+ All Categories
Home > Documents > Geochemistry articles – June 2013

Geochemistry articles – June 2013

Date post: 27-Jan-2017
Category:
Upload: nguyennhu
View: 251 times
Download: 0 times
Share this document with a friend
28
Geochemistry articles – June 2013 Analytical Chemistry Unravelling ionization and fragmentation pathways of carotenoids using Orbitrap technology: A first step towards identification of unknowns Bijttebier, S.K.A., D’Hondt, E., Hermans, N., Apers, S., Voorspoels, S., 2013. Journal of Mass Spectrometry 48, 740–754. http://dx.doi.org/10.1002/jms.3203 Efficient and quick method for saturates, aromatics, resins, and asphaltenes analysis of whole crude oil by thin-layer chromatography–flame ionization detector Bisht, H., Reddy, M., Malvanker, M., Patil, R.C., Gupta, A., Hazarika, B., Das, A.K., 2013. Energy & Fuels 27, 3006–3013. http://dx.doi.org/10.1021/ef4002204 Development of a high-throughput laser-induced acoustic desorption probe and raster sampling for laser-induced acoustic desorption/atmospheric pressure chemical ionization Borton, D.J., Amundson, L.M., Hurt, M.R., Dow, A., Madden, J.T., Simpson, G.J., Kenttämaa, H.I., 2013. Analytical Chemistry 85, 5720–5726. http://dx.doi.org/10.1021/ac4000333 Applications of derivatization reactions to trace organic compounds during sample preparation based on pressurized liquid extraction Carro, A.M., González, P., Lorenzo, R.A., 2013. Journal of Chromatography A 1296, 214–225. http://www.sciencedirect.com/science/article/pii/S0021967313006961 High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications Cnudde, V., Boone, M.N., 2013. Earth-Science Reviews 123, 1–17. http://www.sciencedirect.com/science/article/pii/S001282521300069X Chiral derivatizations applied for the separation of unusual amino acid enantiomers by liquid chromatography and related techniques Ilisz, I., Aranyi, A., Péter, A., 2013. Journal of Chromatography A 1296, 119–139. http://www.sciencedirect.com/science/article/pii/S0021967313004998 Hydrocarbon analysis using desorption atmospheric pressure chemical ionization Jjunju, F.P.M., Badu-Tawiah, A.K., Li, A., Soparawalla, S., Roqan, I.S., Cooks, R.G., 2013. International Journal of Mass Spectrometry 345–347, 80–88. http://www.sciencedirect.com/science/article/pii/S1387380612003338 Comparative analysis of mass spectral matching-based compound identification in gas chromatography mass spectrometry Koo, I., Kim, S., Zhang, X., 2013. Journal of Chromatography A 1298, 132–138. http://www.sciencedirect.com/science/article/pii/S0021967313007711 Chemometric optimization of derivatization reactions prior to gas chromatography–mass spectrometry analysis Kumirska, J., Plenis, A., Łukaszewicz, P., Caban, M., Migowska, N., Bia 3 łk-Bieliñska, A., Czerwicka, M., Stepnowski, P., 2013. Journal of Chromatography A 1296, 164–178. http://www.sciencedirect.com/science/article/pii/S0021967313007073 Enabling quantitative analysis in ambient ionization mass spectrometry: Internal standard coated capillary samplers Liu, J., Cooks, R.G., Ouyang, Z., 2013. Analytical Chemistry 85, 5632–5636. http://dx.doi.org/10.1021/ac401056q Enantioseparations of amino acids by capillary array electrophoresis with 532 nm laser induced fluorescence detection Liu, K., Wang, L., 2013. Journal of Chromatography A 1295, 142–146. http://www.sciencedirect.com/science/article/pii/S002196731300681X Synchrotron-based mass spectrometry to investigate the molecular properties of mineral–organic associations Liu, S.Y., Kleber, M., Takahashi, L.K., Nico, P., Keiluweit, M., Ahmed, M., 2013. Analytical Chemistry 85, 6100–6106. http://dx.doi.org/10.1021/ac400976z http://dx.doi.org/10.1016/j.orggeochem.2013.07.001 Organic Geochemistry 62 (2013) e1–e28 Contents lists available at SciVerse ScienceDirect Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem
Transcript
Page 1: Geochemistry articles – June 2013

Organic Geochemistry 62 (2013) e1–e28

Contents lists available at SciVerse ScienceDirect

Organic Geochemistry

journal homepage: www.elsevier .com/locate /orggeochem

Geochemistry articles – June 2013

http://dx.doi.org/10.1016/j.orggeochem.2013.07.001

Analytical Chemistry

Unravelling ionization and fragmentation pathways of carotenoids using Orbitrap technology: A first step towards identification ofunknownsBijttebier, S.K.A., D’Hondt, E., Hermans, N., Apers, S., Voorspoels, S., 2013. Journal of Mass Spectrometry 48, 740–754.http://dx.doi.org/10.1002/jms.3203

Efficient and quick method for saturates, aromatics, resins, and asphaltenes analysis of whole crude oil by thin-layerchromatography–flame ionization detectorBisht, H., Reddy, M., Malvanker, M., Patil, R.C., Gupta, A., Hazarika, B., Das, A.K., 2013. Energy & Fuels 27, 3006–3013.http://dx.doi.org/10.1021/ef4002204

Development of a high-throughput laser-induced acoustic desorption probe and raster sampling for laser-induced acousticdesorption/atmospheric pressure chemical ionizationBorton, D.J., Amundson, L.M., Hurt, M.R., Dow, A., Madden, J.T., Simpson, G.J., Kenttämaa, H.I., 2013. Analytical Chemistry 85, 5720–5726.http://dx.doi.org/10.1021/ac4000333

Applications of derivatization reactions to trace organic compounds during sample preparation based on pressurized liquidextractionCarro, A.M., González, P., Lorenzo, R.A., 2013. Journal of Chromatography A 1296, 214–225.http://www.sciencedirect.com/science/article/pii/S0021967313006961

High-resolution X-ray computed tomography in geosciences: A review of the current technology and applicationsCnudde, V., Boone, M.N., 2013. Earth-Science Reviews 123, 1–17.http://www.sciencedirect.com/science/article/pii/S001282521300069X

Chiral derivatizations applied for the separation of unusual amino acid enantiomers by liquid chromatography and related techniquesIlisz, I., Aranyi, A., Péter, A., 2013. Journal of Chromatography A 1296, 119–139.http://www.sciencedirect.com/science/article/pii/S0021967313004998

Hydrocarbon analysis using desorption atmospheric pressure chemical ionizationJjunju, F.P.M., Badu-Tawiah, A.K., Li, A., Soparawalla, S., Roqan, I.S., Cooks, R.G., 2013. International Journal of Mass Spectrometry 345–347,80–88.http://www.sciencedirect.com/science/article/pii/S1387380612003338

Comparative analysis of mass spectral matching-based compound identification in gas chromatography mass spectrometryKoo, I., Kim, S., Zhang, X., 2013. Journal of Chromatography A 1298, 132–138.http://www.sciencedirect.com/science/article/pii/S0021967313007711

Chemometric optimization of derivatization reactions prior to gas chromatography–mass spectrometry analysisKumirska, J., Plenis, A., Łukaszewicz, P., Caban, M., Migowska, N., Bia3łk-Bieliñska, A., Czerwicka, M., Stepnowski, P., 2013. Journal ofChromatography A 1296, 164–178.http://www.sciencedirect.com/science/article/pii/S0021967313007073

Enabling quantitative analysis in ambient ionization mass spectrometry: Internal standard coated capillary samplersLiu, J., Cooks, R.G., Ouyang, Z., 2013. Analytical Chemistry 85, 5632–5636.http://dx.doi.org/10.1021/ac401056q

Enantioseparations of amino acids by capillary array electrophoresis with 532 nm laser induced fluorescence detectionLiu, K., Wang, L., 2013. Journal of Chromatography A 1295, 142–146.http://www.sciencedirect.com/science/article/pii/S002196731300681X

Synchrotron-based mass spectrometry to investigate the molecular properties of mineral–organic associationsLiu, S.Y., Kleber, M., Takahashi, L.K., Nico, P., Keiluweit, M., Ahmed, M., 2013. Analytical Chemistry 85, 6100–6106.http://dx.doi.org/10.1021/ac400976z

Page 2: Geochemistry articles – June 2013

e2 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Mass trees: A new phylogenetic approach and algorithm to chart evolutionary history with mass spectrometryLun, A.T.L., Swaminathan, K., Wong, J.W.H., Downard, K.M., 2013. Analytical Chemistry 85, 5475–5482.http://dx.doi.org/10.1021/ac4005875

Identification of ion series using ion mobility mass spectrometry: The example of alkyl-benzothiophene and alkyl-dibenzothiopheneions in diesel fuelsMaire, F., Neeson, K., Denny, R., McCullagh, M., Lange, C., Afonso, C., Giusti, P., 2013. Analytical Chemistry 85, 5530–5534.http://dx.doi.org/10.1021/ac400731d

Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatographyMommers, J., Pluimakers, G., Knooren, J., Dutriez, T., van der Wal, S., 2013. Journal of Chromatography A 1297, 179–185.http://www.sciencedirect.com/science/article/pii/S0021967313005992

Reliable peak selection for multisample analysis with comprehensive two-dimensional chromatographyReichenbach, S.E., Tian, X., Boateng, A.A., Mullen, C.A., Cordero, C., Tao, Q., 2013. Analytical Chemistry 47, 4974–4981.http://dx.doi.org/10.1021/ac303773v

Mass spectrometry and NMR spectroscopy: Modern high-end detectors for high resolution separation techniques - state of the art innatural product HPLC-MS, HPLC-NMR, and CE-MS hyphenationsSeger, C., Sturm, S., Stuppner, H., 2013. Natural Product Reports 30, 970–987.http://dx.doi.org/10.1039/C3NP70015A

Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography–massspectrometrySutton, P.A., Wilde, M.J., Martin, S.J., Cvac�ka, J., Vrkoslav, V., Rowland, S.J., 2013. Journal of Chromatography A 1297, 236–240.http://www.sciencedirect.com/science/article/pii/S0021967313007383

A method for accurate in vivo micro-Raman spectroscopic measurements under guidance of advanced microscopy imagingWang, H., Lee, A.M.D., Lui, H., McLean, D.I., Zeng, H., 2013. Scientific Reports 3, Article number:1890.http://dx.doi.org/10.1038/srep01890

Evaluation of high-field Orbitrap Fourier transform mass spectrometer for petroleomicsZhurov, K.O., Kozhinov, A.N., Tsybin, Y.O., 2013. Energy & Fuels 27, 2974–2983.http://dx.doi.org/10.1021/ef400203g

Orbitrap mass spectromeryZubarev, R.A., Makarov, A., 2013. Analytical Chemistry 85, 5288–5296.http://dx.doi.org/10.1021/ac4001223

Archaeological/Art Organic Chemistry

Mobility and the diversity of Early Neolithic lives: Isotopic evidence from skeletonsBentley, R.A., 2013. Journal of Anthropological Archaeology 32, 303–312.http://www.sciencedirect.com/science/article/pii/S0278416512000104

First molecular identification of a hafting adhesive in the Late Howiesons Poort at Diepkloof Rock Shelter (Western Cape, SouthAfrica)Charrié-Duhaut, A., Porraz, G., Cartwright, C.R., Igreja, M., Connan, J., Poggenpoel, C., Texier, P.-J., 2013. Journal of Archaeological Science 40,3506–3518.http://www.sciencedirect.com/science/article/pii/S0305440312005511

Nicotine in the hair of mummies from San Pedro de Atacama (northern Chile)Echeverría, J., Niemeyer, H.M., 2013. Journal of Archaeological Science 40, 3561–3568.http://www.sciencedirect.com/science/article/pii/S0305440313001593

Brackish water foraging: Isotopic landscapes and dietary reconstruction in Suisun Marsh, central CaliforniaEerkens, J.W., Mackie, M., Bartelink, E.J., 2013. Journal of Archaeological Science 40, 3270–3281.http://www.sciencedirect.com/science/article/pii/S0305440313001180

Dietary life histories in Stone Age northern EuropeEriksson, G., Lidén, K., 2013. Journal of Anthropological Archaeology 32, 288–302.http://www.sciencedirect.com/science/article/pii/S0278416512000037

On the trail of ancient killersGibbons, A., 2013. Science 340, 1278–1282.http://www.sciencemag.org/content/340/6138/1278.short

Analysis of a prehistoric Egyptian iron bead with implications for the use and perception of meteorite iron in ancient EgyptJohnson, D., Tyldesley, J., Lowe, T., Withers, P.J., Grady, M.M., 2013. Meteoritics & Planetary Science 48, 997–1006.http://dx.doi.org/10.1111/maps.12120

Page 3: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e3

Sedimentary cannabinol tracks the history of hemp rettingLavrieux, M., Jacob, J., Disnar, J.-R., Bréheret, J.-G., Le Milbeau, C., Miras, Y., Andrieu-Ponel, V., 2013. Geology 41, 751–754.http://geology.gsapubs.org/content/41/7/751.abstract

Funeral practices and foodstuff behaviour: What does eat meat mean? Stable isotope analysis of Middle Neolithic populations in theLanguedoc region (France)Le Bras-Goude, G., Herrscher, E., Vaquer, J., 2013. Journal of Anthropological Archaeology 32, 280–287.http://www.sciencedirect.com/science/article/pii/S0278416512000062

Beginning of viniculture in FranceMcGovern, P.E., Luley, B.P., Rovira, N., Mirzoian, A., Callahan, M.P., Smith, K.E., Hall, G.R., Davidson, T., Henkin, J.M., 2013. Proceedings of theNational Academy of Sciences 110, 10147–10152.http://www.pnas.org/content/110/25/10147.abstract

Discovering vanished paints and naturally formed gold nanoparticles on 2800 years old Phoenician ivories Using SR-FF-microXRFwith the color X-ray cameraReiche, I., Müller, K., Albéric, M., Scharf, O., Wähning, A., Bjeoumikhov, A., Radtke, M., Simon, R., 2013. Analytical Chemistry 85, 5857–5866.http://dx.doi.org/10.1021/ac4006167

Hunter–gatherer migrations, mobility and social relations: A case study from the Early Bronze Age Baikal region, SiberiaWeber, A.W., Goriunova, O.I., 2013. Journal of Anthropological Archaeology 32, 330–346.http://www.sciencedirect.com/science/article/pii/S0278416512000074

Biosocial archaeology of the Early Neolithic: Synthetic analyses of a human skeletal population from the LBK cemetery of Vedrovice,Czech RepublicZvelebil, M., Pettitt, P., 2013. Journal of Anthropological Archaeology 32, 313–329.http://www.sciencedirect.com/science/article/pii/S0278416512000128

Astrobiology

Effects of ultraviolet radiation on FRTL-5 cell growth and thyroid-specific gene expressionBaldini, E., D’Armiento, M., Sorrenti, S., Del Sordo, M., Mocini, R., Morrone, S., Gnessi, L., Curcio, F., Ulisse, S., 2013. Astrobiology 13, 536–542.http://dx.doi.org/10.1089/ast.2013.0972

Infrared spectroscopy of microbially induced carbonates and past life on MarsBlanco, A., Orofino, V., D’Elia, M., Fonti, S., Mastandrea, A., Guido, A., Russo, F., 2013. Icarus 226, 119–126.http://www.sciencedirect.com/science/article/pii/S0019103513002169

Immunological detection of mellitic acid in the Atacama desert: Implication for organics detection on MarsBlanco, Y., Rivas, L.A., Ruiz-Bermejo, M., Parro, V., 2013. Icarus 224, 326–333.http://www.sciencedirect.com/science/article/pii/S001910351200231X

Radiation resistance of sequencing chips for in situ life detectionCarr, C.E., Rowedder, H., Lui, C.S., Zlatkovsky, I., Papalias, C.W., Bolander, J., Myers, J.W., Bustillo, J., Rothberg, J.M., Zuber, M.T., Ruvkun, G.,2013. Astrobiology 13, 560–569.http://dx.doi.org/10.1089/ast.2012.0923

Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars missionEdwards, H.G.M., Hutchinson, I.B., Ingley, R., Parnell, J., Vítek, P., Jehlic�ka, J., 2013. Astrobiology 13, 543–549.http://dx.doi.org/10.1089/ast.2012.0872

Single-photon technique for the detection of periodic extraterrestrial laser pulsesLeeb, W.R., Poppe, A., Hammel, E., Alves, J., Brunner, M., Meingast, S., 2013. Astrobiology 13, 521–535.http://dx.doi.org/10.1089/ast.2012.0951

Redefining the isotopic boundaries of biogenic methane: Methane from endoevaporitesTazaz, A.M., Bebout, B.M., Kelley, C.A., Poole, J., Chanton, J.P., 2013. Icarus 224, 268–275.http://www.sciencedirect.com/science/article/pii/S0019103512002357

A potential new biosignature of life in iron-rich extreme environments: An iron (III) complex of scytonemin and proposal for itsidentification using Raman spectroscopyVarnali, T., Edwards, H.G.M., 2013. Planetary and Space Science 82–83, 128–133.http://www.sciencedirect.com/science/article/pii/S0032063313000901

Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: Implications for the search for life on MarsWierzchos, J., Davila, A.F., Artieda, O., Cámara-Gallego, B., de los Ríos, A., Nealson, K.H., Valea, S., Teresa García-González, M., Ascaso, C.,2013. Icarus 224, 334–346.http://www.sciencedirect.com/science/article/pii/S0019103512002369

Page 4: Geochemistry articles – June 2013

e4 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Biochemistry

Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomyBush, R.T., McInerney, F.A., 2013. Geochimica et Cosmochimica Acta 117, 161–179.http://www.sciencedirect.com/science/article/pii/S0016703713002317

Peptidoglycan at its peaks: How chromatographic analyses can reveal bacterial cell wall structure and assemblyDesmarais, S.M., De Pedro, M.A., Cava, F., Huang, K.C., 2013. Molecular Microbiology 89, 1–13.http://dx.doi.org/10.1111/mmi.12266

The sterol-C7 desaturase from the ciliate Tetrahymena thermophila Is a Rieske oxygenase, which is highly conserved in animalsNajle, S.R., Nusblat, A.D., Nudel, C.B., Uttaro, A.D., 2013. Molecular Biology and Evolution 30, 1630–1643.http://mbe.oxfordjournals.org/content/30/7/1630.abstract

Angular tricyclic benzofurans and related natural products of fungal origin. Isolation, biological activity and synthesisSimonetti, S.O., Larghi, E.L., Bracca, A.B.J., Kaufman, T.S., 2013. Natural Product Reports 30, 941–969.http://dx.doi.org/10.1039/C3NP70014C

Methylerythritol phosphate pathway of isoprenoid biosynthesisZhao, L., Chang, W.-c., Xiao, Y., Liu, H.-w., Liu, P., 2013. Annual Review of Biochemistry 82, 497–530.http://www.annualreviews.org/doi/abs/10.1146/annurev-biochem-052010-100934

Biodegradation

Utilization of drilling fluid base oil hydrocarbons by microorganisms isolated from diesel-polluted soilAgwu, O.A., Ilori, M.O., Nwachukwu, S.U., 2013. Soil and Sediment Contamination: An International Journal 22, 817–828.http://dx.doi.org/10.1080/15320383.2013.768205

Coal desulfurization with Acidithiobacillus ferrivorans, from Balya acidic mine drainageAytar, P., Kay, C.M., Mutlu, M.B., Çabuk, A., 2013. Energy & Fuels 27, 3090–3098.http://dx.doi.org/10.1021/ef400360t

Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22Kunihiro, M., Ozeki, Y., Nogi, Y., Hamamura, N., Kanaly, R.A., 2013. Applied and Environmental Microbiology 79, 4410–4420.http://aem.asm.org/content/79/14/4410.abstract

Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptideand directed evolutionPan, J., Wu, F., Wang, J., Yu, L., Khayyat, N.H., Stark, B.C., Kilbane II, J.J., 2013. Fuel 112, 385–390.http://www.sciencedirect.com/science/article/pii/S0016236113003669

Activity and viability of methanogens in anaerobic digestion of unsaturated and saturated long-chain fatty acidsSousa, D.Z., Salvador, A.F., Ramos, J., Guedes, A.P., Barbosa, S., Stams, A.J.M., Alves, M.M., Pereira, M.A., 2013. Applied and EnvironmentalMicrobiology 79, 4239–4245.http://aem.asm.org/content/79/14/4239.abstract

Carbon and chlorine isotope fractionation during microbial degradation of tetra- and trichloroetheneWiegert, C., Mandalakis, M., Knowles, T., Polymenakou, P.N., Aeppli, C., Machác�ková, J., Holmstrand, H., Evershed, R.P., Pancost, R.D.,Gustafsson, Ö., 2013. Environmental Science & Technology 47, 6449–6456.http://dx.doi.org/10.1021/es305236y

Biofuels/Biomass

Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicalsHawkins, A.S., McTernan, P.M., Lian, H., Kelly, R.M., Adams, M.W.W., 2013. Current Opinion in Biotechnology 24, 376–384.http://www.sciencedirect.com/science/article/pii/S0958166913000311

Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxideKeller, M.W., Schut, G.J., Lipscomb, G.L., Menon, A.L., Iwuchukwu, I.J., Leuko, T.T., Thorgersen, M.P., Nixon, W.J., Hawkins, A.S., Kelly, R.M.,Adams, M.W.W., 2013. Proceedings of the National Academy of Sciences 110, 5840–5845.http://www.pnas.org/content/110/15/5840.abstract

Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial speciesLiu, A., Zhu, T., Lu, X., Song, L., 2013. Applied Energy 111, 383–393.http://www.sciencedirect.com/science/article/pii/S0306261913003978

Can biochar and hydrochar stability be assessed with chemical methods?Naisse, C., Alexis, M., Plante, A., Wiedner, K., Glaser, B., Pozzi, A., Carcaillet, C., Criscuoli, I., Rumpel, C., 2013. Organic Geochemistry 60,40–44.http://www.sciencedirect.com/science/article/pii/S0146638013000946

Page 5: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e5

Production of advanced biofuels in engineered E. coliWen, M., Bond-Watts, B.B., Chang, M.C.Y., 2013. Current Opinion in Chemical Biology 17, 472–479.http://www.sciencedirect.com/science/article/pii/S1367593113000574

Biogeochemistry

Kinetic enrichment of 34S during proteobacterial thiosulfate oxidation and the conserved role of SoxB in S-S bond breakingAlam, M., Pyne, P., Mazumdar, A., Peketi, A., Ghosh, W., 2013. Applied and Environmental Microbiology 79, 4455–4464.http://aem.asm.org/content/79/14/4455.abstract

Biomarker and isotope evidence for microbially-mediated carbonate formation from gypsum and petroleum hydrocarbonsAloisi, G., Baudrand, M., Lécuyer, C., Rouchy, J.M., Pancost, R.D., Aref, M.A.M., Grossi, V., 2013. Chemical Geology 347, 199–207.http://www.sciencedirect.com/science/article/pii/S0009254113001216

U(VI) reduction in sulfate-reducing subsurface sediments amended with ethanol or acetateConverse, B.J., Wu, T., Findlay, R.H., Roden, E.E., 2013. Applied and Environmental Microbiology 79, 4173–4177.http://aem.asm.org/content/79/13/4173.abstract

Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacteriumRhodopseudomonas palustris strain TIE-1Eickhoff, M., Birgel, D., Talbot, H.M., Peckmann, J., Kappler, A., 2013. Geobiology 11, 268–278.http://dx.doi.org/10.1111/gbi.12033

Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal ventsFrank, K.L., Rogers, D.R., Olins, H.C., Vidoudez, C., Girguis, P.R., 2013. ISME Journal 7, 1391–1401.http://dx.doi.org/10.1038/ismej.2013.17

Capacity of Azospirillum thiophilum for lithotrophic growth coupled to oxidation of reduced sulfur compoundsFrolov, E.N., Belousova, E.V., Lavrinenko, K.S., Dubinina, G.A., Grabovich, M.Y., 2013. Microbiology 82, 271–279.http://dx.doi.org/10.1134/S0026261713030053

Citrobacter sp. strain GW-M mediates the coexistence of carbonate minerals with various morphologiesGuo, W., Ma, H., Li, F., Jin, Z., Li, J., Ma, F., Wang, C., 2013. Geomicrobiology Journal 30, 749–757.http://dx.doi.org/10.1080/01490451.2013.769650

Induction of calcium carbonate by Bacillus cereusHan, J., Lian, B., Ling, H., 2013. Geomicrobiology Journal 30, 682–689.http://dx.doi.org/10.1080/01490451.2012.758194

Contribution of anionic vs. neutral polymers to the formation of green rust 1 from c-FeOOH bioreductionJorand, F.P.A., Sergent, A.S., Remy, P.P., Bihannic, I., Ghanbaja, J., Lartiges, B., Hanna, K., Zegeye, A., 2013. Geomicrobiology Journal 30,600–615.http://dx.doi.org/10.1080/01490451.2012.746403

Strategies of aerobic microbial Fe acquisition from Fe-bearing montmorillonite clayKuhn, K.M., DuBois, J.L., Maurice, P.A., 2013. Geochimica et Cosmochimica Acta 117, 191–202.http://www.sciencedirect.com/science/article/pii/S0016703713002639

Partaking of Archaea to biogeochemical cycling in oxygen-deficient zones of meromictic saline Lake Faro (Messina, Italy)La Cono, V., La Spada, G., Arcadi, E., Placenti, F., Smedile, F., Ruggeri, G., Michaud, L., Raffa, C., De Domenico, E., Sprovieri, M., Mazzola, S.,Genovese, L., Giuliano, L., Slepak, V.Z., Yakimov, M.M., 2013. Environmental Microbiology 15, 1717–1733.http://dx.doi.org/10.1111/1462-2920.12060

Microbial oxidation of Fe2+ and pyrite exposed to fux of micromolar H2O2 in acidic mediaMa, Y., Lin, C., 2013. Scientific Reports 3, Article number:1979.http://dx.doi.org/10.1038/srep01979

Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent(Tutum Bay, Papua New Guinea)Meyer-Dombard, D.A.R., Amend, J.P., Osburn, M.R., 2013. Chemical Geology 348, 37–47.http://www.sciencedirect.com/science/article/pii/S0009254112001167

Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use changeNazaries, L., Pan, Y., Bodrossy, L., Baggs, E.M., Millard, P., Murrell, J.C., Singh, B.K., 2013. Applied and Environmental Microbiology 79,4031–4040.http://aem.asm.org/content/79/13/4031.abstract

Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradientO’Sullivan, L.A., Sass, A.M., Webster, G., Fry, J.C., Parkes, R.J., Weightman, A.J., 2013. FEMS Microbiology Ecology 85, 143–157.http://dx.doi.org/10.1111/1574-6941.12106

Page 6: Geochemistry articles – June 2013

e6 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1Ohtsuka, T., Yamaguchi, N., Makino, T., Sakurai, K., Kimura, K., Kudo, K., Homma, E., Dong, D.T., Amachi, S., 2013. Environmental Science &Technology 47, 6263–6271.http://dx.doi.org/10.1021/es400231x

Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity withinhydrothermal vent chimneysOlins, H.C., Rogers, D.R., Frank, K.L., Vidoudez, C., Girguis, P.R., 2013. Geobiology 11, 279–293.http://dx.doi.org/10.1111/gbi.12034

Arsenic bioremediation by biogenic iron oxides and sulfidesOmoregie, E.O., Couture, R.-M., Van Cappellen, P., Corkhill, C.L., Charnock, J.M., Polya, D.A., Vaughan, D., Vanbroekhoven, K., Lloyd, J.R., 2013.Applied and Environmental Microbiology 79, 4325–4335.http://aem.asm.org/content/79/14/4325.abstract

Manganese and arsenic oxidation performance of bacterium-Yunotaki 86 (BY86) from Hokkaido, Japan, and the bacterium’sphylogenyOzaki, T., Wang, X., Ohnuki, T., 2013. Geomicrobiology Journal 30, 559–565.http://dx.doi.org/10.1080/01490451.2012.726316

Characterization of microbial mats from a siliciclastic tidal flat (Bahía Blanca Estuary, Argentina)Pan, J., Bournod, C.N., Pizani, N.V., Cuadrado, D.G., Carmona, N.B., 2013. Geomicrobiology Journal 30, 665–674.http://dx.doi.org/10.1080/01490451.2012.757998

Chemical purity of Shewanella oneidensis-induced magnetitesPerez-Gonzalez, T., Valverde-Tercedor, C., Yebra-Rodriguez, A., Prozorov, T., Gonzalez-Muñoz, M.T., Arias-Peñalver, J.M., Jimenez-Lopez, C.,2013. Geomicrobiology Journal 30, 731–748.http://dx.doi.org/10.1080/01490451.2013.766286

Biomineralization toolkit: The importance of sample cleaning prior to the characterization of biomineral proteomesRamos-Silva, P., Marin, F., Kaandorp, J., Marie, B., 2013. Proceedings of the National Academy of Sciences 110, E2144-E2146.http://www.pnas.org/content/110/24/E2144.short

Dissimilatory sulphate reduction in hypersaline coastal pans: An integrated microbiological and geochemical studyRoychoudhury, A.N., Cowan, D., Porter, D., Valverde, A., 2013. Geobiology 11, 224–233.http://dx.doi.org/10.1111/gbi.12027

Mineral influence on microbial survival during carbon sequestrationSantillan, E.U., Kirk, M.F., Altman, S.J., Bennett, P.C., 2013. Geomicrobiology Journal 30, 578–592.http://dx.doi.org/10.1080/01490451.2013.767396

Microbial biogeochemistry of Boiling Springs Lake: A physically dynamic, oligotrophic, low-pH geothermal ecosystemSiering, P.L., Wolfe, G.V., Wilson, M.S., Yip, A.N., Carey, C.M., Wardman, C.D., Shapiro, R.S., Stedman, K.M., Kyle, J., Yuan, T., Van Nostrand, J.D.,He, Z., Zhou, J., 2013. Geobiology 11, 356–376.http://dx.doi.org/10.1111/gbi.12041

Changes in prokaryote and eukaryote assemblages along a gradient of hydrocarbon contamination in groundwaterStephenson, S., Chariton, A.A., Holley, M.P., O’Sullivan, M., Gillings, M.R., Hose, G.C., 2013. Geomicrobiology Journal 30, 623–634.http://dx.doi.org/10.1080/01490451.2012.746408

Geomicrobiological properties of Tertiary sedimentary rocks from the deep terrestrial subsurfaceSuko, T., Kouduka, M., Fukuda, A., Nanba, K., Takahashi, M., Ito, K., Suzuki, Y., 2013. Physics and Chemistry of the Earth, Parts A/B/C 58–60,28–33.http://www.sciencedirect.com/science/article/pii/S1474706513000338

Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinizationTiago, I., Veríssimo, A., 2013. Environmental Microbiology 15, 1687–1706.http://dx.doi.org/10.1111/1462-2920.12034

As(III) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2Watanabe, J.i., Tani, Y., Chang, J., Miyata, N., Naitou, H., Seyama, H., 2013. Chemical Geology 347, 227–232.http://www.sciencedirect.com/science/article/pii/S0009254113001265

Influence of arsenate on lipid peroxidation levels and antioxidant enzyme activities in Bacillus cereus xtrain XZM002 isolated fromhigh arsenic aquifer sedimentsXie, Z., Zhou, Y., Wang, Y., Luo, Y., Sun, X., 2013. Geomicrobiology Journal 30, 645–652.http://dx.doi.org/10.1080/01490451.2012.746405

Characterization of Rhizobium sp. Q32 isolated from weathered rocks and its role in silicate mineral weatheringZhao, F., Qiu, G., Huang, Z., He, L., Sheng, X., 2013. Geomicrobiology Journal 30, 616–622.http://dx.doi.org/10.1080/01490451.2012.746406

Page 7: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e7

Carbon Cycle

Distinct bacterial production–DOC–primary production relationships and implications for biogenic C-cycling in the South China SeashelfLai, C.C., Fu, Y.W., Liu, H.B., Kuo, H.Y., Wang, K.W., Lin, C.H., Tai, J.H., Wong, G.T.F., Lee, K.Y., Chen, T.Y., Yamamoto, Y., Chow, M.F., Kobayashi,Y., Shiah, F.K., 2013. Biogeosciences Discussions 10, 9069–9090.http://www.biogeosciences-discuss.net/10/9069/2013/

Sink or link? The bacterial role in benthic carbon cycling in the Arabian sea oxygen minimum zonePozzato, L., Van Oevelen, D., Moodley, L., Soetaert, K., Middelburg, J.J., 2013. Biogeosciences Discussions 10, 10399–10428.http://www.biogeosciences-discuss.net/10/10399/2013/

A dual isotope approach to isolate carbon pools of different turnover timesTorn, M.S., Kleber, M., Zavaleta, E.S., Zhu, B., Field, C.B., Trumbore, S.E., 2013. Biogeosciences Discussions 10, 10189–10227.http://www.biogeosciences-discuss.net/10/10189/2013/

Carbon Sequestration

Real-time evaluation of carbon dioxide production and sequestration in a gas fieldAschehoug, M., Kabir, C.S., 2013. SPE Reservoir Evaluation & Engineering 16, 134–143, SPE 163149-PA.http://dx.doi.org/10.2118/163149-PA

Approximate analytical solutions for CO2 injectivity into saline formationsAzizi, E., Cinar, Y., 2013. SPE Reservoir Evaluation & Engineering 16, 123–133, SPE 165575-PA.http://dx.doi.org/10.2118/165575-PA

The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbonsequestrationBarry, J.P., Buck, K.R., Lovera, C., Brewer, P.G., Seibel, B.A., Drazen, J.C., Tamburri, M.N., Whaling, P.J., Kuhnz, L., Pane, E., 2013. Deep SeaResearch Part II: Topical Studies in Oceanography 92, 249–260.http://www.sciencedirect.com/science/article/pii/S0967064513001355

Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challengesCastelletto, N., Gambolati, G., Teatini, P., 2013. Journal of Geophysical Research: Solid Earth 118, 2417–2428.http://dx.doi.org/10.1002/jgrb.50180

Integrating hydrodynamic analysis of flow systems and induced-pressure decline at the Otway CO2 storage site to improve reservoirhistory matchingHortle, A., Xu, J., Dance, T., 2013. Marine and Petroleum Geology 45, 159–170.http://www.sciencedirect.com/science/article/pii/S0264817213000974

Dense gas dispersion modeling of CO2 released from carbon capture and storage infrastructure into a complex environmentHsieh, K.-J., Lien, F.-S., Yee, E., 2013. International Journal of Greenhouse Gas Control 17, 127–139.http://www.sciencedirect.com/science/article/pii/S1750583613002065

Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery usingreservoir simulationLiu, F., Ellett, K., Xiao, Y., Rupp, J.A., 2013. International Journal of Greenhouse Gas Control 17, 111–126.http://www.sciencedirect.com/science/article/pii/S1750583613001977

Experimental assessment of CO2-mineral-toxic ion interactions in a simplified freshwater aquifer: Implications for CO2 leakage fromdeep geological storageMontes-Hernandez, G., Renard, F., Lafay, R., 2013. Environmental Science & Technology 47, 6247–6253.http://dx.doi.org/10.1021/es3053448

Serpentinite carbonation for CO2 sequestrationPower, I.M., Wilson, S.A., Dipple, G.M., 2013. Elements 9, 115–121.http://elements.geoscienceworld.org/content/9/2/115.abstract

Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 productionRau, G.H., Carroll, S.A., Bourcier, W.L., Singleton, M.J., Smith, M.M., Aines, R.D., 2013. Proceedings of the National Academy of Sciences 110,10095–10100.http://www.pnas.org/content/110/25/10095.abstract

Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systemsSchwarzenbach, E.M., Früh-Green, G.L., Bernasconi, S.M., Alt, J.C., Plas, A., 2013. Chemical Geology 351, 115–133.http://www.sciencedirect.com/science/article/pii/S0009254113002222

Modeling the performance of large-scale CO2 storage systems: A comparison of different sensitivity analysis methodsWainwright, H.M., Finsterle, S., Zhou, Q., Birkholzer, J.T., 2013. International Journal of Greenhouse Gas Control 17, 189–205.http://www.sciencedirect.com/science/article/pii/S1750583613002107

Page 8: Geochemistry articles – June 2013

e8 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Coal/Peat/Lignite Geochemistry

Novel simplification approach for large-scale structural models of coal: Three-dimensional molecules to two-dimensional lattices.Part 3: Reactive lattice simulationsAlvarez, Y.E., Moreno, B.M., Klein, M.T., Watson, J.K., Castro-Marcano, F., Mathews, J.P., 2013. Energy & Fuels 27, 2915–2922.http://pubs.acs.org/doi/abs/10.1021/ef4001105

Classification of coal seams for coal bed methane exploitation in central part of Jharia coalfield, India – A statistical approachChatterjee, R., Paul, S., 2013. Fuel 111, 20–29.http://www.sciencedirect.com/science/article/pii/S0016236113002937

Characterization of physicochemically abnormal coals in the Matarere Formation (Cerro Saroche National Park, Venezuela)Esteves, I., Martínez, M., Escobar, M., Márquez, G., Moreno, O., Ruggiero, A., Fortes, J.C., 2013. Energy Sources, Part A: Recovery, Utilization,and Environmental Effects 35, 1241–1248.http://dx.doi.org/10.1080/15567036.2010.511435

Application of gas chromatography/mass spectrometry in studies on separation and identification of organic species in coalsFan, X., Wei, X.-Y., Zong, Z.-M., 2013. Fuel 109, 28–32.http://www.sciencedirect.com/science/article/pii/S0016236112007156

Application of BIB–SEM technology to characterize macropore morphology in coalGiffin, S., Littke, R., Klaver, J., Urai, J.L., 2013. International Journal of Coal Geology 114, 85–95.http://www.sciencedirect.com/science/article/pii/S016651621300061X

Elucidation of the structural and molecular properties of typical South African coalsHattingh, B.B., Everson, R.C., Neomagus, H.W.J.P., Bunt, J.R., van Niekerk, D., Jordaan, J.H.L., Mathews, J.P., 2013. Energy & Fuels 27,3161–3172.http://dx.doi.org/10.1021/ef400633d

An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: Paleopathology of faunal and fungal invasions into woodand the recognizable clues for their activityHower, J.C., O’Keefe, J.M.K., Wagner, N.J., Dai, S., Wang, X., Xue, W., 2013. International Journal of Coal Geology 114, 44–53.http://www.sciencedirect.com/science/article/pii/S0166516213001122

Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganateHuang, Z., Urynowicz, M.A., Colberg, P.J.S., 2013. Fuel 111, 813–819.http://www.sciencedirect.com/science/article/pii/S0016236113002834

High pressure desorption equilibrium of lignite obtained by the novel isochoric methodKokocinska, M., Pakowski, Z., 2013. Fuel 109, 627–634.http://www.sciencedirect.com/science/article/pii/S0016236113001567

Evaluation and modeling of gas permeability changes in anthracite coalsLi, J., Liu, D., Yao, Y., Cai, Y., Chen, Y., 2013. Fuel 111, 606–612.http://www.sciencedirect.com/science/article/pii/S0016236113002512

Characteristics of coalbed methane reservoirs in Faer coalfield, western GuizhouLi, M., Jiang, B., Lin, S., Lan, F., Zhang, G., 2013. Energy, Exploration & Exploitation 31, 411–428.http://dx.doi.org/10.1260/0144-5987.31.3.411

Investigation of coalbed methane potential in low-rank coal reservoirs – Free and soluble gas contentsLiu, A., Fu, X., Wang, K., An, H., Wang, G., 2013. Fuel 112, 14–22.http://www.sciencedirect.com/science/article/pii/S0016236113004444

A comparative study on structural differences of xylite and matrix lignite lithotypes by means of FT-IR, XRD, SEM and TGA analyses:An example from the Neogene Greek lignite depositsOikonomopoulos, I.K., Perraki, M., Tougiannidis, N., Perraki, T., Frey, M.J., Antoniadis, P., Ricken, W., 2013. International Journal of CoalGeology 115, 1–12.http://www.sciencedirect.com/science/article/pii/S0166516213001092

Coal cleat permeability for gas movement under triaxial, non-zero lateral strain condition: A theoretical and experimental studyPerera, M.S.A., Ranjith, P.G., Choi, S.K., 2013. Fuel 109, 389–399.http://www.sciencedirect.com/science/article/pii/S0016236113001683

Application of catastrophe theory to CBM reservoir evaluation of the Shagou Coalfield, Junggar BasinSun, W., Ran, M., Xiong, J., Zhang, J., Zhao, W., Liu, W., 2013. Natural Gas Industry 33, 28–31.http://www.trqgy.com/EN/abstract/abstract12593.shtml

Sedimentary facies and coal-accumulation of the Early-Middle Jurassic in Toksun coalfield northwestern ChinaXiao, L., Zhao, C., Tang, S., Liu, Z., Yang, W., Yuan, T., 2013. Energy, Exploration & Exploitation 31, 459–470.http://dx.doi.org/10.1260/0144-5987.31.3.459

Page 9: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e9

Characteristics of CBM gas reservoirs and their exploration potential in the Chaoshui Basin, northern Hexi CorridorYang, M., Sun, B., Sun, F., Chen, G., Yang, S., 2013. Natural Gas Industry 33, 12–16.http://www.trqgy.com/EN/abstract/abstract12590.shtml

Investigation on pore structures of a medium volatile bituminous coal with solvent extraction testsZhang, X., Miao, S., Wang, G., Qin, Y., Sang, S., 2013. Energy, Exploration & Exploitation 31, 337–352.http://dx.doi.org/10.1260/0144-5987.31.3.337

Numerical description of coalbed methane desorption stages based on isothermal adsorption experimentZhang, Z., Qin, Y., Wang, G., Fu, X., 2013. Science China Earth Sciences 56, 1029–1036.http://dx.doi.org/10.1007/s11430-013-4597-2

Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamicsZheng, M., Li, X., Liu, J., Guo, L., 2013. Energy & Fuels 27, 2942–2951.http://dx.doi.org/10.1021/ef400143z

Cosmochemistry

Fluid expulsion in terrestrial sedimentary basins: A process providing potential analogs for giant polygons and mounds in themartian lowlandsAllen, C.C., Oehler, D.Z., Etiope, G., Rensbergen, P.V., Baciu, C., Feyzullayev, A., Martinelli, G., Tanaka, K., Rooij, D.V., 2013. Icarus 224,424–432.http://www.sciencedirect.com/science/article/pii/S0019103512003910

Mineralogy of saline perennial cold springs on Axel Heiberg Island, Nunavut, Canada and implications for spring deposits on MarsBattler, M.M., Osinski, G.R., Banerjee, N.R., 2013. Icarus 224, 364–381.http://www.sciencedirect.com/science/article/pii/S0019103512003508

Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition onMarsBattler, M.M., Osinski, G.R., Lim, D.S.S., Davila, A.F., Michel, F.A., Craig, M.A., Izawa, M.R.M., Leoni, L., Slater, G.F., Fairén, A.G., Preston, L.J.,Banerjee, N.R., 2013. Icarus 224, 382–398.http://www.sciencedirect.com/science/article/pii/S0019103512001893

A hypersaline spring analogue in Manitoba, Canada for potential ancient spring deposits on MarsBerard, G., Applin, D., Cloutis, E., Stromberg, J., Sharma, R., Mann, P., Grasby, S., Bezys, R., Horgan, B., Londry, K., Rice, M., Last, B., Last, F.,Badiou, P., Goldsborough, G., Bell III, J., 2013. Icarus 224, 399–412.http://www.sciencedirect.com/science/article/pii/S0019103513000079

Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-likeinstruments for CheMin, SAM and MOMABishop, J.L., Franz, H.B., Goetz, W., Blake, D.F., Freissinet, C., Steininger, H., Goesmann, F., Brinckerhoff, W.B., Getty, S., Pinnick, V.T., Mahaffy,P.R., Dyar, M.D., 2013. Icarus 224, 309–325.http://www.sciencedirect.com/science/article/pii/S0019103512001881

Missions to Mars: Characterisation of Mars analogue rocks for the International Space Analogue Rockstore (ISAR)Bost, N., Westall, F., Ramboz, C., Foucher, F., Pullan, D., Meunier, A., Petit, S., Fleischer, I., Klingelhöfer, G., Vago, J.L., 2013. Planetary andSpace Science 82–83, 113–127.http://www.sciencedirect.com/science/article/pii/S0032063313000883

A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-massspectrometryCallahan, M.P., Burton, A.S., Elsila, J.E., Baker, E.M., Smith, K.E., Glavin, D.P., Dworkin, J.P., 2013. Meteoritics & Planetary Science 48, 786–795.http://dx.doi.org/10.1111/maps.12103

Characterization of laboratory analogs of interstellar/cometary organic residues using very high resolution mass spectrometryDanger, G., Orthous-Daunay, F.R., de Marcellus, P., Modica, P., Vuitton, V., Duvernay, F., Flandinet, L., Le Sergeant d’Hendecourt, L., Thissen,R., Chiavassa, T., 2013. Geochimica et Cosmochimica Acta 118, 184–201.http://www.sciencedirect.com/science/article/pii/S0016703713002883

Isotopic and chemical variation of organic nanoglobules in primitive meteoritesDe Gregorio, B.T., Stroud, R.M., Nittler, L.R., Alexander, C.M.O.D., Bassim, N.D., Cody, G.D., Kilcoyne, A.L.D., Sandford, S.A., Milam, S.N., Nuevo,M., Zega, T.J., 2013. Meteoritics & Planetary Science 48, 904–928.http://dx.doi.org/10.1111/maps.12109

Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methaneproduction on MarsEtiope, G., Ehlmann, B.L., Schoell, M., 2013. Icarus 224, 276–285.http://www.sciencedirect.com/science/article/pii/S0019103512001832

Page 10: Geochemistry articles – June 2013

e10 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Impact bombardment of the terrestrial planets and the early history of the Solar SystemFassett, C.I., Minton, D.A., 2013. Nature Geoscience 6, 520–524.http://dx.doi.org/10.1038/ngeo1841

Abiotic production of methane in terrestrial planetsGuzmán-Marmolejo, A., Segura, A., Escobar-Briones, E., 2013. Astrobiology 13, 550–559.http://dx.doi.org/10.1089/ast.2012.0817

Identification of nitrogenous organic species in Titan aerosols analogs: Nitrogen fixation routes in early atmospheresHe, C., Smith, M.A., 2013. Icarus 226, 33–40.http://www.sciencedirect.com/science/article/pii/S0019103513002133

Analogue sites for Mars missions: NASA’s Mars Science Laboratory and beyond – Overview of an international workshop held at TheWoodlands, Texas, on March 5–6, 2011Hipkin, V.J., Voytek, M.A., Meyer, M.A., Léveillé, R., Domagal-Goldman, S.D., 2013. Icarus 224, 261–267.http://www.sciencedirect.com/science/article/pii/S0019103513000833

Amorphization and D/H fractionation of kerogens during experimental electron irradiation: Comparison with chondritic organicmatterLe Guillou, C., Remusat, L., Bernard, S., Brearley, A.J., Leroux, H., 2013. Icarus 226, 101–110.http://www.sciencedirect.com/science/article/pii/S0019103513002030

Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101: Evidence for aqueous alteration prior to complex mixingLindgren, P., Lee, M.R., Sofe, M.R., Zolensky, M.E., 2013. Meteoritics & Planetary Science 48, 1074–1090.http://dx.doi.org/10.1111/maps.12133

Modeling serpentinization: Applied to the early evolution of Enceladus and MimasMalamud, U., Prialnik, D., 2013. Icarus 225, 763–774.http://www.sciencedirect.com/science/article/pii/S0019103513001899

Impact-generated hydrothermal systems on Earth and MarsOsinski, G.R., Tornabene, L.L., Banerjee, N.R., Cockell, C.S., Flemming, R., Izawa, M.R.M., McCutcheon, J., Parnell, J., Preston, L.J., Pickersgill,A.E., Pontefract, A., Sapers, H.M., Southam, G., 2013. Icarus 224, 347–363.http://www.sciencedirect.com/science/article/pii/S0019103512003491

Perchlorate radiolysis on Mars and the origin of martian soil reactivityQuinn, R.C., Martucci, H.F.H., Miller, S.R., Bryson, C.E., Grunthaner, F.J., Grunthaner, P.J., 2013. Astrobiology 13, 515–520.http://dx.doi.org/10.1089/ast.2013.0999

Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritageSaal, A.E., Hauri, E.H., Van Orman, J.A., Rutherford, M.J., 2013. Science 340, 1317–1320.http://www.sciencemag.org/content/340/6138/1317.abstract

Quantifying noble gas contamination during terrestrial alteration in Martian meteorites from AntarcticaSchwenzer, S.P., Greenwood, R.C., Kelley, S.P., Ott, U., Tindle, A.G., Haubold, R., Herrmann, S., Gibson, J.M., Anand, M., Hammond, S., Franchi,I.A., 2013. Meteoritics & Planetary Science 48, 929–954.http://dx.doi.org/10.1111/maps.12110

Enceladus: An active ice world in the Saturn systemSpencer, J.R., Nimmo, F., 2013. Annual Review of Earth and Planetary Sciences 41, 693–717.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-050212-124025

Isotopic and geochemical investigation of two distinct Mars analog environments using evolved gas techniques in Svalbard, NorwayStern, J.C., McAdam, A.C., Ten Kate, I.L., Bish, D.L., Blake, D.F., Morris, R.V., Bowden, R., Fogel, M.L., Glamoclija, M., Mahaffy, P.R., Steele, A.,Amundsen, H.E.F., 2013. Icarus 224, 297–308.http://www.sciencedirect.com/science/article/pii/S0019103512002849

Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogueSzponar, N., Brazelton, W.J., Schrenk, M.O., Bower, D.M., Steele, A., Morrill, P.L., 2013. Icarus 224, 286–296.http://www.sciencedirect.com/science/article/pii/S0019103512002783

Removing perchlorate from samples to facilitate organics detection by pyrolitic methodsvon Kiparski, G.R., Parker, D.R., Tsapin, A.I., 2013. Icarus 225, 636–642.http://www.sciencedirect.com/science/article/pii/S0019103513001176

Martian fluvial conglomerates at Gale CraterWilliams, R.M.E., Grotzinger, J.P., Dietrich, W.E., Gupta, S., Sumner, D.Y., Wiens, R.C., Mangold, N., Malin, M.C., Edgett, K.S., Maurice, S., Forni,O., Gasnault, O., Ollila, A., Newsom, H.E., Dromart, G., Palucis, M.C., Yingst, R.A., Anderson, R.B., Herkenhoff, K.E., Le Mouélic, S., Goetz, W.,Madsen, M.B., Koefoed, A., Jensen, J.K., Bridges, J.C., Schwenzer, S.P., Lewis, K.W., Stack, K.M., Rubin, D., Kah, L.C., Bell, J.F., Farmer, J.D., Sul-livan, R., Van Beek, T., Blaney, D.L., Pariser, O., Deen, R.G., Team, M.S., 2013. Science 340, 1068–1072.http://www.sciencemag.org/content/340/6136/1068.abstract

Page 11: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e11

Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y agoWittke, J.H., Weaver, J.C., Bunch, T.E., Kennett, J.P., Kennett, D.J., Moore, A.M.T., Hillman, G.C., Tankersley, K.B., Goodyear, A.C., Moore, C.R.,Daniel, I.R., Ray, J.H., Lopinot, N.H., Ferraro, D., Israde-Alcántara, I., Bischoff, J.L., DeCarli, P.S., Hermes, R.E., Kloosterman, J.B., Revay, Z.,Howard, G.A., Kimbel, D.R., Kletetschka, G., Nabelek, L., Lipo, C.P., Sakai, S., West, A., Firestone, R.B., 2013. Proceedings of the NationalAcademy of Sciences 110, E2088–E2097.http://www.pnas.org/content/110/23/E2088.abstract

Environmental Geochemistry

Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependentclusteringAcosta-González, A., Rosselló-Móra, R., Marqués, S., 2013. Applied and Environmental Microbiology 79, 3667–3676.http://aem.asm.org/content/79/12/3667.abstract

Characterization and quantification of mining-related ‘‘naphthenic acids’’ in groundwater near a major oil sands tailings pondAhad, J.M.E., Pakdel, H., Savard, M.M., Calderhead, A.I., Gammon, P.R., Rivera, A., Peru, K.M., Headley, J.V., 2013. Environmental Science &Technology 47, 5023–5030.http://dx.doi.org/10.1021/es3051313

Metabolomic investigations of anaerobic hydrocarbon-impacted environmentsCallaghan, A.V., 2013. Current Opinion in Biotechnology 24, 506–515.http://www.sciencedirect.com/science/article/pii/S0958166912001267

Rhamnolipids enhance marine oil spill bioremediation in laboratory systemChen, Q., Bao, M., Fan, X., Liang, S., Sun, P., 2013. Marine Pollution Bulletin 71, 269–275.http://www.sciencedirect.com/science/article/pii/S0025326X13000520

Process based life-cycle assessment of natural gas from the Marcellus ShaleDale, A.T., Khanna, V., Vidic, R.D., Bilec, M.M., 2013. Environmental Science & Technology 47, 5459–5466.http://dx.doi.org/10.1021/es304414q

Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulationDong, Z.-Y., Xing, D.-F., Huang, W.-H., Zhang, H.-F., 2013. Journal of Hazardous Materials 260, 399–408.http://www.sciencedirect.com/science/article/pii/S0304389413003191

Multitissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulusgrandis)Dubansky, B., Whitehead, A., Miller, J.T., Rice, C.D., Galvez, F., 2013. Environmental Science & Technology 47, 5074–5082.http://dx.doi.org/10.1021/es400458p

Selective solvent extraction and characterization of the acid extractable fraction of Athabasca oils sands process waters by Orbitrapmass spectrometryHeadley, J.V., Peru, K.M., Fahlman, B., Colodey, A., McMartin, D., 2013. International Journal of Mass Spectrometry 345–347, 104–108.http://www.sciencedirect.com/science/article/pii/S1387380612003004?v=s5

Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwaterHolmes, D.E., Giloteaux, L., Williams, K.H., Wrighton, K.C., Wilkins, M.J., Thompson, C.A., Roper, T.J., Long, P.E., Lovley, D.R., 2013. ISMEJournal 7, 1286–1298.http://dx.doi.org/10.1038/ismej.2013.20

Aliphatic and aromatic biomarkers for petroleum hydrocarbon monitoring in Khniss Tunisian-Coast, (Mediterranean Sea)Ines, Z., Amina, B., Mahmoud, R., Dalila, S.-M., 2013. Procedia Environmental Sciences 18, 211–220.http://www.sciencedirect.com/science/article/pii/S187802961300159X

Century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specificcarbon isotope signaturesJautzy, J., Ahad, J.M.E., Gobeil, C., Savard, M.M., 2013. Environmental Science & Technology 47, 6155–6163.http://dx.doi.org/10.1021/es400642e

In situ microbial metabolism of aromatic-hydrocarbon environmental pollutantsJeon, C.O., Madsen, E.L., 2013. Current Opinion in Biotechnology 24, 474–481.http://www.sciencedirect.com/science/article/pii/S0958166912001280

Interfacial film formation: Influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tankKing, T.L., Clyburne, J.A.C., Lee, K., Robinson, B.J., 2013. Marine Pollution Bulletin 71, 83–91.http://www.sciencedirect.com/science/article/pii/S0025326X13001719

Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soilsLi, J., Song, X., Hu, G., Thring, R.W., 2013. Journal of Environmental Science and Health, Part A 48, 1378–1389.http://www.tandfonline.com/doi/abs/10.1080/10934529.2013.781885

Page 12: Geochemistry articles – June 2013

e12 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Efficient tools for marine operational forecast and oil spill trackingMarta-Almeida, M., Ruiz-Villarreal, M., Pereira, J., Otero, P., Cirano, M., Zhang, X., Hetland, R.D., 2013. Marine Pollution Bulletin 71, 139–151.http://www.sciencedirect.com/science/article/pii/S0025326X13001628

Polycyclic aromatic hydrocarbons in surface water and bed sediments of the Hungarian upper section of the Danube RiverNagy, A.S., Simon, G., Szabó, J., Vass, I., 2013. Environmental Monitoring and Assessment 185, 4619–4631.http://dx.doi.org/10.1007/s10661-012-2892-6

Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: Assessment and source recognitionof petroleum hydrocarbonsNemr, A., El-Sadaawy, M.M., Khaled, A., Draz, S.O., 2013. Environmental Monitoring and Assessment 185, 4571–4589.http://dx.doi.org/10.1007/s10661-012-2889-1

Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spillsNikolopoulou, M., Pasadakis, N., Kalogerakis, N., 2013. Marine Pollution Bulletin 72, 165–173.http://www.sciencedirect.com/science/article/pii/S0025326X13001896

Degradation of spiked pyrene and non-pyrene hydrocarbons in soil microcosms by Pseudomonas species isolated from petroleumpolluted soilsObayori, O.S., Ilori, M.O., Amund, O.O., 2013. Petroleum Science and Technology 31, 1674–1680.http://dx.doi.org/10.1080/10916466.2010.551240

Long-term assessment of natural attenuation: Statistical approach on soils with aged PAH contaminationOuvrard, S., Chenot, E.-D., Masfaraud, J.-F., Schwartz, C., 2013. Biodegradation 24, 539–548.http://dx.doi.org/10.1007/s10532-013-9618-5

Characterization of oil sands process-affected waters by liquid chromatography Orbitrap mass spectrometryPereira, A.S., Bhattacharjee, S., Martin, J.W., 2013. Environmental Science & Technology 47, 5504–5513.http://dx.doi.org/10.1021/es401335t

Assessing the damage caused by Deepwater Horizon: Not just another Exxon ValdezPerrons, R.K., 2013. Marine Pollution Bulletin 71, 20–22.http://www.sciencedirect.com/science/article/pii/S0025326X13001562

Aromatic naphthenic acids in oil sands process-affected water, resolved by GCxGC-MS, only weakly induce the gene for vitellogeninproduction in zebrafish (Danio rerio) larvaeReinardy, H.C., Scarlett, A.G., Henry, T.B., West, C.E., Hewitt, L.M., Frank, R.A., Rowland, S.J., 2013. Environmental Science & Technology 47,6614–6620.http://dx.doi.org/10.1021/es304799m

Quantitative risk model for polycyclic aromatic hydrocarbon photoinduced toxicity in Pacific herring following the Exxon Valdez oilspillSellin Jeffries, M.K., Claytor, C., Stubblefield, W., Pearson, W.H., Oris, J.T., 2013. Environmental Science & Technology 47, 5450–5458.http://dx.doi.org/10.1021/es400759y

Polycyclic aromatic hydrocarbons (PAHs) in sediments from the Ologe Lagoon, NigeriaSojinu, O.S., Sonibare, O.O., Zeng, E.Y., 2013. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35, 1524–1531.http://dx.doi.org/10.1080/15567036.2010.528291

Polycyclic aromatic hydrocarbon levels and measures of oxidative stress in the Mediterranean endemic bivalve Pinna nobilisexposed to the Don Pedro oil spillSureda, A., Tejada, S., Box, A., Deudero, S., 2013. Marine Pollution Bulletin 71, 69–73.http://www.sciencedirect.com/science/article/pii/S0025326X13001732

Biodegradation of aged diesel in diverse soil matrixes: Impact of environmental conditions and bioavailability on microbialremediation capacitySutton, N., Gaans, P., Langenhoff, A.M., Maphosa, F., Smidt, H., Grotenhuis, T., Rijnaarts, H.M., 2013. Biodegradation 24, 487–498.http://dx.doi.org/10.1007/s10532-012-9605-2

Fingerprint and weathering characteristics of crude oils after Dalian oil spill, ChinaWang, C., Chen, B., Zhang, B., He, S., Zhao, M., 2013. Marine Pollution Bulletin 71, 64–68.http://www.sciencedirect.com/science/article/pii/S0025326X13001744

Forensic identification of spilled biodiesel and its blends with petroleum oil based on fingerprinting informationYang, Z., Hollebone, B.P., Wang, Z., Yang, C., Brown, C., Landriault, M., 2013. Journal of Separation Science 36, 1788–1796.http://dx.doi.org/10.1002/jssc.201300039

Acid–base properties of dissolved organic matter from pristine and oil-impacted marshes of Barataria Bay, LouisianaZhang, Y., Green, N.W., Perdue, E.M., 2013. Marine Chemistry 155, 42–49.http://www.sciencedirect.com/science/article/pii/S0304420313000868

Page 13: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e13

Source and migration of short-chain chlorinated paraffins in the coastal East China Sea using multiproxies of marine organicgeochemistryZhao, Z., Li, H., Wang, Y., Li, G., Cao, Y., Zeng, L., Lan, J., Wang, T., Jiang, G., 2013. Environmental Science & Technology 47, 5013–5022.http://dx.doi.org/10.1021/es304899j

Evolution/Paleontology/Palynology

The meaning of stromatolitesBosak, T., Knoll, A.H., Petroff, A.P., 2013. Annual Review of Earth and Planetary Sciences 41, 21–44.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-042711-105327

Diatom microfossils from Cretaceous and Eocene sediments contain native silica precipitating long-chain polyaminesBridoux, M.C., Ingalls, A.E., 2013. Geobiology 11, 215–223.http://dx.doi.org/10.1111/gbi.12028

Evolution of the plankton paleome in the Black Sea from the Deglacial to AnthropoceneCoolen, M.J.L., Orsi, W.D., Balkema, C., Quince, C., Harris, K., Sylva, S.P., Filipova-Marinova, M., Giosan, L., 2013. Proceedings of the NationalAcademy of Sciences 110, 8609–8614.http://www.pnas.org/content/110/21/8609.abstract

A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birdsGodefroit, P., Cau, A., Dong-Yu, H., Escuillie, F., Wenhao, W., Dyke, G., 2013. Nature 498, 359–362.http://dx.doi.org/10.1038/nature12168

Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradientJablonski, D., Belanger, C.L., Berke, S.K., Huang, S., Krug, A.Z., Roy, K., Tomasovych, A., Valentine, J.W., 2013. Proceedings of the NationalAcademy of Sciences 110, 10487–10494.http://www.pnas.org/content/110/26/10487.abstract

The oldest known primate skeleton and early haplorhine evolutionNi, X., Gebo, D.L., Dagosto, M., Meng, J., Tafforeau, P., Flynn, J.J., Beard, K.C., 2013. Nature 498, 60–64.http://dx.doi.org/10.1038/nature12200

A basin redox transect at the dawn of animal lifeSperling, E.A., Halverson, G.P., Knoll, A.H., Macdonald, F.A., Johnston, D.T., 2013. Earth and Planetary Science Letters 371–372, 143–155.http://www.sciencedirect.com/science/article/pii/S0012821X13001842

Splendid and seldom isolated: The paleobiogeography of PatagoniaWilf, P., Cúneo, N.R., Escapa, I.H., Pol, D., Woodburne, M.O., 2013. Annual Review of Earth and Planetary Sciences 41, 561–603.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-050212-124217

Evolution: Origins of Life/Microbial Genomics

Competition between model protocells driven by an encapsulated catalystAdamala, K., Szostak, J.W., 2013. Nature Chemistry 5, 495–501.http://dx.doi.org/10.1038/nchem.1650

Survivability and abiotic reactions of selected amino acids in different hydrothermal system simulatorsChandru, K., Imai, E., Kaneko, T., Obayashi, Y., Kobayashi, K., 2013. Origins of Life and Evolution of Biospheres 43, 99–108.http://dx.doi.org/10.1007/s11084-013-9330-9

Potassium ions are more effective than sodium ions in salt induced peptide formationDubina, M.V., Vyazmin, S.Y., Boitsov, V.M., Nikolaev, E.N., Popov, I.A., Kononikhin, A.S., Eliseev, I.E., Natochin, Y.V., 2013. Origins of Life andEvolution of Biospheres 43, 109–118.http://dx.doi.org/10.1007/s11084-013-9326-5

A possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactorsFox, S., Strasdeit, H., 2013. Astrobiology 13, 578–595.http://dx.doi.org/10.1089/ast.2012.0934

Prebiotic chemistry within a simple impacting icy mixtureGoldman, N., Tamblyn, I., 2013. The Journal of Physical Chemistry A 117, 5124–5131.http://dx.doi.org/10.1021/jp402976n

Atmospheric production of glycolaldehyde under hazy prebiotic conditionsHarman, C.E., Kasting, J.F., Wolf, E.T., 2013. Origins of Life and Evolution of Biospheres 43, 77–98.http://dx.doi.org/10.1007/s11084-013-9332-7

Biological evolution of replicator systems: Towards a quantitative approachMartin, O., Horvath, J.E., 2013. Origins of Life and Evolution of Biospheres 43, 151–160.http://dx.doi.org/10.1007/s11084-013-9327-4

Page 14: Geochemistry articles – June 2013

e14 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Miller-Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years?McCollom, T.M., 2013. Annual Review of Earth and Planetary Sciences 41, 207–229.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-040610-133457

Serpentinites, hydrogen, and lifeMcCollom, T.M., Seewald, J.S., 2013. Elements 9, 129–134.http://elements.geoscienceworld.org/content/9/2/129.abstract

Life is a self-organizing machine driven by the Informational Cycle of BrillouinMichel, D., 2013. Origins of Life and Evolution of Biospheres 43, 137–150.http://dx.doi.org/10.1007/s11084-013-9329-2

Degradation of glycine and alanine on irradiated quartzPawlikowski, M., Benko, A., Wróbel, T.P., 2013. Origins of Life and Evolution of Biospheres 43, 119–128.http://dx.doi.org/10.1007/s11084-013-9328-3

Uniquely localized intra-molecular amino acid concentrations at the glycolytic enzyme catalytic/active centers of Archaea, Bacteriaand Eukaryota are associated with their proposed temporal appearances on EarthPollack, J.D., Gerard, D., Pearl, D., 2013. Origins of Life and Evolution of Biospheres 43, 162–189.http://dx.doi.org/10.1007/s11084-013-9331-8

Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolutionRobbins, L.J., Lalonde, S.V., Saito, M.A., Planavsky, N.J., Mloszewska, A.M., Pecoits, E., Scott, C., Dupont, C.L., Kappler, A., Konhauser, K.O., 2013.Geobiology 11, 295–306.http://dx.doi.org/10.1111/gbi.12036

Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of lifeSchmitz, B., 2013. Chemie der Erde - Geochemistry 73, 117–145.http://www.sciencedirect.com/science/article/pii/S0009281913000354

Drastic environmental change and its effects on a planetary biosphereSchulze-Makuch, D., Irwin, L.N., Fairén, A.G., 2013. Icarus 225, 775–780.http://www.sciencedirect.com/science/article/pii/S0019103513002017

Interplay of physics and evolution in the likely origin of protein biochemical functionSkolnick, J., Gao, M., 2013. Proceedings of the National Academy of Sciences 110, 9344–9349.http://www.pnas.org/content/110/23/9344.abstract

Deracemization of amino acids by partial sublimation and via homochiral self-organizationTarasevych, A.V., Sorochinsky, A.E., Kukhar, V.P., Guillemin, J.-C., 2013. Origins of Life and Evolution of Biospheres 43, 129–136.http://dx.doi.org/10.1007/s11084-013-9333-6

Fluid Inclusions

Hydrocarbon fluid inclusions in the Argo salt, offshore Canadian Atlantic marginKettanah, Y.A., 2013. Canadian Journal of Earth Sciences 50, 607–635.http://dx.doi.org/10.1139/cjes-2012-0040

Hydrocarbon charge history of the Tazhong Ordovician reservoirs, Tarim Basin as revealed from an integrated fluid inclusion studyLiu, K., Bourdet, J., Zhang, B., Zhang, N., Lu, X., Liu, S., Pang, H., Li, Z., Guo, X., 2013. Petroleum Exploration and Development 40, 183–193.http://www.sciencedirect.com/science/article/pii/S187638041360021X

Geology

Chemical and ecological evolution of the Miocene Ries impact crater lake, Germany: A reinterpretation based on the Enkingen (SUBO18) drill coreArp, G., Blumenberg, M., Hansen, B.T., Jung, D., Kolepka, C., Lenz, O., Nolte, N., Poschlod, K., Reimer, A., Thiel, V., 2013. Geological Society ofAmerica Bulletin 125, 1125–1145.http://gsabulletin.gsapubs.org/content/125/7-8/1125.abstract

Extreme sulfur-cycling in acid brine lake environments of Western AustraliaBenison, K.C., Bowen, B.B., 2013. Chemical Geology 351, 154–167.http://www.sciencedirect.com/science/article/pii/S0009254113002246

Sulfate availability and the geological record of cold-seep depositsBristow, T.F., Grotzinger, J.P., 2013. Geology 41, 811–814.http://geology.gsapubs.org/content/41/7/811.abstract

Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 yearsBryan, S.E., Ferrari, L., 2013. Geological Society of America Bulletin 125, 1053–1078.http://gsabulletin.gsapubs.org/content/125/7-8/1053.abstract

Page 15: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e15

The solid Earth’s influence on sea levelConrad, C.P., 2013. Geological Society of America Bulletin 125, 1027–1052.http://gsabulletin.gsapubs.org/content/125/7-8/1027.abstract

Secular changes in sedimentation systems and sequence stratigraphyEriksson, P.G., Banerjee, S., Catuneanu, O., Corcoran, P.L., Eriksson, K.A., Hiatt, E.E., Laflamme, M., Lenhardt, N., Long, D.G.F., Miall, A.D., Mints,M.V., Pufahl, P.K., Sarkar, S., Simpson, E.L., Williams, G.E., 2013. Gondwana Research 24, 468–489.http://www.sciencedirect.com/science/article/pii/S1342937X12003115

Methane in serpentinized ultramafic rocks in mainland PortugalEtiope, G., Vance, S., Christensen, L.E., Marques, J.M., Ribeiro da Costa, I., 2013. Marine and Petroleum Geology 45, 12–16.http://www.sciencedirect.com/science/article/pii/S0264817213000937

Initiation and evolution of plate tectonics on Earth: Theories and observationsKorenaga, J., 2013. Annual Review of Earth and Planetary Sciences 41, 117–151.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-050212-124208

Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floorspreading, subduction, and accretionKusky, T.M., Windley, B.F., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A., Santosh, M., 2013. Gondwana Research 24, 501–547.http://www.sciencedirect.com/science/article/pii/S1342937X13000518

Hydrates

Morphology of methane hydrate formation in porous mediaBabu, P., Yee, D., Linga, P., Palmer, A.C., Khoo, B.C., Tan, T.S., Rangsunvigit, P., 2013. Energy & Fuels 27, 3364–3372.http://dx.doi.org/10.1021/ef4004818

Effects of clay minerals and biosurfactants on isotopic and molecular characteristics of methane encaged in pressure vessel gashydratesCarvajal-Ortiz, H., Pratt, L.M., 2013. Organic Geochemistry 60, 83–92.http://www.sciencedirect.com/science/article/pii/S0146638013001150

Influences of salinity and temperature on the stable isotopic composition of methane and hydrogen sulfide trapped in pressure-vesselhydratesCarvajal-Ortiz, H., Pratt, L.M., 2013. Geochimica et Cosmochimica Acta 118, 72–84.http://www.sciencedirect.com/science/article/pii/S001670371300286X

Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna-Godavari basin, Bay of BengalDewangan, P., Basavaiah, N., Badesab, F.K., Usapkar, A., Mazumdar, A., Joshi, R., Ramprasad, T., 2013. Marine Geology 340, 57–70.http://www.sciencedirect.com/science/article/pii/S0025322713000601

Influence of recent depositional and tectonic controls on marine gas hydrates in Trujillo Basin, Peru MarginHerbozo, G., Hübscher, C., Kaul, N., Wagner, M., Pecher, I., Kukowski, N., 2013. Marine Geology 340, 30–48.http://www.sciencedirect.com/science/article/pii/S0025322713000546

The stability of gas hydrate field in the northeastern continental slope of Sakhalin Island, Sea of Okhotsk, as inferred from analysis ofheat flow data and its implications for slope failuresKim, Y.-G., Lee, S.-M., Jin, Y.K., Baranov, B., Obzhirov, A., Salomatin, A., Shoji, H., 2013. Marine and Petroleum Geology 45, 198–207.http://www.sciencedirect.com/science/article/pii/S0264817213001244

Hot-brine injection for the dissociation of natural gas hydratesLi, S., Zhang, L., Jiang, X., Li, X., 2013. Petroleum Science and Technology 31, 1320–1326.http://dx.doi.org/10.1080/10916466.2012.716887

Gas hydrate and free gas saturations using rock physics modelling at site NGHP-01-05 and 07 in the Krishna–Godavari Basin, easternIndian marginShankar, U., Gupta, D.K., Bhowmick, D., Sain, K., 2013. Journal of Petroleum Science and Engineering 106, 62–70.http://www.sciencedirect.com/science/article/pii/S0920410513001058

Gas hydrates saturation using geostatistical inversion in a fractured reservoir in the Krishna–Godavari basin, offshore eastern IndiaWang, X., Sain, K., Satyavani, N., Wang, J., Ojha, M., Wu, S., 2013. Marine and Petroleum Geology 45, 224–235.http://www.sciencedirect.com/science/article/pii/S0264817213001268

A three-dimensional study on methane hydrate decomposition with different methods using five-spot wellWang, Y., Li, X.-S., Li, G., Zhang, Y., Li, B., Feng, J.-C., 2013. Applied Energy 112, 83–92.http://www.sciencedirect.com/science/article/pii/S0306261913005023

Page 16: Geochemistry articles – June 2013

e16 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Isotope Geochemistry

Clumped isotopic equilibrium and the rate of isotope exchange between CO2 and waterAffek, H.P., 2013. American Journal of Science 313, 309–325.http://www.ajsonline.org/content/313/4/309.abstract

Modeling novel stable isotope ratios in the weathering zoneBouchez, J., von Blanckenburg, F., Schuessler, J.A., 2013. American Journal of Science 313, 267–308.http://www.ajsonline.org/content/313/4/267.abstract

The isotopic anatomies of molecules and mineralsEiler, J.M., 2013. Annual Review of Earth and Planetary Sciences 41, 411–441.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-042711-105348

Rapid column chromatography separation of alkylnaphthalenes from aromatic components in sedimentary organic matter forcompound specific stable isotope analysisJiang, A., Zhou, P., Sun, Y., Xie, L., 2013. Organic Geochemistry 60, 1–8.http://www.sciencedirect.com/science/article/pii/S0146638013000909

Distribution and stable isotopes of plant wax derived n-alkanes in lacustrine, fluvial and marine surface sediments along an easternItalian transect and their potential to reconstruct the hydrological cycleLeider, A., Hinrichs, K.-U., Schefuß, E., Versteegh, G.J.M., 2013. Geochimica et Cosmochimica Acta 117, 16–32.http://www.sciencedirect.com/science/article/pii/S0016703713002330

Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, ChinaLiu, W., Li, X., An, Z., Xu, L., Zhang, Q., 2013. Chemical Geology 347, 153–160.http://www.sciencedirect.com/science/article/pii/S0009254113001733

Uncertainty of blank correction in isotope ratio measurementOhlsson, K.E.A., 2013. Analytical Chemistry 85, 5326–5329.http://dx.doi.org/10.1021/ac4003968

Mechanism for nitrogen isotope fractionation during ammonium assimilation by Escherichia coli K12Vo, J., Inwood, W., Hayes, J.M., Kustu, S., 2013. Proceedings of the National Academy of Sciences 110, 8696–8701.http://www.pnas.org/content/110/21/8696.abstract

Stable oxygen and carbon isotope systematics of exquisitely preserved Turonian foraminifera from Tanzania – understandingisotopic signatures in fossilsWendler, I., Huber, B.T., MacLeod, K.G., Wendler, J.E., 2013. Marine Micropaleontology 102, 1–33.http://www.sciencedirect.com/science/article/pii/S0377839813000339

Use of glucose and carbon isotope fractionation by microbial cells immobilized on solid-phase surfaceZyakun, A.M., Kochetkov, V.V., Baskunov, B.P., Zakharchenko, V.N., Peshenko, V.P., Laurinavichius, K.S., Anokhina, T.O., Siunova, T.V., Sizova,O.I., Boronin, A.M., 2013. Microbiology 82, 280–289.http://dx.doi.org/10.1134/S0026261713030156

Microbiology/Extremophiles - Microbial Ecology

Cauliform bacteria lacking phospholipids from an abyssal hydrothermal vent: Proposal of Glycocaulis abyssi gen. nov., sp. nov.,belonging to the family HyphomonadaceaeAbraham, W.-R., Lünsdorf, H., Vancanneyt, M., Smit, J., 2013. International Journal of Systematic and Evolutionary Microbiology 63,2207–2215.http://ijs.sgmjournals.org/content/63/Pt_6/2207.abstract

Subsurface associations of Acaryochloris-related picocyanobacteria with oil-utilizing bacteria in the Arabian Gulf water body:Promising consortia in oil sediment bioremediationAl-Bader, D., Eliyas, M., Rayan, R., Radwan, S., 2013. Microbial Ecology 65, 555–565.http://dx.doi.org/10.1007/s00248-012-0157-0

Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilitiesAylward, F.O., McDonald, B.R., Adams, S.M., Valenzuela, A., Schmidt, R.A., Goodwin, L.A., Woyke, T., Currie, C.R., Suen, G., Poulsen, M., 2013.Applied and Environmental Microbiology 79, 3724–3733.http://aem.asm.org/content/79/12/3724.abstract

Alteration of microbial community structure affects diesel biodegradation in an Arctic soilBell, T.H., Yergeau, E., Juck, D.F., Whyte, L.G., Greer, C.W., 2013. FEMS Microbiology Ecology 85, 51–61.http://dx.doi.org/10.1111/1574-6941.12102

Bacterial communities associated with subsurface geochemical processes in continental serpentinite springsBrazelton, W.J., Morrill, P.L., Szponar, N., Schrenk, M.O., 2013. Applied and Environmental Microbiology 79, 3906–3916.http://aem.asm.org/content/79/13/3906.abstract

Page 17: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e17

Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, AntarcticaCarr, S.A., Vogel, S.W., Dunbar, R.B., Brandes, J., Spear, J.R., Levy, R., Naish, T.R., Powell, R.D., Wakeham, S.G., Mandernack, K.W., 2013.Geobiology 11, 377–395.http://dx.doi.org/10.1111/gbi.12042

Microbial enzymatic activities and prokaryotic abundance in the upwelling system of the Straits of Messina (Sicily): Distribution,dynamics and biogeochemical considerationsCaruso, G., Azzaro, F., La Ferla, R., De Pasquale, F., Raffa, F., Decembrini, F., 2013. Advances in Oceanography and Limnology 4, 43–69.http://dx.doi.org/10.1080/19475721.2012.755568

Thalassolituus marinus sp. nov., a hydrocarbon-utilizing marine bacteriumChoi, A., Cho, J.-C., 2013. International Journal of Systematic and Evolutionary Microbiology 63, 2234–2238.http://ijs.sgmjournals.org/content/63/Pt_6/2234.abstract

Actinobacteria—An ancient phylum active in volcanic rock weatheringCockell, C.S., Kelly, L.C., Marteinsson, V., 2013. Geomicrobiology Journal 30, 706–720.http://dx.doi.org/10.1080/01490451.2012.758196

Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complexDaae, F.L., Økland, I., Dahle, H., Jørgensen, S.L., Thorseth, I.H., Pedersen, R.B., 2013. Geobiology 11, 318–339.http://dx.doi.org/10.1111/gbi.12035

Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing mediaDjeridi, I., Militon, C., Grossi, V., Cuny, P., 2013. Extremophiles 17, 669–675.http://dx.doi.org/10.1007/s00792-013-0550-8

Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to ThaumarchaeotaEme, L., Reigstad, L.J., Spang, A., Lanzén, A., Weinmaier, T., Rattei, T., Schleper, C., Brochier-Armanet, C., 2013. Research in Microbiology 164,425–438.http://www.sciencedirect.com/science/article/pii/S0923250813000272

Hidden in plain sight: Discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USAFleming, E.J., Davis, R.E., McAllister, S.M., Chan, C.S., Moyer, C.L., Tebo, B.M., Emerson, D., 2013. FEMS Microbiology Ecology 85, 116–127.http://dx.doi.org/10.1111/1574-6941.12104

The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3Fondi, M., Rizzi, E., Emiliani, G., Orlandini, V., Berna, L., Papaleo, M.C., Perrin, E., Maida, I., Corti, G., De Bellis, G., Baldi, F., Dijkshoorn, L.,Vaneechoutte, M., Fani, R., 2013. Research in Microbiology 164, 439–449.http://www.sciencedirect.com/science/article/pii/S0923250813000466

A functional approach to uncover the low-temperature adaptation strategies of the archaeon Methanosarcina barkeriGunnigle, E., McCay, P., Fuszard, M., Botting, C.H., Abram, F., O’Flaherty, V., 2013. Applied and Environmental Microbiology 79, 4210–4219.http://aem.asm.org/content/79/14/4210.abstract

Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soilenvironmentsHamamura, N., Ward, D.M., Inskeep, W.P., 2013. FEMS Microbiology Ecology 85, 168–178.http://dx.doi.org/10.1111/1574-6941.12108

An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springsHedlund, B., Dodsworth, J., Cole, J., Panosyan, H., 2013. Antonie van Leeuwenhoek 104, 71–82.http://dx.doi.org/10.1007/s10482-013-9927-z

Analysis of structure, function, and activity of a benzene-degrading microbial communityJechalke, S., Franchini, A.G., Bastida, F., Bombach, P., Rosell, M., Seifert, J., von Bergen, M., Vogt, C., Richnow, H.H., 2013. FEMS MicrobiologyEcology 85, 14–26.http://dx.doi.org/10.1111/1574-6941.12090

Novel microbial populations in deep granitic groundwater from Grimsel Test Site, SwitzerlandKonno, U., Kouduka, M., Komatsu, D., Ishii, K., Fukuda, A., Tsunogai, U., Ito, K., Suzuki, Y., 2013. Microbial Ecology 65, 626–637.http://dx.doi.org/10.1007/s00248-013-0184-5

Structure and community composition of sprout-like bacterial aggregates in a Dinaric karst subterranean streamKostanjšek, R., Pašic�, L., Daims, H., Sket, B., 2013. Microbial Ecology 66, 5–18.http://dx.doi.org/10.1007/s00248-012-0172-1

Microbial diversity of Late Pleistocene Siberian permafrost samplesKudryashova, E.B., Chernousova, E.Y., Suzina, N.E., Ariskina, E.V., Gilichinsky, D.A., 2013. Microbiology 82, 341–351.http://dx.doi.org/10.1134/S0026261713020082

Page 18: Geochemistry articles – June 2013

e18 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Microbial characterization of basalt formation waters targeted for geological carbon sequestrationLavalleur, H.J., Colwell, F.S., 2013. FEMS Microbiology Ecology 85, 62–73.http://dx.doi.org/10.1111/1574-6941.12098

Defining the functional potential and active community members of a sediment microbial community in a high-Arctic hypersalinesubzero springLay, C.-Y., Mykytczuk, N.C.S., Yergeau, É., Lamarche-Gagnon, G., Greer, C.W., Whyte, L.G., 2013. Applied and Environmental Microbiology 79,3637–3648.http://aem.asm.org/content/79/12/3637.abstract

Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North AtlanticMorgan-Smith, D., Herndl, G.J., Bochdansky, A.B., 2013. Deep Sea Research Part I: Oceanographic Research Papers 78, 58–69.http://www.sciencedirect.com/science/article/pii/S0967063713000897

Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds:A physiological and transcriptomic approachNaether, D.J., Slawtschew, S., Stasik, S., Engel, M., Olzog, M., Wick, L.Y., Timmis, K.N., Heipieper, H.J., 2013. Applied and EnvironmentalMicrobiology 79, 4282–4293.http://aem.asm.org/content/79/14/4282.abstract

MicrobiomesNelson, K., 2013. Microbial Ecology 65, 916–919.http://dx.doi.org/10.1007/s00248-013-0227-y

Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environmentsPerner, M., Hansen, M., Seifert, R., Strauss, H., Koschinsky, A., Petersen, S., 2013. Geobiology 11, 340–355.http://dx.doi.org/10.1111/gbi.12039

Characterisation of the first actinobacterial group isolated from a Mexican extremophile environmentQuintana, E.T., Badillo, R.F., Maldonado, L.A., 2013. Antonie van Leeuwenhoek 104, 63–70.http://dx.doi.org/10.1007/s10482-013-9926-0

Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to differenttaxonomic groups than hydrocarbon degraders in the oceansReunamo, A., Riemann, L., Leskinen, P., Jørgensen, K.S., 2013. Marine Pollution Bulletin 72, 174–180.http://www.sciencedirect.com/science/article/pii/S0025326X13001884

High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNAgene-based methodsSahm, K., John, P., Nacke, H., Wemheuer, B., Grote, R., Daniel, R., Antranikian, G., 2013. Extremophiles 17, 649–662.http://dx.doi.org/10.1007/s00792-013-0548-2

Lateral gene transfer of family A DNA polymerases between thermophilic viruses, Aquificae, and ApicomplexaSchoenfeld, T.W., Murugapiran, S.K., Dodsworth, J.A., Floyd, S., Lodes, M., Mead, D.A., Hedlund, B.P., 2013. Molecular Biology and Evolution30, 1653–1664.http://mbe.oxfordjournals.org/content/30/7/1653.abstract

Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communitiesShakya, M., Quince, C., Campbell, J.H., Yang, Z.K., Schadt, C.W., Podar, M., 2013. Environmental Microbiology 15, 1882–1899.http://dx.doi.org/10.1111/1462-2920.12086

PsychrophilesSiddiqui, K.S., Williams, T.J., Wilkins, D., Yau, S., Allen, M.A., Brown, M.V., Lauro, F.M., Cavicchioli, R., 2013. Annual Review of Earth andPlanetary Sciences 41, 87–115.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-040610-133514

Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branchingdeltaproteobacterium from a deep-sea hydrothermal ventSlobodkin, A.I., Reysenbach, A.-L., Slobodkina, G.B., Kolganova, T.V., Kostrikina, N.A., Bonch-Osmolovskaya, E.A., 2013. International Journalof Systematic and Evolutionary Microbiology 63, 1967–1971.http://ijs.sgmjournals.org/content/63/Pt_6/1967.abstract

Diatom ecology and microbial mat structure and function in Antarctic dry valleysStanish, L.F., Spear, J.R., 2013. Palaios 28, 267–269.http://palaios.sepmonline.org/content/28/5/267.short

On the instability and evolutionary age of deep-sea chemosynthetic communitiesVrijenhoek, R.C., 2013. Deep Sea Research Part II: Topical Studies in Oceanography 92, 189–200.http://www.sciencedirect.com/science/article/pii/S0967064512001956

Page 19: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e19

How hyperthermophiles adapt to change their lives: DNA exchange in extreme conditionsWolferen, M., Ajon, M., Driessen, A.J.M., Albers, S.-V., 2013. Extremophiles 17, 545–563.http://dx.doi.org/10.1007/s00792-013-0552-6

Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climatechangesXu, D., Lu, H., Wu, N., Liu, Z., Li, T., Shen, C., Wang, L., 2013. Proceedings of the National Academy of Sciences 110, 9657–9662.http://www.pnas.org/content/110/24/9657.abstract

Characterization of pore structures in shales through nitrogen adsorption experimentYang, F., Ning, Z., Zhang, S., Hu, C., Du, L., Liu, H., 2013. Natural Gas Industry 33, 135–140.http://www.trqgy.com/EN/abstract/abstract12661.shtml

Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sedimentZeng, X., Zhang, X., Jiang, L., Alain, K., Jebbar, M., Shao, Z., 2013. International Journal of Systematic and Evolutionary Microbiology 63,2155–2159.http://ijs.sgmjournals.org/content/63/Pt_6/2155.abstract

Paleoclimatology/Palaeoceanography

Eocene cooling linked to early flow across the Tasmanian GatewayBijl, P.K., Bendle, J.A.P., Bohaty, S.M., Pross, J., Schouten, S., Tauxe, L., Stickley, C.E., McKay, R.M., Röhl, U., Olney, M., Sluijs, A., Escutia, C.,Brinkhuis, H., Scientists, E., 2013. Proceedings of the National Academy of Sciences 110, 9645–9650.http://www.pnas.org/content/110/24/9645.abstract

Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic RussiaBrigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P., DeConto, R., Koenig, S., Nowaczyk, N., Wennrich, V., Rosén, P., Haltia, E.,Cook, T., Gebhardt, C., Meyer-Jacob, C., Snyder, J., Herzschuh, U., 2013. Science 340, 1421–1427.http://www.sciencemag.org/content/340/6139/1421.abstract

Global deglaciation and the re-appearance of microbial matground-dominated ecosystems in the late Paleozoic of GondwanaBuatois, L.A., Netto, R.G., Gabriela Mángano, M., Carmona, N.B., 2013. Geobiology 11, 307–317.http://dx.doi.org/10.1111/gbi.12038

The abrupt climate change at the Eocene–Oligocene boundary and the emergence of South-East Asia triggered the spread ofsapindaceous lineagesBuerki, S., Forest, F., Stadler, T., Alvarez, N., 2013. Annals of Botany 112, 151–160.http://aob.oxfordjournals.org/content/112/1/151.abstract

Varied response of western Pacific hydrology to climate forcings over the last glacial periodCarolin, S.A., Cobb, K.M., Adkins, J.F., Clark, B., Conroy, J.L., Lejau, S., Malang, J., Tuen, A.A., 2013. Science 340, 1564–1566.http://www.sciencemag.org/content/340/6140/1564.abstract

Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic seas during the last millenniumCunningham, L.K., Austin, W.E., Knudsen, K.L., Eiríksson, J., Scourse, J.D., Wanamaker, A.D., Butler, P.G., Cage, A.G., Richter, T., Husum, K.,Hald, M., Andersson, C., Zorita, E., Linderholm, H.W., Gunnarson, B.E., Sicre, M.-A., Sejrup, H.P., Jiang, H., Wilson, R.J., 2013. The Holocene23, 921–935.http://hol.sagepub.com/content/23/7/921.abstract

Sea surface temperature of the mid-Piacenzian ocean: A data-model comparisonDowsett, H.J., Foley, K.M., Stoll, D.K., Chandler, M.A., Sohl, L.E., Bentsen, M., Otto-Bliesner, B.L., Bragg, F.J., Chan, W.-L., Contoux, C., Dolan,A.M., Haywood, A.M., Jonas, J.A., Jost, A., Kamae, Y., Lohmann, G., Lunt, D.J., Nisancioglu, K.H., Abe-Ouchi, A., Ramstein, G., Riesselman,C.R., Robinson, M.M., Rosenbloom, N.A., Salzmann, U., Stepanek, C., Strother, S.L., Ueda, H., Yan, Q., Zhang, Z., 2013. Scientific Reports 3,Article number: 2013.http://dx.doi.org/10.1038/srep02013

Surviving rapid climate change in the deep sea during the Paleogene hyperthermalsFoster, L.C., Schmidt, D.N., Thomas, E., Arndt, S., Ridgwell, A., 2013. Proceedings of the National Academy of Sciences 110, 9273–9276.http://www.pnas.org/content/110/23/9273.abstract

The challenge of simulating warmth of the mid-Miocene Climate Optimum in CESM1Goldner, A., Herold, N., Huber, M., 2013. Climate of the Past Discussions 9, 3489–3518.http://www.clim-past-discuss.net/9/3489/2013/

What do SST proxies really tell us? A high-resolution multiproxy (UK037, TEXH

86 and foraminifera d18O) study in the Gulf of Taranto,central Mediterranean SeaGrauel, A.-L., Leider, A., Goudeau, M.-L.S., Müller, I.A., Bernasconi, S.M., Hinrichs, K.-U., de Lange, G.J., Zonneveld, K.A.F., Versteegh, G.J.M.,2013. Quaternary Science Reviews 73, 115–131.http://www.sciencedirect.com/science/article/pii/S0277379113001698

Page 20: Geochemistry articles – June 2013

e20 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and IIKasper, S., van der Meer, M.T.J., Mets, A., Zahn, R., Sinninghe Damsté, J.S., Schouten, S., 2013. Climate of the Past Discussions 9, 3209–3238.http://www.clim-past-discuss.net/9/3209/2013/

Effect of dissolved oxygen concentration on planktonic foraminifera through laboratory culture experiments and implications foroceanic anoxic eventsKuroyanagi, A., da Rocha, R.E., Bijma, J., Spero, H.J., Russell, A.D., Eggins, S.M., Kawahata, H., 2013. Marine Micropaleontology 101, 28–32.http://www.sciencedirect.com/science/article/pii/S0377839813000352

Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environmentsLa Farge, C., Williams, K.H., England, J.H., 2013. Proceedings of the National Academy of Sciences 110, 9839–9844.http://www.pnas.org/content/110/24/9839.abstract

Atlantic cooling associated with a marine biotic crisis during the mid-Cretaceous periodMcAnena, A., Flogel, S., Hofmann, P., Herrle, J.O., Griesand, A., Pross, J., Talbot, H.M., Rethemeyer, J., Wallmann, K., Wagner, T., 2013. NatureGeoscience 6, 558–561.http://dx.doi.org/10.1038/ngeo1850

Pleistocene sea-surface temperature evolution: Early cooling, delayed glacial intensification, and implications for the mid-Pleistoceneclimate transitionMcClymont, E.L., Sosdian, S.M., Rosell-Melé, A., Rosenthal, Y., 2013. Earth-Science Reviews 123, 173–193.http://www.sciencedirect.com/science/article/pii/S0012825213000809

The Late Paleozoic ice age: An evolving paradigmMontañez, I.P., Poulsen, C.J., 2013. Annual Review of Earth and Planetary Sciences 41, 629–656.http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.031208.100118

Warming of surface waters in the mid-latitude North Atlantic during Heinrich eventsNaafs, B.D.A., Hefter, J., Grützner, J., Stein, R., 2013. Paleoceanography 28, 153–163.http://dx.doi.org/10.1029/2012PA002354

Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redoxchemistry: Implications for greenhouse climatesOzaki, K., Tajika, E., 2013. Earth and Planetary Science Letters 373, 129–139.http://www.sciencedirect.com/science/article/pii/S0012821X13002173

Early Eocene to middle Miocene cooling and aridification of East AntarcticaPasschier, S., Bohaty, S.M., Jiménez-Espejo, F., Pross, J., Röhl, U., van de Flierdt, T., Escutia, C., Brinkhuis, H., 2013. Geochemistry, Geophysics,Geosystems 14, 1399–1410.http://dx.doi.org/10.1002/ggge.20106

Assessing the use of archaeal lipids as marine environmental proxiesPearson, A., Ingalls, A.E., 2013. Annual Review of Earth and Planetary Sciences 41, 359–384.http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-050212-123947

Cenomanian–Turonian carbon isotope stratigraphy of the Western Canadian Sedimentary BasinProkoph, A., Babalola, L.O., El Bilali, H., Olagoke, S., Rachold, V., 2013. Cretaceous Research 44, 39–53.http://www.sciencedirect.com/science/article/pii/S0195667113000542

Coupled and decoupled responses of continental and marine organic-sedimentary systems through the Paleocene-Eocene thermalmaximum, New Jersey margin, USASchneider-Mor, A., Bowen, G.J., 2013. Paleoceanography 28, 105–115.http://dx.doi.org/10.1002/palo.20016

Recognition of Early Eocene global carbon isotope excursions using lipids of marine ThaumarchaeotaSchoon, P.L., Heilmann-Clausen, C., Pagh Schultz, B., Sluijs, A., Sinninghe Damsté, J.S., Schouten, S., 2013. Earth and Planetary Science Letters373, 160–168.http://www.sciencedirect.com/science/article/pii/S0012821X13002252

Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciationSicre, M.A., Siani, G., Genty, D., Kallel, N., Essallami, L., 2013. Climate of the Past 9, 1375–1383.http://www.clim-past.net/9/1375/2013/

The ‘‘MIS 11 paradox’’ and ocean circulation: Role of millennial scale eventsVázquez Riveiros, N., Waelbroeck, C., Skinner, L., Duplessy, J.-C., McManus, J.F., Kandiano, E.S., Bauch, H.A., 2013. Earth and PlanetaryScience Letters 371–372, 258–268.http://www.sciencedirect.com/science/article/pii/S0012821X1300157X

Stable carbon isotope of black carbon in lake sediments as an indicator of terrestrial environmental changes: An evaluation onpaleorecord from Daihai Lake, Inner Mongolia, ChinaWang, X., Cui, L., Xiao, J., Ding, Z., 2013. Chemical Geology 347, 123–134.http://www.sciencedirect.com/science/article/pii/S000925411300123X

Page 21: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e21

Potential role of giant marine diatoms in sequestration of atmospheric CO2 during the Last Glacial Maximum: d13C evidence fromlaminated Ethmodiscus rex mats in tropical west PacificXiong, Z., Li, T., Crosta, X., Algeo, T., Chang, F., Zhai, B., Global and Planetary Change 108, 1–14.http://www.sciencedirect.com/science/article/pii/S0921818113001446

Paleoecology of Extinction Events

The Permian–Triassic mass extinction: Ostracods (Crustacea) and microbialitesForel, M.-B., 2013. Comptes Rendus Geoscience 345, 203–211.http://www.sciencedirect.com/science/article/pii/S1631071313000394

Mercury deposition through the Permo–Triassic Biotic CrisisGrasby, S.E., Sanei, H., Beauchamp, B., Chen, Z., 2013. Chemical Geology 351, 209–216.http://www.sciencedirect.com/science/article/pii/S0009254113002283

Petroleum/Source Rock Geochemistry

Source rock potential and oil to source rock correlation of the Upper Cretaceous (Campanian-Maastrichtian)–Lower Paleocene unitsin the Malatya Basin, East Anatolia, TurkeyAyyildiz, T., 2013. Petroleum Science and Technology 31, 1335–1345.http://dx.doi.org/10.1080/10916466.2012.735736

Impact of anaerobic biodegradation on alkylphenanthrenes in crude oilChen, J., Zhang, H., Huang, H., Li, X., Shi, S., Liu, F., Chen, L., 2013. Organic Geochemistry 61, 6–14.http://www.sciencedirect.com/science/article/pii/S0146638013001137

An assessment of tight oil resource potential in Upper Cretaceous Cardium Formation, Western Canada Sedimentary BasinChen, Z., Osadetz, K.G., 2013. Petroleum Exploration and Development 40, 344–353.http://www.sciencedirect.com/science/article/pii/S1876380413600415

Discussion on the gas source of the Triassic Xujiahe Formation tight sandstone gas reservoirs in Yuanba and Tongnanba, SichuanBasin: An answer to Yin Feng et al.Dai, J., Liao, F., Ni, Y., 2013. Petroleum Exploration and Development 40, 268–275.http://www.sciencedirect.com/science/article/pii/S1876380413600336

Molecular characterization of fossil palynomorphs by transmission micro-FTIR pectroscopy: Implications for hydrocarbon sourceevaluationDutta, S., Hartkopf-Fröder, C., Witte, K., Brocke, R., Mann, U., 2013. International Journal of Coal Geology 115, 13–23.http://www.sciencedirect.com/science/article/pii/S0166516213001109

Carbon-bearing gas geothermometers for volcanic-hydrothermal systemsFiebig, J., Tassi, F., D’Alessandro, W., Vaselli, O., Woodland, A.B., 2013. Chemical Geology 351, 66–75.http://www.sciencedirect.com/science/article/pii/S000925411300212X

Geochemical characteristics of some crude oils from Alif Field in the Marib-Shabowah Basin, and source-related typesHakimi, M.H., Abdullah, W.H., 2013. Marine and Petroleum Geology 45, 304–314.http://www.sciencedirect.com/science/article/pii/S0264817213001311

Evaluation of Lower Cambrian shale in northern Guizhou Province, South China: Implications for shale gas potentialHan, S., Zhang, J., Li, Y., Horsfield, B., Tang, X., Jiang, W., Chen, Q., 2013. Energy & Fuels 27, 2933–2941.http://pubs.acs.org/doi/abs/10.1021/ef400141m

Weathered volcanic crust and its petroleum geological significance: A case study of the Carboniferous volcanic crust in northernXinjiang, NW ChinaHou, L., Luo, X., Wang, J., Yang, F., Zhao, X., Mao, Z., 2013. Petroleum Exploration and Development 40, 277–286.http://www.sciencedirect.com/science/article/pii/S1876380413600348

Characteristics and origin of natural gases in the Puguang and Maoba gas fields, NE Sichuan Basin, ChinaHu, A., Li, M., Yang, C., Li, X., Ma, Y., Guo, T., 2013. Energy, Exploration & Exploitation 31, 353–366.http://dx.doi.org/10.1260/0144-5987.31.3.353

Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, RockyMountain region, Colorado, Utah, and WyomingKirschbaum, Mark A., Mercier, Tracey J., 2013. American Association of Petroleum Geologists Bulletin 97, 899–921.http://aapgbull.geoscienceworld.org/content/97/6/899.abstract

Organic geochemical study of source rocks and natural gas and their genetic correlation in the central part of the Polish OuterCarpathiansKotarba, M.J., Wiezcław, D., Dziadzio, P., Kowalski, A., Bilkiewicz, E., Kosakowski, P., 2013. Marine and Petroleum Geology 45, 106–120.http://www.sciencedirect.com/science/article/pii/S0264817213001141

Page 22: Geochemistry articles – June 2013

e22 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Organic matter–apatite–pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: Relevance to theformation of petroleum source rocks in the NW Barents Sea shelfKrajewski, K.P., 2013. Marine and Petroleum Geology 45, 69–105.http://www.sciencedirect.com/science/article/pii/S0264817213001001

The main controlling factors and developmental models of Oligocene source rocks in the Qiongdongnan Basin, northern SouthChina SeaLi, W., Zhang, Z., Li, Y., Liu, C., Fu, N., 2013. Petroleum Science 10, 161–170.http://dx.doi.org/10.1007/s12182-013-0263-8

Geological characteristics of gas-bearing shales in the Yanchang Formation and its resource assessment in the Ordos BasinLiu, Y., Zhou, W., Deng, H., 2013. Natural Gas Industry 33, 19–33.http://www.trqgy.com/EN/abstract/abstract12617.shtml

Hydrocarbon potential in JordanNaylor, D., Al-Rawi, M., Clayton, G., Fitzpatrick, M.J., Green, P.F., 2013. Journal of Petroleum Geology 36, 205–236.http://dx.doi.org/10.1111/jpg.12553

Late Jurassic ocean anoxic event: Evidence from voluminous sulphide deposition and preservation in the PanthalassaNozaki, T., Kato, Y., Suzuki, K., 2013. Scientific Reports 3, Article number:1889.http://dx.doi.org/10.1038/srep01889

Acidic and neutral polar NSO compounds in heavily biodegraded oils characterized by negative-ion ESI FT-ICR MSPan, Y., Liao, Y., Shi, Q., Hsu, C.S., 2013. Energy & Fuels 27, 2960–2973.http://dx.doi.org/10.1021/ef400191h

Organic petrology and hydrocarbon generation of potential source rocks in Permian formation of Junggar Basin, northwest in ChinaQin, L.-m., Zhang, Z.-h., 2013. Journal of Central South University 20, 1693–1702.http://dx.doi.org/10.1007/s11771-013-1662-0

Long-term, low-temperature simulation of early diagenesis of organic matter from algae: Significance for immature oilQin, S.J., Sun, Y.Z., Zhao, C.L., 2013. Petroleum Science and Technology 31, 1439–1446.http://dx.doi.org/10.1080/10916466.2010.545788

The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian GulfRahmani, O., Aali, J., Junin, R., Mohseni, H., Padmanabhan, E., Azdarpour, A., Zarza, S., Moayyed, M., Ghazanfari, P., 2013. InternationalJournal of Earth Sciences 102, 1337–1355.http://dx.doi.org/10.1007/s00531-012-0855-3

Methane adsorption on shale under simulated geological temperature and pressure conditionsRexer, T.F.T., Benham, M.J., Aplin, A.C., Thomas, K.M., 2013. Energy & Fuels 27, 3099–3109.http://pubs.acs.org/doi/abs/10.1021/ef400381v

3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea): A quantitative assessment of petroleum generation,migration and leakageRodrigues Duran, E., di Primio, R., Anka, Z., Stoddart, D., Horsfield, B., 2013. Marine and Petroleum Geology 45, 281–303.http://www.sciencedirect.com/science/article/pii/S0264817213001256

Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling:Application to the Mississippian Barnett ShaleRomero-Sarmiento, M.-F., Ducros, M., Carpentier, B., Lorant, F., Cacas, M.-C., Pegaz-Fiornet, S., Wolf, S., Rohais, S., Moretti, I., 2013. Marineand Petroleum Geology 45, 315–330.http://www.sciencedirect.com/science/article/pii/S0264817213000871

2D petroleum systems modeling of Queen Charlotte Basin, offshore British Columbia, CanadaSchümann, T.K., Rohr, K.M.M., Whiticar, M.J., Issler, D., 2013. Bulletin of Canadian Petroleum Geology 61, 65–82.http://bcpg.geoscienceworld.org/content/61/1/65.abstract

Allostratigraphy of the Upper Cretaceous Cardium Formation in subsurface and outcrop in southern Alberta, and correlation toequivalent strata in northwestern MontanaShank, J.A., Plint, A.G., Hubbard, S., 2013. Bulletin of Canadian Petroleum Geology 61, 1–40.http://bcpg.geoscienceworld.org/content/61/1/1.abstract

Extended diamondoid assessment in crude oil using comprehensive two-dimensional gas chromatography coupled to time-of-flightmass spectrometrySilva, R.C., Silva, R.S.F., de Castro, E.V.R., Peters, K.E., Azevedo, D.A., 2013. Fuel 112, 125–133.http://www.sciencedirect.com/science/article/pii/S0016236113004390

Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, FranceSuan, G., Rulleau, L., Mattioli, E., Suchéras-Marx, B., Rousselle, B., Pittet, B., Vincent, P., Martin, J.e., Léna, A., Spangenberg, J.E., Föllmi, K.b.,2013. Geological Magazine 150, 728–742.http://dx.doi.org/10.1017/S0016756812000970

Page 23: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e23

Flow regime associated with vertical secondary migrationVasseur, G., Luo, X., Yan, J., Loggia, D., Toussaint, R., Schmittbuhl, J., 2013. Marine and Petroleum Geology 45, 150–158.http://www.sciencedirect.com/science/article/pii/S0264817213001165

Formation conditions and exploration prospects of Sinian large gas fields, Sichuan BasinWei, G., Shen, P., Yang, w., Zhang, J., Jiao, G., Xie, W., Xie, Z., 2013. Petroleum Exploration and Development 40, 139–149.http://www.sciencedirect.com/science/article/pii/S1876380413600178

The role of supercritical water in pyrolysis of carbonaceous compoundsXu, T., Liu, Q., Liu, Z., Wu, J., 2013. Energy & Fuels 27, 3148–3153.http://dx.doi.org/10.1021/ef400573p

Characteristics of tight oil in Triassic Yanchang Formation, Ordos BasinYao, J., Deng, X., Zhao, Y., Han, T., Chu, M., Pang, J., 2013. Petroleum Exploration and Development 40, 161–169.http://www.sciencedirect.com/science/article/pii/S1876380413600191

Disproportionation and thermochemical sulfate reduction reactions in S–H2O–CH4 and S–D2O–CH4 systems from 200 to 340 �C atelevated pressuresYuan, S., Chou, I.M., Burruss, R.C., Wang, X., Li, J., 2013. Geochimica et Cosmochimica Acta 118, 263–275.http://www.sciencedirect.com/science/article/pii/S0016703713003001

Upper Triassic potential source rocks in the Qiangtang Basin Tibet: Organic geochemical characteristicsZeng, Y.H., Fu, X.G., Zeng, S.Q., Du, G., 2013. Journal of Petroleum Geology 36, 237–255.http://dx.doi.org/10.1111/jpg.12554

Distribution of gas enrichment regions controlled by source rocks and geothermal heat in China offshore basinsZhang, G., Miao, S., Chen, Y., Zhao, Z., Li, Y., Zhang, H., Yang, H., Yang, S., 2013. Natural Gas Industry 33, 1–17.http://www.trqgy.com/EN/abstract/abstract12637.shtml

Shale gas content and its main controlling factors in Longmaxi shales in southeastern ChongqingZhang, Q., Liu, H., Bai, W., Lin, W., 2013. Natural Gas Industry 33, 35–39.http://www.trqgy.com/EN/abstract/abstract12667.shtml

Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer–TropschmethodZhang, S., Mi, J., He, K., 2013. Chemical Geology 349–350, 27–35.http://www.sciencedirect.com/science/article/pii/S0009254113001393

Precambrian Geochemistry

Microstructures in metasedimentary rocks from the Neoproterozoic Bonahaven Formation, Scotland: Microconcretions, impactspherules, or microfossils?Anderson, R.P., Fairchild, I.J., Tosca, N.J., Knoll, A.H., 2013. Precambrian Research 233, 59–72.http://www.sciencedirect.com/science/article/pii/S0301926813001319

Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formationChi Fru, E., Ivarsson, M., Kilias, S.P., Bengtson, S., Belivanova, V., Marone, F., Fortin, D., Broman, C., Stampanoni, M., 2013. NatureCommunications 4, Article number:2050.http://dx.doi.org/10.1038/ncomms3050

Searching for stromatolites: the 3.4 Ga Strelley Pool Formation (Pilbara region, Western Australia) as a Mars analogueClarke, J.D.A., Stoker, C.R., 2013. Icarus 224, 413–423.http://www.sciencedirect.com/science/article/pii/S0019103513000663

Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocksDebaille, V., O’Neill, C., Brandon, A.D., Haenecour, P., Yin, Q.-Z., Mattielli, N., Treiman, A.H., 2013. Earth and Planetary Science Letters 373,83–92.http://www.sciencedirect.com/science/article/pii/S0012821X13001982

Testing the snowball Earth hypothesis for the EdiacaranIvanov, A.V., Mazukabzov, A.M., Stanevich, A.M., Palesskiy, S.V., Kozmenko, O.A., 2013. Geology 41, 787–790.http://geology.gsapubs.org/content/41/7/787.abstract

Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxidesKim, J.D., Yee, N., Nanda, V., Falkowski, P.G., 2013. Proceedings of the National Academy of Sciences 110, 10073–10077.http://www.pnas.org/content/110/25/10073.abstract

Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floorspreading, subduction, and accretionKusky, T.M., Windley, B.F., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A., Santosh, M., 2013. Gondwana Research 24, 501–547.http://www.sciencedirect.com/science/article/pii/S1342937X13000518

Page 24: Geochemistry articles – June 2013

e24 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Microbially induced sedimentary structures from the Mesoproterozoic Huangqikou Formation, Helan Mountain region, northernChinaLan, Z.-W., Chen, Z.-Q., Li, X.-H., Kaiho, K., 2013. Precambrian Research 233, 73–92.http://www.sciencedirect.com/science/article/pii/S0301926813001216

The Laurentian record of Neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Valley, CaliforniaMacdonald, F.A., Prave, A.R., Petterson, R., Smith, E.F., Pruss, S.B., Oates, K., Waechter, F., Trotzuk, D., Fallick, A.E., 2013. Geological Society ofAmerica Bulletin 125, 1203–1223.http://gsabulletin.gsapubs.org/content/125/7-8/1203.abstract

Evidence for reactive reduced phosphorus species in the early Archean oceanPasek, M.A., Harnmeijer, J.P., Buick, R., Gull, M., Atlas, Z., 2013. Proceedings of the National Academy of Sciences 110, 10089–10094.http://www.pnas.org/content/110/25/10089.abstract

Two Neoarchean supercontinents revisited: The case for a Rae family of cratonsPehrsson, S.J., Berman, R.G., Eglington, B., Rainbird, R., 2013. Precambrian Research 232, 27–43.http://www.sciencedirect.com/science/article/pii/S0301926813000661

Argon isotopic composition of Archaean atmosphere probes early Earth geodynamicsPujol, M., Marty, B., Burgess, R., Turner, G., Philippot, P., 2013. Nature 498, 87–90.http://dx.doi.org/10.1038/nature12152

High-resolution quadruple sulfur isotope analyses of 3.2 Ga pyrite from the Barberton Greenstone Belt in South Africa reveal distinctenvironmental controls on sulfide isotopic arraysRoerdink, D.L., Mason, P.R.D., Whitehouse, M.J., Reimer, T., 2013. Geochimica et Cosmochimica Acta 117, 203–215.http://www.sciencedirect.com/science/article/pii/S0016703713002627

Orogenic climax of Earth: The 1.2–1.1 Ga Grenvillian supereventVan Kranendonk, M.J., Kirkland, C.L., 2013. Geology 41, 735–738.http://geology.gsapubs.org/content/41/7/735.abstract

Secular changes at the Earth’s surface; evidence from paleosols, some sedimentary rocks, and paleoclimatic perturbations of theProterozoic EonYoung, G.M., 2013. Gondwana Research 24, 453–467.http://www.sciencedirect.com/science/article/pii/S1342937X12002584?v=s5

Production/Engineering Geochemistry

Delayed aggregation of asphaltenes in the presence of alcohols by dynamic light scatteringAlmusallam, A.S., Shaaban, M., Nettem, K., Fahim, M.A., 2013. Journal of Dispersion Science and Technology 34, 809–817.http://dx.doi.org/10.1080/01932691.2012.704737

Criterion of phase stability of asphaltenes in crude oilsBarskaya, E.E., Yusupova, T.N., Saraev, D.V., 2013. Chemistry and Technology of Fuels and Oils 49, 165–174.http://dx.doi.org/10.1007/s10553-013-0426-8

A radiofrequency/microwave heating method for thermal heavy oil recovery based on a novel tight-shell conceptual designBientinesi, M., Petarca, L., Cerutti, A., Bandinelli, M., De Simoni, M., Manotti, M., Maddinelli, G., 2013. Journal of Petroleum Science andEngineering 107, 18–30.http://www.sciencedirect.com/science/article/pii/S0920410513001022

Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processesCao, M., Gu, Y., 2013. Fuel 109, 157–166.http://www.sciencedirect.com/science/article/pii/S0016236113000276

Co-carbonization of petroleum residue asphaltenes with maltene fractions: Influence on the structure and reactivity of resultantcokesChen, K., Liu, H., Xue, Z., Li, H., Guo, A., Wang, Z., 2013. Journal of Analytical and Applied Pyrolysis 102, 131–136.http://www.sciencedirect.com/science/article/pii/S0165237013000569

Research of the heavy oil displacement mechanism by using alkaline/surfactant flooding systemChen, L., Zhang, G., Ge, J., Jiang, P., Tang, J., Liu, Y., 2013. Colloids and Surfaces A: Physicochemical and Engineering Aspects 434, 63–71.http://www.sciencedirect.com/science/article/pii/S0927775713004184

Size-exclusion chromatography of asphaltenes: An experimental comparison of commonly used approachesDong, S., Striegel, A., 2013. Chromatographia 76, 725–733.http://dx.doi.org/10.1007/s10337-013-2472-0

Direct mass spectrometry of tar sands: A new approach to bitumen identificationFlego, C., Carati, C., Gaudio, L.D., Zannoni, C., 2013. Fuel 111, 357–366.http://www.sciencedirect.com/science/article/pii/S0016236113002962

Page 25: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e25

A model system to assess the phase behavior of asphaltenes in crude oilGarreto, M.S.E., Mansur, C.R.E., Lucas, E.F., 2013. Fuel 113, 318–322.http://www.sciencedirect.com/science/article/pii/S0016236113005164

Modeling and prediction of asphaltene adsorption isotherms using Polanyi’s modified theoryGiraldo, J., Nassar, N.N., Benjumea, P., Pereira-Almao, P., Cortés, F.B., 2013. Energy & Fuels 27, 2908–2914.http://dx.doi.org/10.1021/ef4000837

An experimental evaluation of oil recovery by steam alternative CO2 injection in naturally fractured reservoirsHeidari, P., Kordestany, A., Sepahvand, A., 2013. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35, 1498–1507.http://dx.doi.org/10.1080/15567036.2010.527914

X-ray spectroscopy and chemometric methods for real-time characterization of petroleum for the refining process through trueboiling point curve and American Petroleum Institute gravityHenriques, C.B., Alves, J.C.L., Poppi, R.J., Filho, R.M., Bueno, M.I.M.S., 2013. Energy & Fuels 27, 3014–3021.http://dx.doi.org/10.1021/ef400230m

Measurement and modeling of density and viscosity for mixtures of Athabasca bitumen and heavy n-alkaneKariznovi, M., Nourozieh, H., Guan, J.G., Abedi, J., 2013. Fuel 112, 83–95.http://www.sciencedirect.com/science/article/pii/S0016236113003724

Experimental study on the stability of the foamy oil in developing heavy oil reservoirsLiu, P., Wu, Y., Li, X., 2013. Fuel 111, 12–19.http://www.sciencedirect.com/science/article/pii/S0016236113002093

Performances of different recovery methods for Orinoco Belt heavy oil after solution gas driveLu, T., Li, Z., Li, S., Li, B., Liu, S., 2013. Energy & Fuels 27, 3499–3507.http://pubs.acs.org/doi/abs/10.1021/ef400511s

Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heatingMartínez-Palou, R., Cerón-Camacho, R., Chávez, B., Vallejo, A.A., Villanueva-Negrete, D., Castellanos, J., Karamath, J., Reyes, J., Aburto, J.,2013. Fuel 113, 407–414.http://www.sciencedirect.com/science/article/pii/S0016236113005139

High temperature reactions of water with heavy oil and bitumen: Insights into aquathermolysis chemistry during steam-assistedrecoveryMontgomery, W., Court, R.W., Rees, A.C., Sephton, M.A., 2013. Fuel 113, 426–434.http://www.sciencedirect.com/science/article/pii/S0016236113005176

Impact of ionic strength on partitioning of naphthenic acids in water–crude oil systems – Determination through high-field NMRspectroscopyMoradi, M., Topchiy, E., Lehmann, T.E., Alvarado, V., 2013. Fuel 112, 236–248.http://www.sciencedirect.com/science/article/pii/S0016236113004341

Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recoveryapplicationsPereira, J.F.B., Gudiña, E.J., Costa, R., Vitorino, R., Teixeira, J.A., Coutinho, J.A.P., Rodrigues, L.R., 2013. Fuel 111, 259–268.http://www.sciencedirect.com/science/article/pii/S0016236113003414

Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine filmsSaraji, S., Goual, L., Piri, M., 2013. Colloids and Surfaces A: Physicochemical and Engineering Aspects 434, 260–267.http://www.sciencedirect.com/science/article/pii/S0927775713004603

Measurement of asphaltenes using optical spectroscopy on a microfluidic platformSchneider, M.H., Sieben, V.J., Kharrat, A.M., Mostowfi, F., 2013. Analytical Chemistry 85, 5153–5160.http://dx.doi.org/10.1021/ac400495x

Wanted dead or live: Crude-cocktail viscosity—A pseudocomponent method to predict the viscosity of dead oils, live oils, andmixturesYarranton, H., van Dorp, J., Verlaan, M., Lastovka, V., 2013. Journal of Canadian Petroleum Technology 52, 176–191.http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=JCPT&mid=SPE-160314-PA&pdfChronicleId=0901476280291931#

Transformation of nitrogen compounds in deasphalted oil hydrotreating: Characterized by electrospray ionization Fouriertransform-ion cyclotron resonance mass spectrometryZhang, T., Zhang, L., Zhou, Y., Wei, Q., Chung, K.H., Zhao, S., Xu, C., Shi, Q., 2013. Energy & Fuels 27, 2952–2959.http://dx.doi.org/10.1021/ef400154u

Low interfacial tension behavior between organic alkali/surfactant/polymer system and crude oilZhao, X., Bai, Y., Wang, Z., Shang, X., Qiu, G., Chen, L., 2013. Journal of Dispersion Science and Technology 34, 756–763.http://dx.doi.org/10.1080/01932691.2012.686252

Page 26: Geochemistry articles – June 2013

e26 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Separation and characterization of vanadyl porphyrins in Venezuela Orinoco heavy crude oilZhao, X., Liu, Y., Xu, C., Yan, Y., Zhang, Y., Zhang, Q., Zhao, S., Chung, K., Gray, M.R., Shi, Q., 2013. Energy & Fuels 27, 2874–2882.http://dx.doi.org/10.1021/ef400161p

Analysis of saturates in vacuum residue by solid phase extraction and field desorption time-of-flight mass spectrometryZhu, X., Liu, Z., Tian, S., Wang, W., 2013. Fuel 112, 105–110.http://www.sciencedirect.com/science/article/pii/S0016236113003621

Recent Sediments/Hydrosphere

Transformations of the chemical compositions of high molecular weight DOM along a salinity transect: Using two dimensionalcorrelation spectroscopy and principal component analysis approachesAbdulla, H.A.N., Minor, E.C., Dias, R.F., Hatcher, P.G., 2013. Geochimica et Cosmochimica Acta 118, 231–246.http://www.sciencedirect.com/science/article/pii/S0016703713001981

Geochemistry and microbial populations in sediments of the northern Baffin Bay, ArcticAlgora, C., Gründger, F., Adrian, L., Damm, V., Richnow, H.-H., Krüger, M., 2013. Geomicrobiology Journal 30, 690–705.http://dx.doi.org/10.1080/01490451.2012.758195

Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environmentAntler, G., Turchyn, A.V., Rennie, V., Herut, B., Sivan, O., 2013. Geochimica et Cosmochimica Acta 118, 98–117.http://www.sciencedirect.com/science/article/pii/S001670371300269X

Quantifying the degradation of organic matter in marine sediments: A review and synthesisArndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Earth-Science Reviews 123, 53–86.http://www.sciencedirect.com/science/article/pii/S0012825213000512

Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land-useAsmala, E., Autio, R., Kaartokallio, H., Pitkänen, L., Stedmon, C.A., Thomas, D.N., 2013. Biogeosciences Discussions 10, 9819–9865.http://www.biogeosciences-discuss.net/10/9819/2013/

Change at the margin of the North Water Polynya, Baffin Bay, inferred from organic matter records in dated sediment coresBailey, J.N.L., Macdonald, R.W., Sanei, H., Outridge, P.M., Johannessen, S.C., Hochheim, K., Barber, D., Stern, G.A., 2013. Marine Geology 341,1–13.http://www.sciencedirect.com/science/article/pii/S0025322713000741

Isolation and compound specific radiocarbon dating of terrigenous branched glycerol dialkyl glycerol tetraethers (brGDGTs)Birkholz, A., Smittenberg, R.H., Hajdas, I., Wacker, L., Bernasconi, S.M., 2013. Organic Geochemistry 60, 9–19.http://www.sciencedirect.com/science/article/pii/S0146638013000910

The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (d13C, D14C) and organictracersCathalot, C., Rabouille, C., Tisnérat-Laborde, N., Toussaint, F., Kerhervé, P., Buscail, R., Loftis, K., Sun, M.Y., Tronczynski, J., Azoury, S., Lansard,B., Treignier, C., Pastor, L., Tesi, T., 2013. Geochimica et Cosmochimica Acta 118, 33–55.http://www.sciencedirect.com/science/article/pii/S0016703713002652

New views on ‘‘old’’ carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian AndesClark, K.E., Hilton, R.G., West, A.J., Malhi, Y., Gröcke, D.R., Bryant, C.L., Ascough, P.L., Robles Caceres, A., New, M., 2013. Geochemistry,Geophysics, Geosystems 14, 1644–1659.http://dx.doi.org/10.1002/ggge.20122

Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, BahamasEdgcomb, V.P., Bernhard, J.M., Beaudoin, D., Pruss, S., Welander, P.V., Schubotz, F., Mehay, S., Gillespie, A.L., Summons, R.E., 2013. Geobiology11, 234–251.http://dx.doi.org/10.1111/gbi.12029

Biomarkers record environmental changes along an altitudinal transect in the wettest place on EarthErnst, N., Peterse, F., Breitenbach, S.F.M., Syiemlieh, H.J., Eglinton, T.I., 2013. Organic Geochemistry 60, 93–99.http://www.sciencedirect.com/science/article/pii/S0146638013001149

Fatty acid and stable isotope biomarkers suggest microbe-induced differences in benthic food webs between depthsGalloway, A.W.E., Lowe, A.T., Sosik, E.A., Yeung, J.S., Duggins, D.O., 2013. Limnology and Oceanography 58, 1451–1462.http://aslo.org/lo/toc/vol_58/issue_4/1451.html

Molecular evidence for an active endogenous microbiome beneath glacial iceHamilton, T.L., Peters, J.W., Skidmore, M.L., Boyd, E.S., 2013. ISME Journal 7, 1402–1412.http://dx.doi.org/10.1038/ismej.2013.31

Stable isotope composition of suspended particulate organic matter in twenty reservoirs from Guangdong, southern China:Implications for pelagic carbon and nitrogen cyclingHou, W., Gu, B., Lin, Q., Gu, J., Han, B.-P., 2013. Water Research 47, 3610–3623.http://www.sciencedirect.com/science/article/pii/S0043135413003436

Page 27: Geochemistry articles – June 2013

Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28 e27

Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additionsJohnson, L.T., Tank, J.L., Hall Jr., R.O., Mulholland, P.J., Hamilton, S.K., Valett, H.M., Webster, J.R., Bernot, M.J., McDowell, W.H., Peterson, B.J.,Thomas, S.M., 2013. Limnology and Oceanography 58, 1271–1285.http://aslo.org/lo/toc/vol_58/issue_4/1271.html

Geochemical and isotopic signatures of surficial sediments from the western continental shelf of India: Inferring provenance,weathering, and the nature of organic matterKurian, S., Nath, B.N., Kumar, N.C., Nair, K.K.C., 2013. Journal of Sedimentary Research 83, 427–442.http://jsedres.sepmonline.org/content/83/6/427.abstract

Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal FieldLincoln, S.A., Bradley, A.S., Newman, S.A., Summons, R.E., 2013. Organic Geochemistry 60, 45–53.http://www.sciencedirect.com/science/article/pii/S0146638013000934

Composition of size-fractioned sedimentary organic matter in coastal environments is affected by difference in physical forcingstrengthLiu, Z., Breecker, D., Mayer, L.M., Zhong, J., 2013. Organic Geochemistry 60, 20–32.http://www.sciencedirect.com/science/article/pii/S0146638013000922

Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watershedsLloret, E., Dessert, C., Pastor, L., Lajeunesse, E., Crispi, O., Gaillardet, J., Benedetti, M.F., 2013. Chemical Geology 351, 229–244.http://www.sciencedirect.com/science/article/pii/S0009254113002295

Molecular level characterization of methyl sugars in marine high molecular weight dissolved organic matterPanagiotopoulos, C., Repeta, D.J., Mathieu, L., Rontani, J.-F., Sempéré, R., 2013. Marine Chemistry 154, 34–45.http://www.sciencedirect.com/science/article/pii/S0304420313000650

Iron traps terrestrially derived dissolved organic matter at redox interfacesRiedel, T., Zak, D., Biester, H., Dittmar, T., 2013. Proceedings of the National Academy of Sciences 110, 10101–10105.http://www.pnas.org/content/110/25/10101.abstractN2

Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyrRiethdorf, J.R., Nürnberg, D., Max, L., Tiedemann, R., Gorbarenko, S.A., Malakhov, M.I., 2013. Climate of the Past 9, 1345–1373.http://www.clim-past.net/9/1345/2013/

Molecular composition of dissolved organic matter from a wetland plant (Juncus effusus) after photochemical and microbialdecomposition (1.25 yr): Common features with deep sea dissolved organic matterRossel, P.E., Vähätalo, A.V., Witt, M., Dittmar, T., 2013. Organic Geochemistry 60, 62–71.http://www.sciencedirect.com/science/article/pii/S0146638013000971

Influence of lake water pH and alkalinity on the distribution of core and intact polar branched glycerol dialkyl glycerol tetraethers(GDGTs) in lakesSchoon, P.L., de Kluijver, A., Middelburg, J.J., Downing, J.A., Sinninghe Damsté, J.S., Schouten, S., 2013. Organic Geochemistry 60, 72–82.http://www.sciencedirect.com/science/article/pii/S0146638013000995

Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with ahighly calcareous catchmentToming, K., Tuvikene, L., Vilbaste, S., Agasild, H., Viik, M., Kisand, A., Feldmann, T., Martma, T., Jones, R.I., Nõges.Tiina, 2013. Limnology andOceanography 58, 1259–1270.http://aslo.org/lo/toc/vol_58/issue_4/1259.html

A pyrolysis and stable isotopic approach to investigate the origin of methyltrimethyltridecylchromans (MTTCs)Tulipani, S., Grice, K., Greenwood, P., Schwark, L., 2013. Organic Geochemistry 61, 1–5.http://www.sciencedirect.com/science/article/pii/S0146638013001162

Comparison of TEX86 and UK037 temperature proxies in sinking particles in the Cariaco Basin

Turich, C., Schouten, S., Thunell, R., Varela, R., Astor, Y., Wakeham, S.G., 2013. Deep Sea Research Part I: Oceanographic Research Papers 78,115–133.http://www.sciencedirect.com/science/article/pii/S0967063713000563

Degradation of terrestrially derived macromolecules in the Amazon RiverWard, N.D., Keil, R.G., Medeiros, P.M., Brito, D.C., Cunha, A.C., Dittmar, T., Yager, P.L., Krusche, A.V., Richey, J.E., 2013. Nature Geoscience 6,530–533.http://dx.doi.org/10.1038/ngeo1817

Variability of tetraether lipids in Yellow River-dominated continental margin during the past eight decades: Implications for organicmatter sources and river channel shiftsWu, W., Zhao, L., Pei, Y., Ding, W., Yang, H., Xu, Y., 2013. Organic Geochemistry 60, 33–39.http://www.sciencedirect.com/science/article/pii/S0146638013000983

Page 28: Geochemistry articles – June 2013

e28 Geochemistry articles / Organic Geochemistry 62 (2013) e1–e28

Dissolved organic matter and inorganic ions in a central Himalayan glacier—Insights into chemical composition and atmosphericsourcesXu, J., Zhang, Q., Li, X., Ge, X., Xiao, C., Ren, J., Qin, D., 2013. Environmental Science & Technology 47, 6181–6188.http://dx.doi.org/10.1021/es4009882

Seepage-Remote Detection

Evidence for extensive methane venting on the southeastern U.S. Atlantic marginBrothers, L.L., Van Dover, C.L., German, C.R., Kaiser, C.L., Yoerger, D.R., Ruppel, C.D., Lobecker, E., Skarke, A.D., Wagner, J.K.S., 2013. Geology41, 807–810.http://geology.gsapubs.org/content/41/7/807.abstract

Methane flux and origin in the Othrys ophiolite hyperalkaline springs, GreeceEtiope, G., Tsikouras, B., Kordella, S., Ifandi, E., Christodoulou, D., Papatheodorou, G., 2013. Chemical Geology 347, 161–174.http://www.sciencedirect.com/science/article/pii/S0009254113001460

Determining the origin of carbon dioxide and methane in the gaseous emissions of the San Vittorino plain (central Italy) by means ofstable isotopes and noble gas analysisGiustini, F., Blessing, M., Brilli, M., Lombardi, S., Voltattorni, N., Widory, D., 2013. Applied Geochemistry 34, 90–101.http://www.sciencedirect.com/science/article/pii/S0883292713000486

Use of remote sensing techniques and aeromagnetic data to study episodic oil seep discharges along the Gulf of Suez in EgyptKaiser, M.F., Aziz, A.M., Ghieth, B.M., 2013. Marine Pollution Bulletin 72, 80–86.http://www.sciencedirect.com/science/article/pii/S0025326X13002208

Origin of gases and water in mud volcanoes of Andaman accretionary prism: Implications for fluid migration in forearcsRay, J.S., Kumar, A., Sudheer, A.K., Deshpande, R.D., Rao, D.K., Patil, D.J., Awasthi, N., Bhutani, R., Bhushan, R., Dayal, A.M., 2013. ChemicalGeology 347, 102–113.http://www.sciencedirect.com/science/article/pii/S0009254113001381

Methane in soil gas and its transfer to the atmosphere in the Yakela condensed gas field in the Tarim Basin, northwest ChinaTang, J., Wang, G., Yin, H., Li, H., 2013. Petroleum Science 10, 183–189.http://dx.doi.org/10.1007/s12182-013-0265-6

Soil Geochemistry

Tracking the fate of microbially sequestered carbon dioxide in soil organic matterHart, K.M., Kulakova, A.N., Allen, C.C.R., Simpson, A.J., Oppenheimer, S.F., Masoom, H., Courtier-Murias, D., Soong, R., Kulakov, L.A., Flanagan,P.V., Murphy, B.T., Kelleher, B.P., 2013. Environmental Science & Technology 47, 5128–5137.http://dx.doi.org/10.1021/es3050696

Sources and preservation of organic matter in soils of the wetlands in the Liaohe (Liao River) Delta, North ChinaLin, T., Ye, S., Ma, C., Ding, X., Brix, H., Yuan, H., Chen, Y., Guo, Z., 2013. Marine Pollution Bulletin 71, 276–285.http://www.sciencedirect.com/science/article/pii/S0025326X13000519

Carbon isotopic composition of isoprenoid tetraether in surface sediments of Lake Qinghai and surrounding soilsLu, H., Liu, W., Wang, H., Zhang, C.L., 2013. Organic Geochemistry 60, 54–61.http://www.sciencedirect.com/science/article/pii/S0146638013000958

Water availability determines branched glycerol dialkyl glycerol tetraether distributions in soils of the Iberian PeninsulaMenges, J., Huguet, C., Alcañiz, J.M., Fietz, S., Sachse, D., Rosell-Melé, A., 2013. Biogeosciences Discussions 10, 9043–9068.http://www.biogeosciences-discuss.net/10/9043/2013/

Isolation and characterization of different organic matter fractions from a same soil source and their phenanthrene sorptionSun, K., Jin, J., Kang, M., Zhang, Z., Pan, Z., Wang, Z., Wu, F., Xing, B., 2013. Environmental Science & Technology 47, 5138–5145.http://dx.doi.org/10.1021/es3052087

Expanded compilations of references with abstracts in Microsoft Word and ISI EndNote formats are available at: http://www.eaog.org/other/ref_update.html.Compiled by Clifford C. Walters


Recommended