+ All Categories
Home > Documents > Geol 2312 Igneous and Metamorphic Petrology

Geol 2312 Igneous and Metamorphic Petrology

Date post: 02-Feb-2016
Category:
Upload: osric
View: 36 times
Download: 0 times
Share this document with a friend
Description:
Geol 2312 Igneous and Metamorphic Petrology. Lecture 13 Mid-Ocean Ridge Basalts (MORB) and Ocean Island Basalts (OIB). February 23, 2009. Present-Day Mid-Ocean Ridges Birthplaces of MORB. Spreading Rates. Oceanic Crust and Upper Mantle Structure. EVIDENCE Seismic Velocities - PowerPoint PPT Presentation
Popular Tags:
18
GEOL 2312 IGNEOUS AND METAMORPHIC PETROLOGY Lecture 13 Mid-Ocean Ridge Basalts (MORB) and Ocean Island Basalts (OIB) February 23, 2009
Transcript
Page 1: Geol 2312  Igneous and Metamorphic Petrology

GEOL 2312 IGNEOUS AND METAMORPHIC PETROLOGY

Lecture 13

Mid-Ocean Ridge Basalts (MORB)

and

Ocean Island Basalts (OIB)

February 23, 2009

Page 2: Geol 2312  Igneous and Metamorphic Petrology

PRESENT-DAY MID-OCEAN RIDGESBIRTHPLACES OF MORB

Page 3: Geol 2312  Igneous and Metamorphic Petrology

SPREADING RATESTable 13-1. Spreading Rates of Some Mid-Ocean

Ridge Segments

Category Ridge Latitude Rate (cm/a)*

Fast East Pacific Rise 21-23oN 313oN 5.311oN 5.68-9oN 62oN 6.3

20-21oS 833oS 5.554oS 456oS 4.6

Slow Indian Ocean SW 1SE 3-3.7

Central 0.9

Mid-Atlantic Ridge 85oN 0.645oN 1-336oN 2.223oN 1.348oS 1.8

From Wilson (1989). Data from Hekinian (1982), Sclater et al .

(1976), Jackson and Reid (1983). *half spreading

Page 4: Geol 2312  Igneous and Metamorphic Petrology

OCEANIC CRUST AND UPPER MANTLE STRUCTURE

EVIDENCEEVIDENCE Seismic Velocities Deep Sea Drilling Program Ophiolites Dredging of Fracture Zone

Scarps

Page 5: Geol 2312  Igneous and Metamorphic Petrology

OCEANIC CRUST AND UPPER MANTLE STRUCTURE

Layer 3A = upper isotropic and lower, somewhat foliated (“transitional”) gabbros

Layer 3B is more layered, & may exhibit cumulate textures

Page 6: Geol 2312  Igneous and Metamorphic Petrology

OCEANIC CRUST AND UPPER MANTLE FORMATION

Page 7: Geol 2312  Igneous and Metamorphic Petrology

COMPOSITION OF MORB

Table 13-2. Average Analyses and CIPW Norms of MORBs (BVTP Table 1.2.5.2)

Oxide (wt%) All MAR EPR IORSiO2 50.5 50.7 50.2 50.9

TiO2 1.56 1.49 1.77 1.19

Al2O3 15.3 15.6 14.9 15.2FeO* 10.5 9.85 11.3 10.3MgO 7.47 7.69 7.10 7.69CaO 11.5 11.4 11.4 11.8Na2O 2.62 2.66 2.66 2.32

K2O 0.16 0.17 0.16 0.14

P2O5 0.13 0.12 0.14 0.10Total 99.74 99.68 99.63 99.64

Normq 0.94 0.76 0.93 1.60or 0.95 1.0 0.95 0.83ab 22.17 22.51 22.51 19.64an 29.44 30.13 28.14 30.53di 21.62 20.84 22.5 22.38hy 17.19 17.32 16.53 18.62ol 0.0 0.0 0.0 0.0mt 4.44 4.34 4.74 3.90il 2.96 2.83 3.36 2.26ap 0.30 0.28 0.32 0.23All: Ave of glasses from Atlantic, Pacific and Indian Ocean ridges.

MAR: Ave. of MAR glasses. EPR: Ave. of EPR glasses.

IOR: Ave. of Indian Ocean ridge glasses.

Primitive Magma

Fractional Crystallization

Page 8: Geol 2312  Igneous and Metamorphic Petrology

COMPOSITIONAL VARIABILITY IN MORB NOT RELATED TO FRACTIONAL

CRYSTALLIZAITON

Incompatible-rich and incompatible-poor mantle source regions for MORB magmas

N-MORB (normal MORB) taps the depleted upper mantle source

Mg# > 65: K2O < 0.10 TiO2 < 1.0

E-MORB (enriched MORB) taps undepleted (deeper?) mantle

Mg# > 65: K2O > 0.10 TiO2 > 1.0

FC

Page 9: Geol 2312  Igneous and Metamorphic Petrology

ORIGIN OF NMORB AND EMORB

Page 10: Geol 2312  Igneous and Metamorphic Petrology

X-Sectional View

Longitudinal View

DISTRIBUTION OF NMORB & EMORB

AT FAST SPREADING RIDGES

PROMOTES DEVELOPMENT OF LARGER MAGMA CHAMBERS

MORE FRACTIONATED BASALT COMPOSITIONS

Winter (2001) Figure 13-15, After Perfit et al. (1994) Geology, 22, 375-379.

Winter (2001) Figure 13-16 ; After Sinton and Detrick (1992) J. Geophys. Res., 97, 197-216.

Page 11: Geol 2312  Igneous and Metamorphic Petrology

SLOW-SPREADING RIDGES

Distance (km)10 105 50

2

4

6

8

De

pth

(km

)

Moho

Transitionzone

Mush

Gabbro

Rift Valley

Winter (2001) Figure 13-16 After Sinton and Detrick (1992) J. Geophys. Res., 97, 197-216.

Smaller, crystal-rich, dike-like magma bodies results is less fractionation less evolved MORB

Page 12: Geol 2312  Igneous and Metamorphic Petrology

GLOBAL VARIABILITY OF MORB

THERMAL STRUCTURE OF THE MANTLE

Page 13: Geol 2312  Igneous and Metamorphic Petrology

OCEAN ISLAND BASALTS (OIB) PLUME-INFLUENCED VOLCANISM

Page 14: Geol 2312  Igneous and Metamorphic Petrology

HAWAIIAN VOLCANISMSTAGING OF ALKALINE AND THOLEIITIC MAGMA

SERIES

Page 15: Geol 2312  Igneous and Metamorphic Petrology

MAJOR ELEMENT CHEMISTRY OF OIB

Winter (2001) Figure 14-2. After Wilson (1989) Igneous Petrogenesis. Kluwer.

Table 14-4. Alkali/silica ratios (regression) for selected ocean island lava suites.

Island Alk/Silica Na2O/SiO2 K2O/SiO2

Tahiti 0.86 0.54 0.32Principe 0.86 0.52 0.34Trinidade 0.83 0.47 0.35Fernando de Noronha 0.74 0.42 0.33Gough 0.74 0.30 0.44St. Helena 0.56 0.34 0.22Tristan da Cunha 0.46 0.24 0.22Azores 0.45 0.24 0.21Ascension 0.42 0.18 0.24Canary Is 0.41 0.22 0.19Tenerife 0.41 0.20 0.21Galapagos 0.25 0.12 0.13Iceland 0.20 0.08 0.12

Variable alkalinity likely reflects variable depths and degrees of partial melting in the plume and variable degrees of mixing and re-equilbration as magma rises through the mantle plume to the ocean crust.

Page 16: Geol 2312  Igneous and Metamorphic Petrology

REE COMPOSITIONS OF OIB

Similar to E-MORB, but stronger depletion of HREE for both tholeiitic and alkali magmas series deep garnet-bearing source for both with re-equilibration at shallower depths

Lack of Eu anomaly indicates no significant fractionation of plagioclase

Alkali basalts strongly LREE-enriched low degrees of partial melting

Page 17: Geol 2312  Igneous and Metamorphic Petrology

TRACE ELEMENTS OIB / MORB

Winter (2001) Figure 14-3. An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Data from Sun and McDonough (1989).

Page 18: Geol 2312  Igneous and Metamorphic Petrology

A MODEL FOR OCEAN MAGMATISM

Winter (2001) Figure 14-10. Nomenclature from Zindler and Hart (1986). After Wilson (1989) and Rollinson (1993).

Mantle Reservoirs

(based on radiogenic isotopes)

Chondritic (undepleted) mantle

Previously melted mantle

U-enriched mantle

Chondritic (undepleted) mantle

Low Sr87/Sr86 mantleLow Nd143/Nd144 mantle

From recycled ocean crust


Recommended