+ All Categories
Home > Documents > Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Date post: 20-Jan-2016
Category:
Upload: jodie-hunt
View: 218 times
Download: 0 times
Share this document with a friend
Popular Tags:
38
Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola
Transcript
Page 1: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of short pulses

Jörgen Larsson,

Fysiska Instutionen

Lunds Tekniska Högskola

Page 2: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of short pulses• Cavity modes• Locked cavity modes• Time-bandwidth product• Active mode-locking• Acousto-optic modulation• Passive modelocking• Hybrid modelocking techniques• Kerr lens modelocking• SESAM • Synchrnously pumped dye lasers• Distributed feedback lasers• Fiber lasers• Short-pulse accelerator sources• Group velocity dispersion• Group velocity dispersion compensation• Prism compressor• Chirped mirrors

Page 3: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Representation of short pulsesGaussian pulses

tjat eeEt 02

*)( 0E

CarrierEnvelopeAmplitudeFrequency

2220

020

2)(

2atrr eE

ct

cI(t)

E

Page 4: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Representing ”chirp”)(

0

20

2

*)( bttjat eeEt E

btdt

btt

dtt 2

)()( 0

20

Page 5: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Group velocity dispersion

Page 6: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Modes in a cavity

Gain profile

(Gain) bandwidth

Mode spacing

Page 7: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Single Mode

Inte

nsi

ty

40

50

30

20

10

0

(a)

Two Modes

40

50

30

20

10

0

(b)

8 ModesRandom Phases

40

50

30

20

10

0

(c)

8 modesPhases=0 @ t=0

40

50

30

20

10

(d)

Inte

nsi

tyIn

ten

sity

Inte

nsi

ty

0

Page 8: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Fresnel diagrams

(c)

t= m

2

m

m (c)

m

2

1

t=0

(a) (b)

(d)

m

2

1

t=T=

E 2E mE

E 2E mE

t=t

m

2

1

t

Page 9: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product

time

Frequency

T=2L/c

t

FOURIER TRANSFORM LIMITED

1/T

Page 10: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

tjat eeEt 02

*)( 0E

2220

020

2)(

2atrr eE

ct

cI(t)

E

FWHM of the intensity in the temporal domain

2

12212 at

e

atatat

2

2ln2ln2

2

1ln2 21

221

221

atFWHM 2

2ln2

Page 11: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

atjat eEeeEt 4

)(

0

20

02

)*))(

F(F(E

aeE)I( 4

)(22

0

)(~

E

FWHM of the intensity in the spectral domain

Next we determine the width in the spectral plane

)2ln(2)(2

1ln

4

)(2

2

1021

20214

)(2

2021

aa

e a

)2ln(22 aFWHM )2ln(2a

vFWHM

Page 12: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

Now lets calculate the time-bandwidth product for a gaussian (unchirped) pulse

441.0)2ln(2

2

2ln2

)2ln(2

a

avt FWHMFWHM

If the pulse is chirped it is wider in the temporal domain

441.0FWHMFWHMvt

Page 13: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

Task for the interested student:

A Ti:Sapphire laser operating at 800 nm has a 120 nm FWHM spectrum. What is the shortest pulse we can get from this laser?

Page 14: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Classes of methods for modelockingActive modelocking:

From an active component in the cavity (typically an optic modulator driven by an RF-frequency)

Passive Modelocking

From a passive component in the cavity (Saturable absorber, kerr lens ......)

Page 15: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking Acousto-optic modulation

Page 16: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking Acousto-optic modulation

Page 17: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking Acousto-optic modulationGeneration of sidebands in an AOM

• Optical wave

• Acoustic wave• Optical wave in presence of acoustic wave

)sin()(0

KztiakxtieEE

)sin(0 KztPP

)(0

kxtieEE

nl

a

2

ln

Kztnikkxtidxztkikxti

eEeEEl )sin(

)(

0

),(')(

00

)})sin(2

{)(

0

ln

Kztnnikxti

eE

Page 18: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of sidebands in an AOM (travelling wave)

)sin()(0

Kztiakxti eeEE

If a<<1

}){2

1( )()()(0

KztiKztikxti eei

iaeEE

Euler’s formulae

))sin(1()(0 KztiaeEE kxti

)22

{ )}({)}({)(0

KzkxtiKzkxtikxti ea

ea

eEE

Page 19: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of sidebands in an AOM (travelling wave-strong Rf- field)

)sin()(0

Kztiakxti eeEE

m

Kztmim

kxti eaJeEE )()(0 )(

))sin(1()(0 KztiaeEE kxti

m

mKzkxitmm eaJEE )()(

0 )(

Page 20: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of sidebands in an AOM (standing wave)

)cos()sin()(0

Kztiakxti eeEE

If a<<1

}){2

1}{

21( ))()())()()(

0KziKzititikxti eeee

i

iaeEE

Euler’s formulae

))cos()sin(1()(0 KztiaeEE kxti

}{4

}{4

}{4

}{4

))}({))}({))}({))}({)(0

KzkxtiKzkxtiKzkxtiKzkxtikxti ea

ea

ea

ea

eEE

Page 21: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking

Fig 3.7

Page 22: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking

Fig 3.8

Page 23: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingSaturable absorber

Fig 3.12

Page 24: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingSaturable absorber

Fig 3.13

Page 25: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Gain vs intensity

Fig 3.14

Page 26: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking

Page 27: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking-saturable absorber

Fig 3.17

Page 28: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingSaturable absorber

Page 29: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingKerr lens

High intensitysmall losses

Low intensitieslarge losses

n=n1+n2I

The beams spatial profile creates the "Kerr lens"

I

x

Titanium sapphirecrystal

Laser beam

Aperture

Page 30: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking - Saturable semiconductor mirror (SESAM)

Page 31: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Synchronous pumping

Page 32: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Frequency filtering

Page 33: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking-saturable absorber

Fig 3.19

Page 34: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Hybrid modelocking

Fig 3.20

Page 35: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Hybrid modelocking

Fig 3.21

Page 36: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Titanium Sapphire energy level diagram

Page 37: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking-Kerr lens (early design)

Page 38: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Modern Titanium Sapphire laser

P1P2

C MCM2

CM1OC

P1,P2 prismsCM1, CM2 curved mirror, krökt spegel(these are transparent for the pump radiation)M mirror, spegelC crystal, kristallOC output coupler utkopplingsspegelL lens for the pump laser

Lpump from Nd-laser


Recommended