NY,USA,June2-4,2010,ACM

[2] Brinkmann,S.,Gracia,J., Niethammer,C.,Keller,R. TEMANEJO-adebuggerfortask-based parallelprogrammingmodels. InProceedingsofParCo'11,2011, submittedforpublication

[3] TEXT-TowardsEXaflopapplicaTions (www.project-text.eu)

Projects

71

Page 72: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:LarKC–ahighperformanceSemanticWebreasoningplatform

TheessenceofSemanticWebistheideathattheWebcanexploittech-niquesfrom,e.g.formalKnowledgeRepresentation,tomakeinformationavailableinamachine-processablefor-mat,sothatamoreintelligentusersupportcanbeachievedontheWeb[1].Suchmachine-understandabledataformats,forinstancetheResourceDescriptionFramework(RDF),enablenovelusesoftheWebsuchasseman-ticsearch,dataintegration,statisticalanalysisandothers.RecentadvantagesinSemanticWebhaveforcedWebapplicationstoscaleuptotherequire-mentsoftherapidlyincreasingamountofinterconnectedanddistributeddatasuchasobservedintheLinkedOpenDatarepositoryfordatalocatedacross

theWebortheLinkedLifeDatase-man-ticintegrationplatformforthebio-medicaldomain,butalsoine-Scienceande-Commerce(e.g.Ontoprise).

ThemassiveandtremendouslygrowingamountofdatarequireseffectiveexploitationandishenceofagreatchallengeforthemodernITplatformsandinfrastructures.Anotherbigchal-lengeforachievingtheefficiencyandweb-scalingofSemanticWebappli-cationsistheheterogeneousnatureofexploreddataontheWeb,whichresultsindatainconsistencies,incom-pleteness,butalsoredundanciesduetovaryingmethodologiesusedduringthedatagenerationandcollection.

GiventhelargeproblemsizesaddressedbySemanticWebandconsideringthecomplexityofsomedataexplorationalgorithmssuchasRandomIndexingdescribedbelow,itseemsnaturaltoexplorethebenefitsofportingSemanticWebapplicationsforrunningonHighPerformanceComputingarchitectures.

LargeKnowledgeColliderOneofthemajorpracticalattemptstobuildaSemanticWebenginecapa-bleofprocessingbillionsofstructureddata,i.e.,web-scaledata,isperformedintheEUFP7projectLarKC(www.larkc.eu).LarKC,whichstandsfortheLargeKnowledgeCollider,buildsanexperimentalplatformformassivedistributedincompletereasoning(seeFigure1),whichaimsatremovingthescalabilitybarriersrecognizedformostofthecurrentlyavailablereasoning

Towards High Performance Semantic Web – Experience of the LarKC Project

Networks

Sem

antic

Ser

vice

s e-

Infr

astr

uctu

re

App

licat

ions

Computing Storage

Developers

Users

Access Aggregation

Inference Transformation

Sharing

Projects

72

Page 73: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure4:Comparisonoftime(a)andbandwidth(b)ofinter-nodecommunicationofdifferentMPIlibrariesforJava(ontheHLRSNECNehalemclusterwithEthernetandInfinibandinterconnects).

Figure2:ParallelizationinSemanticWebapplicationworklows

engines.ThisgoalisachievedbymeansofanumberoftheoriginaltechniquesadoptedbyLarKC,e.g.ahighlyinnovativereasoningapproachformergingtheretrievalprocessandthereasoningbymeansofselection,identification,ortransformation[2].Ontheotherhand,LarKCenablesnumerousnovelITinfrastructuresolu-tionstosupportthoseoptimizationtechniques,suchasHighPerformanceorGridComputinge-Infrastructures.Theoptimalresourceprovisioningisofespecialimportanceforensuringtheweb-scalepropertyofSemanticWebapplications.However,sincein-troducingaspeciale-InfrastructureforSemanticWeb,asdoneinLarKC,processingvastamountofdataisnotamajorbottleneckanymore.

Nevertheless,leveragingthoseresourcesrequiresnecessaryadaptationsinthetraditional(serial)applicationcodes,i.e.theirparallelization.Theparallelizationbecomesthusamajorchallengefor

thenext-generationSemanticWebapplicationsexecutedinacontextofe-Infrastructure.

ParallelizationStrategiesadoptedbyLarKCInsolvingthoseissuesrelatedtothelarge-scaleSemanticWebapplications,LarKCallowsareasoningapplicationtobebuiltontopofnumerouslightweightSemanticWebcomputationalblocks(plug-ins,seetheactuallistonLarKCMarketPlaceathttp://www.larkc.eu/plug-in-marketplace),usedforidentifi-cation,selection,transformation,andactualreasoning.Whencombinedinacommonworkflow,suchasoneshowninFigure2,theseplug-inscanbeefficientlyutilizedforsolvingproblemsofthealmostvirtualdimensionality.

Data Parallelism

Identifier

Selecter 1

Reasoner

Decider

Selecter 2

Identifier

1

r

Query Transformer

S

S

Decide

Instruction Parallelism

Multithreading MPI

Ope

ratio

n 1

Map Reduce

Ope

ratio

n 2

Ope

ratio

n 3

Ope

ratio

n 4

Message Lenght [Byte] Message Lenght [Byte]

Projects

73

Page 74: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure4:HybridMPI+JavaThreadscommunicationpattern.

Tosupportthisfeature,thecompositionoftheplug-insinaworkflowenablesparallelexecutionoftheplug-insonthehighperformanceresources.IntermsofLarKCapplications,theparallelizationsuggeststheidentificationofthecon-currentregionsoftheapplicationdata-aswellasinstructionflow,withfurthermappingthemtotheindependentpro-cessorunitsofaparallelsystem.

Amongthemostwidelyutilizedandsus-tainableinSemanticWebparallelizationapproaches,suchasMultithreading,Map-Reduce,aswellastheMessage-PassingInterface(MPI),thelatter(MPI)isthemostpromisingoneintermsoftheimplementationeffortsneededforaserialapplicationaswellasintermsoftheprovidedscalability.TherehavebeenseveralinitiativesstrivingtoprovideHPCsupportforJava,whichisde-factoadefaultprogramminglanguageintheLarKCSemanticWebcommunity.OneofthemostsuccessfulMPIimplementa-tionsforJavahasprovedtobempiJava,

chosenforadoptioninLarKC(Figure3).ThempiJavaframeworkiscurrentlydevelopedandsupportedbyHLRS.

MPIRealizationofRandomIndexingRandomIndexingisanovelapproachforvectorspacemodelling[3].Thevec-torspacerepresentsthedistributionalprofileofthewordsinrelationtotheconsideredcontexts/documents.Themainmethodicalvalueofthisprofileisthatitenablescalculationofthese-manticsimilaritybetweenthewordsinscopeofthedocumentcollection(textcorpus),basedonthecosinesimilarityfunctionofthegivenwords’contextvectors(1).

wherefqisaco-occurrencefunctionbetweenthewordxfromthewordsetXandeachofthecontextscjЄC

m,misatotalnumberofthecontexts,nisatotalnumberofthewordsinallcontexts.

However,suchpopularRandomIndex-ingimplementationpackages,suchasAirhead[4],areincreasinglyineffectivewhencomplexlyaddressinglargedataamounts,e.g.ascollectedbyLinkedLifeData.LarKChasexaminedthedomaindecompositionbasedparallelimplemen-tationofRandomIndexing,asdepictedinFigure4.

WithregardtotheaforementionedAirheadlibrary[5],verypromisingperformancecharacteristicswereobtainedforbothpureMPIandhybridMPI-JavaThreadsimplementations(seeFigure5).ThedocumentsetbasedonaselectionoftheWikipediaarticles(1Mhighdensityentries,16GBdiskspace)wasusedforthisperformance

Problem Domain

MPI Process 2MPI Process 1

Compute Node 1 Compute Node 2

Thread Pool Thread Pool

∀x∈Xn, ∃ v=[ fq(x,cj= )] (1)

∀x∈Xn, ∃ v=[ fq(x,cj= )] (1)

Projects

74

Page 75: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•AlexeyCheptsov•MatthiasAssel

Universityof Stuttgart,HLRS

benchmark.Detailedresultsfordifferentinputdocumentsizesaswellasclusterconfigurationsarereportedin[6].

OutlookRecentadvantagesintheSemanticWebrequiretheunderlying(Java)applicationstoscaleuptotherequire-mentsoftherapidlyincreasingamountofprocesseddata,suchasthosecom-ingfrommillionsofsensorsandmobiledevices,orTBofdatavolumescon-ductedduringscientificexperimentsusinglaboratoryequipment.IntroducingHPCinSemanticWebdomaincangreatlysupportthischallenge.

Traditionally,theSemanticWebandtheHighPerformanceComputingcom-munityhavebeensomewhatdisjoint.However,astheneedsandcapabilitiesofthesetwocommunitiescontinuetoconverge,itturnstobebeneficialforbothtoleveragetheirrespectivetech-nologies.Parallelrealizationofserialcodesisakeyenablerofhighperfor-mancearchitecturesandisthereforeagreatchallengeforthemajorityofSemanticWebapplications.LarKCaimsatsimplifyingdevelopmentofhighperformance,parallelizedapplications,andthusbridgingthegapbetweenSemanticWebandHPC.

References[1] Daconta,M.C.,Smith,K.T.,Obrst,L.J. TheSemanticWeb:aGuidetotheFuture ofXml,WebServices,andKnowledge Management.JohnWiley&Sons,Inc.,2003

[2] Fensel,D.,vanHarmelen,F. UnifyingReasoningandSearchtoWeb Scale.In:IEEEInternetComputing11(2), pp.96-95,2007

[3] Sahlgren,M. Anintroductiontorandomindexing, MethodsandApplicationsofSemantic IndexingWorkshopatthe7thInternational ConferenceonTerminologyandKnowledge EngineeringTKE2005,pp.1-9,2005

[4] Jurgens,D.,Stevens,K. TheS-SpacePackage,AnOpenSource PackageforWordSpaceModels. ProceedingsoftheACL2010System Demonstrations,pp.30-35,Association forComputationalLinguistic,2010

[5] Cheptsov,A.,Assel,M.,Koller,B., Gallizo,G. EnablingHighPerformanceComputing forJavaApplicationsusingtheMessage- PassingInterface,P.IványiandB.H.V. Topping(eds.),ProceedingsoftheSecond InternationalConferenceonparallel, distributed,gridandcloudcomputing forengineering,2011

[6] Assel,M.,Cheptsov,A.,Czink,B., Damljanovic,D.,Quesada.J. MPIRealizationofHighPerformance SearchforQueryingLargeRDFGraphs usingStatisticalSemantics.Proceedings ofthe1stWorkshoponHigh-Performance ComputingfortheSemanticWeb, collocatedwiththe8thExtendedSemantic WebConference(ESWC2011),toappear in2011

Figure5:PerformancecharacteristicsoftheparallelRandomIndexingrealization(a)andcomparisonofpureMPIvs.MPI+JavaThreadscommunicationperformance(b).

Total Execution

Similarity Search

Doc.space Loading

MPI Communication

Pure MPI

MPI + Java Threads

CPU NodesCPU Nodes

Projects

75

Page 76: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:“PlugyourBusinessintoIT”

BusinessandITAlignmentusingaModel-basedPlug-inFrameworkThealignmentofInformationTechnologyandBusinessisstillahighlycomplexandhardtoautomateprocessandremainsthereforemainlydrivenandperformedbyhumans.Bynature,thebackgroundandknowledgeofthosehumanscandiffer,dependingontheirrolewithintheirorganization.Sincedifferentpartiesoftendon´tshareacommonknowledgespace,thewholesituationislikelytobecomecomplex.

plugITinGeneralTheplugITproject[1]isbasedontheobservationofthenecessitytoalignBusinessandIT[2]duetotherolechangeofITfromanenablertoanindustrialsector.plugITaimsatdevelopinganITSocketthatrealizesthevisionof“plugging”businessintoITinawaysimilartotheoneusedto

provideelectricityviaasockettoanydevicethatcanbepluggedin.ThischallengecanbetakenupbycapitalizingonsemantictechnologiesforITGovernance.InplugIT,theNextGenerationModellingFramework[3]isdevelopedwhichreliesonresearchadvancesyieldingthefollowingbenefits:

• Atighterinvolvementofdomain expertsismadepossibletoexpress formalandsemi-formalknowledge viatheuseofgraphicalmodelling languages

• Differentgraphicalmodelling languagesfordifferentviews anddifferentlevelsofformal expressivenesscanbeused

• Domainspecificnotationsfor semanticsareintroducedby mergingformalconceptsof semanticswithgraphicalnotations

plugIT – Plug Your Business into IT

Projects

76

Page 77: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure2:InteractionoftheplugITITSocketandtheOPSsystem

AnHLRSUseCaseHLRSisoneofthreeusecasepart-nerswithinplugIT.ThedetailedusecaseofHLRScoversanOnlinePro-posalSubmissionprocess(OPS)inwhichprojectapplicantscansubmitaprojectrequesttoaccessHLRScom-putingresourcesandperformtheircomputationaltasks.

Basedontherequirementsoftheprojectapplicant,modeltranslationsareusedtofindthebestfittingoffer,representedasasetofrecommenda-tionsforServiceLevelAgreements(SLAs)[4].TheITSocketsupportsthewholeprocessofcreatingaproposal,analysingtheproposalparameterswithrespecttoexistingmodelsandfinallyrecommendingandgeneratingSLAs.Thisisenabledthankstotheuseofaso-calledsemantickernelwhichusesgraphicalmodelscom-binedwithsemanticinformation.

InthecurrentproductionversionoftheOPSprocess,HLRSusesawebformbasedapplicationenablingaprojectapplicanttomakerequests

forcomputingresourcesatHLRS.Theapplicantcanentervariouspiecesofinformationdescribinghis/hercomputingresourceneeds.Oncesubmitted,therequestisanalyzedbyaprojectapproverandapprovedor,incasemodificationsareneces-sary,sentbackforupdates.Sofar,allthishasbeendonewithoutanyautomatedsupportingprocesseandhasreliedheavilyontheknowledgeoftheprojectapprover.

NecessaryEnhancementstocoverfutureDevelopmentsNow,withtheadventofnewparadigmslikeCloudComputing,thisprocessneedstobeenhanced.Whilstuptonowmostoftheapplicantscanbeassumedtobespecialistswithintheirdomain,whichmakestheprocesssimpletomanage,theofferingofcomputingresourcesneedstobecomemoreintel-ligentinthefuture.Inthelongterm,weneedtoensurethatalsoapplicantswithonlymoderateknowledgeoftheunderlyingsysteminfrastructureneedtobeabletoapplyforresources.

IT Provider

Business Client

„Project“ Description

IT-Infrastructure & SLA Description

Reference Models

Semantic Technology

Challenge !

Consultant

Projects

77

Page 78: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure3:HLRSinplugIT

Moreover,theresourcesthemselvesarealsogettingmoreandmorecom-plex.TheacquisitionofanewCraysupercomputeratHLRS[5]isjustonesteptowardsanewgenerationofhighlycomplexinfrastructures.Theroleoftheprojectapproverthusgetsmoreandmoredifficultandthebenefitofanysupportingtechnologybecomesobvious.

TheplugITEnhancementsBymeansoftheplugITITSocket,HLRShasconcentratedontheprovisioningofsupportfortheprojectapprovers.Inparallel,therealizationoftheneces-sarystepsforintroducingSLAsintotheOPSprocesshavebeenaddressed.

AsplugITfollowsamodel-basedap-proach[6][7][8],thefirstactionwithintheprojectwastocreateanumberofreferencemodelswhichwereintendedtoprovidethenecessaryfoundations

fortheprojectdevelopment.ThiswasdoneviaanonlinemodelrepositorycontaininggraphicalmodelsrelatedtotheITinfrastructureandITservicesofHLRS.ModellingwasperformedwiththeNextGenerationModellingFramework,oneofthedeliverablesoftheproject.AllthemodelsarelinkedtoeachotherandtheyrepresenttheknowledgeofHLRSprojectapprovers.

TheOPSprocessisexecutednowasfollows:AprojectapplicantsendsarequestforcomputingresourcestotheHLRSprojectapprover.Uponre-ceptionoftherequest,theapprovermakesuseoftheITSockettogetbackfromitrecommendationsonwhichSLAtooffer.Thisisrealizedthroughtheautomatedprocessingoftheproj-ectapplicant’srequestbyasemanticworkflowoftheITSocket.Therecom-mendationsareSLAoffersthatdefinethecategoryoftheSLAthatcouldbe

plugIT IT Socket

plugIT NGMF

HLRS Project Approver Project Applicant

HLRS Modeller

1. IT Infrastructure (Compute Resources + Configuration) Models

2. IT Service (SLAs + Criteria) Models

create models

make request for compute resources

offer specific to compute resources

OPS application enacts HLRS workflow

send models

Projects

78

Page 79: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•AxelTenschert•PierreGilet•BastianKoller

UniversityofStuttgart,HLRS

proposedtotheprojectapplicant.Inthecurrentscenario,thecategoriesarebronze,silverorgold,basedonthequalityoftheoffer.Eachofferrelatestoadedicatedcomputingresource.Inaddition,therecommendationsarerankedandvisualizedinawaysimplefortheprojectapprovertounderstandwhichSLAofferrecommendationsarethebestfittingtheprojectapplicant’srequirements.TheHLRSprojectap-proverhasthepossibilitytoviewthegraphicalmodelsifhe/sherequiresmoreinformationregardingtheSLAofferrecommendations.

Thepossibilitytopluginthebusinessrequirements–theprojectapplicant’srequest–intotheITdomainimprovestheefficiencyandoverallperformanceoftheOPSsystemandallowsHLRStobroadenitscustomerbase.Thegraphicalmodellingapproachalsoshowsobviousadvantagesintermsofmaintenanceofinformationandknowledgetransfer.

FactsplugITisaprojectfundedbytheEuro-peanUnionwithinthe7thFrameworkprogram.Theconsortiumconsistsofeightprojectmembers.plugITstartedontheMarch1,2009andwillrununtiltheAugust31,2011.

ThePartners• BOCAssetManagementGmbH(AT)• TelespazioItalia(IT)• UniversityofVienna,Departmentof Knowledge&BusinessEngineering(AT)• FoundationforResearchand TechnologyHellas(GR)• FachhochschuleNordwestschweiz(CH)• CINECA(IT)• InnovationTechnologyGroupSA(PL)• UniversityofStuttgart,HLRS(GER)

Websitehttp://plug-it.org/

References[1] plugITwebsite,http://plug-it.org

[2] Woitsch,R.,Karagiannis,D., Plexousakis,D.,Hinkelmann,K. BusinessandITAlignment:TheIT-Socket. E&IElektrotechnikundInformations- technik126,pp.308-321,2009

[3] NextGenerationModellingFramework Portalofthe2ndplugITPrototype: http://83.65.190.84/plugIT/workbench/

[4] Koller,B. EnhancedSLAManagementintheHigh PerformanceComputingDomain,Ph.D. Dissertation,UniversityofStuttgart,2011

[5] CraywinsSupercomputerContract FromtheUniversityofStuttgartvalued atmorethan$60Million, http://investors.cray.com/phoenix.zhtml?c =98390&p=irol-newsArticle&ID=1486975 &highlight

[6] Woitsch,R.,Karagiannis,D., Plexousakis,D.,Hinkelmann,K. PlugyourBusinessintoIT:Businessand IT-AlignmentusingaModel-basedIT-Socket, eChallengese-2009Conference, (eChallenges09),Turkey,IOSPress,2009

[7] Bork,D.,Sinz,E.J. DesignofaSOMBusinessProcess ModellingToolbasedontheADOxx Meta-modellingPlatform.IndeLara, J.,Varro,D.,Margaria,T.,Padberg,J., Taentzer,G.,eds.:4thInternational WorkshoponGraph-basedTools (GraBaTs2010),Enschede,The Netherlands,pp.89-101,2010

[8] Bézivin,J. ModelDrivenEngineering: AnEmergingTechnicalSpace, GenerativeandTransformational TechniquesinSoftwareEngineering, Volume4143,pp.36-64,2006

Projects

79

Page 80: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Sampleofsimulationinthedesignphase

EnergyconsumptionandimplicitCO2emissionsofcomputinganddatacen-treshaveincreaseddrasticallyoverrecentyearsandareexpectedtoin-creaseevenfurther.BesidetheraisingcostsforenergyconsumedbyITser-vicecentres,peoplearegettingmoreandmoreawareaboutthefollow-upofthehighdemandofenergyfortheITsector,liketheimpactonglobalwarm-ingandCO2emissions.Asanexample,

worldwidedatacentresCO2emissionsarealreadyequivalenttoabouthalfofthetotalairlines’CO2emissionsandareexpectedtoovercomethe40%ofTotalCostofOwnershipofworldwideITby2012.Datacentreelectricityconsumptionaccountsforalmost2%oftheworldproductionandtheirover-allcarbonemissionsaregreaterthanbothArgentinaandtheNetherlandstogether[1].

GAMES (Green Active Management of Energy in IT Service centres)

Projects

80

Page 81: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:Sampleofsimulationinthedesignphase

Sincecomputingdemandandelectricitypricesarerisingwhilstbecomingdwin-dlingresources,energyconsumptionofITsystemsanddatacentreenergyefficiencyareexpectedtobecomeapriorityfortheindustry.Despitethefactthatmanystakeholdershavebeenundertakingsignificanteffortsinde-liveringnewyetmoreenergyeffectiveITequipmentallowingsignificantcostandenergysavings,unfortunatelytheproblemoftheenergyefficiencyofInformationSystemsasawholehasnotbeenproperlyaddressedsofar.

GreenComputingisanewdisciplineandpracticeaimedatdesigningandusingcomputingresourcesinanenviron-mentally-awareway.Itwasoriginatedmorethanadecadeagowiththemaingoalofreducingenergyconsumptionofcomputingresources,yetmaintainingaclearfocusontheimpactontheen-vironment.AlthoughmanyprogresseshavebeenmadebyGreenComputing,makingnewchipsandserversavail-ablewhichundoubtedlyconsumelessenergy,inmostcasesimprovementsinefficiencyaredevouredbyincreasingdemandforcomputingpowerandca-pacity,drivenbynewdigitizedbusinessprocessesandservices.

TheGAMESproject[2]aimsatdevelop-ingtoolsandmethodologiestoimprovetheenergyefficiencyofITservicecen-tresbyenablingactivemanagementofresourcesandsoftwareequally.Whilststoragehostscanprincipallyreducethecomputingfrequencytosaveenergy,computeprovidersandinparticularHighPerformanceComputingcentreshavemoredynamicandchangingdemandstowardstheinfrastructureusage–suchastheflexibledegreeofscaleoutofaprocessorthedifferentscopeofdataaccessandstorageof

differentapplications.Mostresourcesinsuchanenvironmentdonotallowforfastenoughadaptationoftheirenergyparameterswithoutaffectingtheover-allperformance.Whatismore,mostparametersandrelationshipsbetweenusageandconsumptionarenotevenknownasyet,e.g.thetotalenergyprofileofanapplicationthatrunsatmaximumCPUclockrateforashorttimemaybelowerthanthatofthesameapplicationrunningathalfclockrateforalongertime,dependingonthebehaviouralprofile.

ThereforetheGAMESprojectwillex-aminetheenergyprofilesofdifferentapplicationsandsystemsaccordingtotheirspecificbehaviourinmoredetail,derivingenergyprofilesfromthiswhichindicatehowtoconfiguretheinfrastructureforbestenergyandperformanceefficiency.Itwillexposetheprofileparameterstoenablede-veloperstowriteenergyefficientap-plicationsandconfigureperformanceaccordingtotheirneeds.GAMESwillfurthermoredevelopamonitoringandmanagementsystemtightlycoupledtotheresourceinfrastructure,thusenablingdynamic,flexibleandimmedi-atereactiontochangingrequirements,withoutaffectingtheoverallexecutionperformance.

Projects

81

Page 82: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Inparticular,theGAMESprojectaimsatdevelopingasetofinnovativemethodologies,metrics,OpenSourceICTservicesandtoolsfortheactivemanagementofenergyefficiencyofITServiceCentres.Itfocusesonthefollowingtwoaspects:

1. Co-designofenergy-aware informationsystemsandtheir underlyingservicesandITservice centrearchitecturesinorderto satisfyusersrequirements(Quality ofService),serviceperformance, context,addressingenergyefficiency andcontrollingemissions(cp.Fig.1). AcombinationofGreenPerformance Indicatorsareproposedtoevaluateif andtowhatextentagivenservice andworkloadconfigurationaffects thecarbonfootprintemissions’levels;

2.Run-timemanagementofIT ServiceCentreenergyefficiency, exploitingtheadaptivebehaviourof thesystematruntime,bothatthe service/applicationandITarchitec- turelevels(includingITcomponents likeservers,andstorage),whilst consideringtheinteractionswiththe facilitymanagementaswellinanover- allunifyingvision.

Inparticular,GAMESwilladvancethecurrentscientificandtechnologystate-of-the-artinenergyefficiencyforITser-vicecentresinthefollowingdomains:

• GAMESwillcreateandmake availableanintegratedmethodology (GAMESco-designmethodology) fortheshareddesignof“GreenIT ServiceCentres”,trading-offQuality

Projects

82

Page 83: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•AlexanderKipp

Universityof Stuttgart,HLRS

ofServices,users’businessand functionalrequirementsagainst energyefficiencyandemissions;

• GAMESwillcomplementandextend oneofthemostleading-edgeOpen Sourcedatacentremonitoring tools,namelyNAGIOS,withthe capacityofassessing,monitoring andcontrolling,bothinareactive andproactiveway,energycosts andemissions(GAMESEnergy EfficiencyTool)inrealtimeof alternativeyetviableoptions/ configurationsfordistributing servicesamongthevirtualized machines,workloadamongservers andstoragedevicesaswellas balancingpoweragainstheat/ temperatureatfacilitylevel;

• TheGAMESweb-toolwillbeenriched withadvancedknowledge-basedand informationextractionfeatures (GAMESKnowledge&MiningModule) byoriginallycombiningdatamining, semanticandcontextmanagement technologiesforcloselyaligning usersbusinessrequirementsfor powerdemandwithhistoricaltrend andrealavailableresources;

• TheGAMEStoolingframeworkwill provideanadaptivecontrolfeature (GAMESMonitoring&Adaptive ControlInfrastructure),matchingthe plannedbehaviourwiththeoutput dynamicallyprovidedbytheenergy sensingandmonitoringinfrastruc- ture,theusercontextandhistorical patterns,forevaluatingifandtowhat extenttheadoptedcourseofactions willcontributetoeffectivelymanage theenergyefficiency;

• GAMESwilldefinecomprehensive energyefficiencyassessment

metrics(GAMESGreenPerfor- manceIndicators)asanenabler tocombineenergyefficiencyfacility featureswithITinfrastructureand business/applicationenergyfeatures.

HLRSisparticipatingintworoleswithinGAMES.FirstofallHLRSisintheroleofapotentialend-userofGAMESasanationalsupercom-putingcentrewithincreasingpowerdemandsofcurrently5MWforoperatingthedifferenthardwaresystemsforacademiaandindustry.InthisroleHLRSalsosupportstheactivitiesincreatingtheknowledgeandinformationbasefortheman-agementframework.AdditionallyHLRScontributestoGAMESasatechnologyandsoftwareproviderofhighlyscalablemonitoringsolu-tionsandserviceorientedarchitecturedrivenITsolutionswithaHighPerfor-manceComputingfocus.

Participants• EngineeringIngegneriaInformatica,I• PolitecnicodiMilano,I• HighPerformanceComputing CenterStuttgart(HLRS),GER• TechnicalUniversityofCluj-Napoca, RO• IBMISRAEL- ScienceandTechnologyLTD,IL• ChristmannInformationstechnik,GER• ENERGOECO,RO• ENELSi,I

References[1] Kaplan,J.M.,Forrest,W.andKindler,N.RevolutionizingDataCenterEnergyEfficiency.McKinsey&Company,July2008

[2] http://www.green-datacenters.eu

Projects

83

Page 84: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Figure1:PartofexemplaryschedulinggraphofSMPSswithcommunicatingtasks

Withmany-coreprocessorsofferingevermorecomputepowerpersocket,andlarge-scalesupercomputersbuiltfromthesebricks,thelong-lastingdiscussionsonparallelprogrammingmodelsarebeingposedagain.VenturingintotherealmofPetascaleapplications,severalkeyquestionsregardingscal-abilityintermsofmemoryandprocess-ingoverheadperparallelinstantiationareconsideredandweighedagainsttheneedforportability,readabilityandmaintainability.

TheTEXTprojectisfundedbytheECaspartoftheINFRA-2010callfortwoyears.TheninepartnersfromSpain,GermanytheUK,France,GreeceandSwitzerlandsharethevision,thatthekeycomponenttosupporthighproduc-tivityandefficientuseofasystemistheprogrammingmodel.Amongthepart-nersarefourHPCcenters,alsomem-bersofthePRACEcollaboration,withJSChavingaPetaflopsmachineinpro-duction.TheprojectcentersaroundtheMPI/SMPSs,whichispartoftheStar-SuperScalar(StarSs)modeldevelopedbyBarcelonaSupercomputingCenter.

OverviewTheTEXTproject’stechnologycom-binestheavailablescalabilityoftheMessagePassingInterface(MPI)acrosscomputenodeswiththepos-sibilitiesofper-nodeconcurrencyviaasynchronoustaskofSMP-Superscalar(SMPSs).GivenanexistingapplicationsusingMPIforworkdecomposition,theprogrammermayfurtherparallelizetheapplicationintoso-calledtasksusingSMPSs.Thesetasksthenaredynami-callyscheduledbytheSMPSsruntimeenvironmenttobeexecutedasynchro-niously.Theruntimegeneratesagraphandefficientlymapsready-to-executetasksontotheavailablecores,takingcareofdependenciesamongthetasks.WithlessMPIranksrunning,onehaslowerconnectivity,thereforelowermemoryoverheadforMPI-internalbuf-fers,andpotentiallybiggermessagesizes,whichtogetherwiththeSmpSstaskmodelallowforbettercommu-nication-computationoverlap.Inthelattercase,theMPIcommunicationishandledwithinanSMPSs-taskandscheduledbytheruntime,wheneverthecomputeddataisavailableatthesender.

SimilartoOpenMP,theprogrammerannotatesherapplicationusingprag-mas,specifyingthefunctionstoberunastask,theirinput,outputandinoutparameters,aswellastheirsizes.Anexampleofasimplefunctionmaybe:

#pragma css task input(SIZE)

inout(v[SIZE])

void compute_vector (float *v,

int SIZE){...}

Towards EXascale ApplicatTions (TEXT)

Projects

84

Page 85: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

•RainerKeller•JoséGracia

Universityof Stuttgart,HLRS

Aftertheprogrammerhasinitializedtheenvironmentusing#pragmacssstart,anycalltotheabovefunctionwillbeasignedtoathreadandexecutedasynchronouslyonthecoresofthenode.Furthermore,synchronizationpointsmaybenecessarytowaitforandguarantueeacommonviewonthecomputeddata.Themainpointhoweverhereissimplepoint-to-pointdependencybetweenasynchronouslyexecutedtasks,whichallowthegraphschedulertomoreflexiblyparallelizeindependenttasks.

Usingapre-compiler,inourcaseSMPSs-cc,theannotatedCorFortransourcecodeisamendedwithfurtheradministrativecode,andfinallypassedtothenativeback-endcompiler.Usingthe-keepcompileroption,thepro-grammermayseetheactuallygener-atedintermediatesourcecode,whichiscompiledbytheback-endcompiler.

AimoftheProjectTheStarSsprogrammingmodelhasshowngoodresultsinitsGridSsandCellSsincarnationsforexecutionintheGridandontheIBMCellarchitecture,respectively.IntheTEXTproject,wehopetoextendtheprogrammingmodelontotheexistingMPI-parallelapplications,whichareimportanttothecomputecenters.

TheseapplicationschosenhavebeenusedalreadyinthecontextofthePRACEproject,andincludeSPECFEM3d(UPPA),PSCandPEPC(JSC),BESTandLS1(HLRS)andCPMD(IBM).BasedontheMPI-parallelversion,combinationofthenode-localparallelizationusingSMPSsplusMPIwillbeinvestigatedusingperformanceanalysis.

Eachapplicationoffersitsownchal-lenges,e.g.LS1beingaC++codehasveryelaborateclassstructureandisoneofthefirstC++codestobeusedwithStarSs,whileBESTusessomeofthemoreintricatefeaturesofFortran95andFortran2003.BothofthesecodesarebeingportedtoMPI+SMPSs.

Whiletheoptiontokeeptheinter-mediatecodeallowsusingtraditionaltoolstowork,thisiscumbersome.Thereforeperformanceanddebug-gingtoolswillbeenhancedtosupportthespecialrequirementsofSMPSs.Forexample,beingabletodebugwith-outhavingtofallbacktodebuggingtheintermediatecode,orbeingabletodebugusingbreak-pointsintasksbeinggenerated.

Toenhanceperformance,itwillbenecessarytoevaluateproperchunksizesofthetasksandestimatetheover-headintroducedduetodependencies.

ThePartners• BarcelonaSupercomputingCenter (BSC)• HighPerformanceComputing CenterStuttgart(HLRS)• JülichSupercomputingCenter(JSC)• EdinburghParallelComputingCenter (EPCC)• FoundationforResearchand TechnologyHellas(FORTH)• UniversityofManchester(UMAN)• UniversitédePauetdesPaysde l’Adour(UPPA)• UniversitatJaumeIdeCastellón (UJI)• IBMResearch,Zurich

Projects

85

Page 86: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

Sarah Jones [email protected]

Norbert Kalthoff [email protected]

Rainer [email protected]

Manuel Keß[email protected]

Alexander [email protected]

Markus J. [email protected]

Bastian [email protected]

Thomas C. [email protected]

Zi Yang [email protected]

Claus-Dieter [email protected]

Alejandro [email protected]

Christoph [email protected]

Mark [email protected]

Authors

Christoph Altmann [email protected]

Fakher F. [email protected]

Matthias Assel [email protected]

Felix [email protected]

Arne [email protected]

Steffen [email protected]

Alexey Cheptsov [email protected]

Tillmann A. [email protected]

Volker Gaibler [email protected]

Leonhard Gantner [email protected]

Gregor [email protected]

Pierre [email protected]

José [email protected]

Michael [email protected]

Ulrich Rist [email protected]

Juliane Schwendike [email protected]

Björn Selent [email protected]

Marc [email protected]

Axel [email protected]

Stefan [email protected]

Stefan [email protected]

Uwe Wössner

[email protected]

PublisherProf.Dr.-Ing.Dr.h.c.Dr.h.c.MichaelM.Resch

Editor&DesignF.RainerKlank,HLRS [email protected]öhlig,HLRS [email protected]äusser,HLRS [email protected]

86

Page 87: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

ArticlesarereprintsofinSiDEVol.8No.1Spring2010-Vol.9No.2Autumn2011

inSiDEispublishedtwotimesayearbyTheGaussCentreforSupercomputing(HLRS,LRZ,JSC)

87

GCS HLRS

Page 88: GCS HLRS · has become a major research hub for simulation in Europe. The focus of our work is on developing new methods and applications in the field of HPC and distributed computing.

High Performance Computing Center StuttgartNobelstrasse 19 | 70550 Stuttgart | Germanyphone ++49 (0)7 11 - 685 - 8 72 69fax ++49 (0)7 11 - 685 - 8 72 09www.hlrs.de

©HLRS2012


Recommended