+ All Categories
Home > Documents > Geophysical Attributes of Natural Gas Hydrates

Geophysical Attributes of Natural Gas Hydrates

Date post: 18-Aug-2015
Category:
Upload: shanna-mason
View: 76 times
Download: 1 times
Share this document with a friend
Popular Tags:
26
Geology 420: Spring 2014 Geophysical Attributes of Natural Gas Hydrates By: Shanna Mason
Transcript
Page 1: Geophysical Attributes of Natural Gas Hydrates

 

   

Geology  420:  Spring  2014  

Geophysical  Attributes  of  Natural  Gas  Hydrates  By:  Shanna  Mason  

   

Page 2: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

1    

1  

TABLE  OF  CONTENTS  

LIST  OF  FIGURES………………………………………………………………………….………2  

ABSTRACT……………………………………………………………….………………………….3  

INTRODUCTION…………………………………………………….…………….………………4  

SEISMIC  WAVE  PROPAGATION  IN  GAS  HYRATES…………………………………6  

GEOPHYSICAL  ANOMALIES  OF  GAS  HYDRATE  BEARING  SEDIMENTS….10  

  BOTTOM  SIMULATING  REFLECTOR……………………………………………10  

  AMPLITUDE  ANOMALIES……………………………………………………………13  

  ANOMALIES  CAUSED  BY  GAS  FLOW…………………………………………..14  

CONCLUSION……………………………………………………………………………………..15  

REFERENCES  CITED…………………………………………………………………………….18  

 

 

 

Page 3: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

2    

2  

LIST  OF  FIGURES  

Figure  1.  Gas  Hydrate  structures  (Makogon,  1981)…………………………………….........20  

Figure  2.  Phase  boundary  diagram  (Kvenvolden  and  McMenamin,  

1980)………………………………………………………………………………………………….…….………..20  

Figure  3.  Conoco  Milne  Point  Unit  D-­‐1  (Lee  et  al.,  2009)…………………….….…………..21  

Figure  4.  Biot-­‐Gassman  Theory  (Lee  et  al.,  2009)…………………………..……………………21  

Figure  5.  Velocities  of  Gas  Hydrate  bearing  sediments  with  respect  to  water  

porosities  (Lee  and  Collett,  2000)………………………………………………………..……………..22  

Figure  6.  P-­‐wave  and  S-­‐wave  velocities  (Sava  and  Hardage,  2009)……………………..23  

Figure  7.  P-­‐wave  attenuation  (Chand  and  Minshull,  2004)………………………………….23  

Figure  8.  12-­‐fold  seismic  reflection  profiles  (Shipley  et  al.,  1979)……………………….24  

Figure  9.  Seismic  reflection  profile  of  the  Outer  Blake  Ridge  area  (Chand  and  

Minshull,  2003)…………………………………………………………………………………………………..25  

Figure  10.  Gas  Chimneys  in  a  seismic  section  of  the  Outer  Blake  Ridge  area  

(Holbrook  et  al.,  2002)……………………………………………………………………………………….25  

Figure  11.  Blake  Ridge  seismic  section,  line  R38  (Holbrook  et  al.,  2002)…………….26  

Page 4: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

3    

3  

Abstract  

Since  their  discovery,  natural  gas  hydrates  have  been  postulated  as  a  potential  source  of  

harvestable  energy.  The  importance  in  the  research  conducted  on  natural  gas  hydrates  does  

not  stop  there.  Gas  hydrates  also  pose  a  problem  when  drilling  in  areas  that  contain  sediments  

bearing  them.  Luckily,  the  nature  of  natural  gas  hydrates  enables  them  to  have  certain  

indicative  geophysical  attributes  present  in  reflection  seismic  surveys.  It  is  these  attributes  

upon  which  this  paper  will  focus  on.    

First,  we  will  take  a  look  at  the  structure  of  natural  gas  hydrates  and  their  occurrence  in  nature.  

This  will  lead  us  into  the  elastic  properties  of  gas  hydrates  and  the  way  they  alter  the  elastic  

properties  of  the  sediments  they  form  in.  Elastic  properties  determine  the  way  that  seismic  

waves  move  through  a  rock  unit,  specifically  the  seismic  velocities  of  both  primary  and  

secondary  waves.  The  way  these  waves  move  through  rock  units  containing  gas  hydrates  

determines  what  is  shown  in  a  seismic  reflection  survey.  These  important  geophysical  

attributes  include;  the  bottom-­‐simulating  reflector,  amplitude  anomalies,  and  anomalies  

caused  by  gas  or  fluid  flow.  Each  geophysical  attribute  specific  to  gas  hydrates  can  be  explained  

according  to  the  elastic  properties  of  the  containing  sediment  and  the  way  seismic  waves  move  

through  them.    

 

 

 

 

Page 5: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

4    

4  

Introduction  

Gas  hydrates  are  crystalline  inclusion  compounds,  or  clathrates,  in  which  a  lattice  of  

water  molecules  traps  gas  molecules.  These  special  water  molecules  have  hydrogen  bonds  that  

cause  the  water  molecules  to  align  in  regular  orientations,  giving  them  their  lattice-­‐like  

structure  (Carroll,  2003).  During  crystallization  gas  molecules  are  forced  into  a  much  smaller  

volume  than  would  occur  in  a  gas  or  liquid  state,  increasing  their  density  (Max  and  Lowrie,  

1996).  The  specific  structure  formed  by  the  water  molecules  is  dependent  on  the  gas  molecules  

that  were  in  contact  with  the  water  during  crystallization.  The  amount  of  gas  trapped  within  the  

lattice  depends  on  the  external  temperature  and  pressure  conditions  present  during  

crystallization  (Makogon,  1981).  Natural  gas  hydrates  are  characterized  by  two  structures,  

structure  1  and  structure  2,  that  occur  together  as  a  unit  cell.  The  amount  of  concentration  is  

termed  hydrate  saturation  (See  Figure  1a  and  1b,  Makogon,  1981).    

The  formation  of  a  gas  hydrate  requires  three  things:  a  hydrate  former,  which  in  nature  

consists  of  mostly  methane,  with  trace  amounts  of  other  hydrocarbons  thrown  in.  Certain  

temperature  and  pressure  conditions  must  also  be  present,  preferably  low  temperatures  under  

high  pressure.  The  last  thing  needed  is  just  the  right  amount  of  water  molecules  present,  not  

too  few  and  not  too  many  (Carroll,  2003).  Conditions  of  hydrate  formation  are  favorable  in  

permafrost  and  deep  oceanic  settings.  The  source  of  natural  gas  in  these  regions  appears  to  be  

either  in  the  sediments  themselves  or  trapped  beneath  “caps”  of  gas  hydrates.  Hydrates  can  

also  form  freely  in  water,  however  unless  they  attach  to  sediment  they  simply  float  to  the  

surface  and  dissipate  (Max  and  Lowrie,  1996).  The  Gas  Hydrate  Phase  Diagram  more  accurately  

Page 6: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

5    

5  

describes  the  conditions  necessary  to  hydrate  formation  (See  Figure  2,  Kvenvolden  and  

Mcmenamin,  1980).  The  hydrate-­‐gas  phase  boundary  shown  is  accurate  for  a  pure  methane  

system.  If  NaCl  is  present  it  lowers  the  temperature  of  hydrate  formation,  shifting  this  

boundary  to  the  left.  If  other  types  of  hydrocarbons  are  present  the  temperature  increases,  and  

this  boundary  shifts  to  the  right  (Kvenvolden  and  Mcmenamin,  1980).  

Gas  hydrates  occur  in  a  zone  of  thermodynamic  equilibrium  that  parallels  the  sea  floor  

and  extends  to  a  certain  depth,  dependent  on  the  geothermal  gradient  of  the  region  (Max  and  

Lowrie,  1996).  The  Gas  Hydrate  Stability  Zone  (GHSZ),  shown  in  the  shaded  region  of  the  

diagram  in  Figure  2,  is  an  area  beneath  the  surface  in  which  heat  convection  from  below  

stabilizes  in  temperature  by  dissipating  into  the  sea.  Leaving  a  zone  of  stable  temperature  and  

pressure  in  which  hydrates  can  form  (Max  and  Lowrie,  1996).    

Gas  hydrates  occur  physically  in  nature  four  ways;  (1)  As  residents  in  the  pore  space  of  

coarse-­‐grained  rocks,  (2)  solid  unit  cells  filling  fractures  in  rock,  (3)  disseminated  in  fine-­‐grained  

rocks,  (4)  a  massive  solid  geological  unit  composed  mainly  of  gas  hydrates  with  a  small  amount  

of  sediment  (Collett,  1929).  In  the  last  two  cases  the  gas  hydrates  act  as  part  of  the  sediment  

framework.  However,  gas  hydrates  have  been  shown  to  preferentially  form  either  with  or  

around  existing  fractures  or  in  the  pore  space  of  sand-­‐rich  reservoirs.  This  is  due  to  the  lower  

capillary  pressure  present  in  the  pore  space  of  coarse-­‐grained  sediment,  or  secondary  pore  

spaces,  that  permits  the  migration  of  gas  hydrates  (Collett,  1929).    

 

 

Page 7: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

6    

6  

Seismic  Wave  Propagation  in  Gas  Hydrates  

To  understand  the  importance  of  the  way  seismic  waves  travel  through  gas  hydrate  

bearing  sediments,  it  is  beneficial  to  first  discuss  the  basic  properties  of  seismic  waves.  .  The  

elastic  modulus  of  a  medium  quantitatively  describes  its  ability  to  withstand  stress  and  strain.  

Seismic  waves  are  elastic  strain  energy  emitted  from  a  seismic  source  through  a  certain  type  of  

medium  (Kearey  and  Brooks,  1984).  As  these  waves  move  through  a  medium  energy  carried  

with  them  is  spread  out  in  a  circle.  Due  to  this  geometrical  spreading,  energy  decreases  along  

the  ray  path  during  propagation.  Energy  is  also  lost  in  this  ray  path  according  to  the  elastic  

properties  of  the  rock  units  it  is  moving  through.  Energy  along  the  ray  path  decreases  until  the  

ray  eventually  stops.  This  gradual  decrease  in  energy  of  seismic  waves  is  called  attenuation  

(Kearey  and  Brooks,  1984).      

There  are  two  types  of  seismic  waves,  Compressional  (P-­‐waves)  and  Shear  waves  (S-­‐

waves).  P-­‐waves  propagate  in  the  direction  of  wave  travel,  changing  both  the  volume  and  

shape  of  the  medium  it  is  travelling  through.  S-­‐waves  travel  by  pure  shear  strain,  perpendicular  

to  the  direction  of  wave  travel,  and  only  affect  the  shape  of  the  medium.  The  velocity  of  a  

seismic  wave  is  determined  by  (Kearey  and  Brooks,  1984):  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝐸𝑙𝑎𝑠𝑡𝑖𝑐  𝑀𝑜𝑑𝑢𝑙𝑖  𝑜𝑓  𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦   𝜌 𝑜𝑓  𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

The  elastic  properties  of  gas  hydrates  can  be  described  as  a  function  of  four  things;  (1)  

elastic  properties  of  the  host  sediment,  (2)  elastic  properties  of  pure  gas  hydrates,  (3)  hydrate  

saturation,  and  (4)  the  way  that  the  hydrates  are  distributed  in  the  sediment  (Sava  and  

Page 8: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

7    

7  

Hardage,  2009).  The  studies  discussed  in  the  following  section  describe  how  elastic  properties,  

and  the  ways  in  which  seismic  waves  propagate  through  gas  hydrates,  enable  us  to  determine  

areas  containing  gas  hydrate  bearing  sediments  in  seismic  reflection  surveys.    

In  arctic  settings,  gas  hydrate  saturation  increases  proportionally  to  sediment  porosity.  

This  was  indicated  by  the  findings  at  the  Conoco  Milne  Point  Unit  D-­‐1  well,  on  the  North  Slope  

of  Alaska  and  modeled  by  Lee  et  al.  in  “Seismic-­‐attribute  Analysis  for  Gas-­‐hydrate  and  Free-­‐gas  

Prospects  on  the  North  Slope  of  Alaska  (2009).”  The  area  where  this  well  is  located  contains  

sediment  characterized  by  unconsolidated  sandstones  with  interbedded  siltstones  and  shale.  

The  geothermal  gradient  restricts  the  GHSZ  to  approximately  850-­‐1000  meters.  Figure  3a  shows  

the  P-­‐wave  velocity,  density  porosity,  and  clay  content  for  sediments  within  the  GHSZ  at  the  

Conoco  Milne  Point  Unit  D-­‐1  well.  The  data  shows  that  sand  sediments  have  low  P-­‐wave  

velocities  and  high  density  porosities.  This  was  used  to  estimate  a  gas  hydrate  saturation  in  the  

sandstones  of  80%.  The  silt  and  shale  sediments  were  shown  to  have  higher  P-­‐wave  velocities  

and  lower  density  porosity.  Lee  and  Collett  used  the  results  obtained  from  this  well  to  obtain  

the  Reservoir  and  Seal  model  shown  in  Figure  3b.  Then,  using  the  Biot-­‐Gassman  theory  and  the  

Reservoir  and  Seal  model  in  Figure  3b,  they  calculated  seismic  velocities  in  gas  hydrates  against  

the  percentage  of  hydrate  saturation  (See  Figure  4,  Lee  et  al.,  2009).  The  Biot-­‐Gassman  theory  

relates  the  elastic  moduli  of  gas  hydrates  with  the  pressure  present  to  estimate  the  

compressional  and  shear  wave  velocities  (Lee  et  al.,  2009).    

Lee  and  Collett  studied  seismic  velocities  in  gas  hydrate  bearing  sediments  of  varying  

porosity  in  a  Canadian  well  named  Mallik  2L-­‐38  (2000).  Using  a  three-­‐phase  weighted  equation  

for  both  P  and  S-­‐waves,  they  calculated  normal  trend  curves  for  both  gas  hydrate  sediments  

Page 9: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

8    

8  

and  non-­‐gas  hydrates.  These  trend  curves  were  then  compared  from  data  obtained  from  Mallik  

2L-­‐38.  Figure  5  shows  the  calculated  normal  trend  and  the  data  set  obtained  from  the  well  (Lee  

and  Collett,  2000).  On  comparison,  the  data  varies  slightly  from  the  calculated  trend.  The  

authors  attribute  this  to  differing  concentrations  of  gas  hydrates  present  in  the  sediment.  

When  this  is  accounted  for  in  calculations,  the  velocities  mimic  the  normal  trend  curve.  The  

overall  relationship  described  by  the  trend  curve  indicates  that  as  velocity  increases,  porosity  

decreases  (Lee  and  Collett,  2000).  

Diana  Sava  and  Bob  Hardage  created  rock  physics  models  in  an  attempt  to  be  able  to  

infer  gas-­‐hydrate  concentrations  from  seismic  measurements.  They  describe  four  rock  physics  

models,  each  model  varying  in  the  way  that  gas  hydrates  occupy  sediment.  To  calculate  

velocities  in  each  case  the  authors  determine  at  which  point  each  model  meets  the  critical  

porosity.  They  define  this  as  the  point  at  which  grains  in  sediment  cease  to  float  in  a  grain  

matrix  and  become  part  of  the  sediment  framework.  Each  model  uses  different  calculations  for  

gas  hydrate  concentrations  above  and  below  the  critical  porosity.  These  models  were  then  

compared  to  published  laboratory  studies  in  confirmation  of  their  methods  (Sava  and  Hardage,  

2009).  

The  four  models  outlined  by  Sava  and  Hardage  are:  Model  A  assumes  hydrates  act  as  a  

part  of  the  load-­‐bearing  frame  of  a  sediment.  Model  B  assumes  gas  hydrates  are  disseminated  

throughout  the  rock  but  occupy  the  pore  space  and  have  no  effect  on  the  frame.  Model  C  

assumes  hydrates  to  occur  in  layers  between  unconsolidated  water-­‐saturated  marine  sediment.  

Model  D  assumes  hydrates  to  also  occur  in  layers,  but  in  this  model  the  gas  hydrates  occupy  

99%  of  the  pore  space,  with  a  small  amount  of  sediment  in  between  (Sava  and  Hardage,  2009).  

Page 10: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

9    

9  

The  results  of  the  calculations  used  show  P  and  S-­‐wave  velocities  as  they  relate  to  gas  hydrate  

concentration  in  each  of  the  four  models  (See  Figure  6,  Sava  and  Hardage,  2009).  Results  

showed  that  both  P  and  S-­‐wave  velocities  increase  with  gas  hydrate  concentration.  However,  

the  amount  of  increase  varies  in  each  model.  P-­‐wave  velocity  increased  the  highest  in  models  A  

and  D,  and  the  smallest  increase  occurred  in  model  C.  S-­‐wave  velocity  increased  insignificantly  

in  model  B,  when  the  gas  hydrates  were  not  connected  to  the  mineral  frame.  They  also  found  

that  the  pore-­‐filling  model,  model  B  was  only  physically  realistic  in  areas  of  small  gas  hydrate  

concentrations.  At  higher  concentrations,  model  A  should  be  considered  instead  of  model  B  

(Sava  and  Hardage,  2009).  Furthermore  when  the  velocities  are  plotted  as  a  ratio,  in  all  models  

except  for  B,  the  ratio  decreases  with  gas  hydrate  concentration.  The  difference  that  occurs  in  

model  B  is  due  to  the  P-­‐wave  velocity  increasing  while  the  S-­‐wave  velocity  stays  relatively  

constant  (See  Figure  6,  Sava  and  Hardage,  2009).  A  large  increase  in  S-­‐wave  velocity  only  occurs  

in  small  gas  hydrate  concentrations  when  the  wave  is  propagating  with  its  displacement  vector  

polarized  parallel  to  the  layers,  as  in  model  D.  This  indicates  that  in  similar  environments  we  

may  be  able  to  deduce  gas  hydrate  concentrations  from  S-­‐wave  information  (Sava  and  Hardage,  

2009).    

In  “Effect  of  Hydrate  Content  on  Seismic  Attenuation,”  Chand  and  Minshull  relate  

seismic  properties  of  hydrate  bearing  sediments  to  porosity,  mineralogy,  micro-­‐structure,  clay  

particle  anisotropy  and  hydrate  saturation  (2004).  The  forward  model  they  produced  predicted  

both  P  and  S  wave  attenuation  to  increase  with  hydrate  saturation  and  frequency  (See  Figure  7,  

Chand  and  Minshull,  2004).  This  is  odd  because  gas  hydrates  should  increase  the  strength  of  

sediments  and  therefore  decrease  attenuation.  The  model  was  then  compared  with  data  

Page 11: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

10    

10  

observed  at  the  Mallik  2L-­‐38  well  in  the  Mackenzie  Delta,  Canada.  The  data  was  used  as  

evidence  to  support  their  theory  that  this  increase  in  attenuation  can  be  attributed  to  a  

difference  in  permeability  between  the  host  sediments  and  the  amount  of  fluid  flow  in  the  rock.    

From  these  studies  it  is  obvious  that  the  formation  of  gas  hydrates  within  a  sediment  

changes  the  sediment’s  elastic  properties.  Especially  if  the  gas  hydrates  are  cementing  the  

sediment  grains.  Both  primary  and  secondary  seismic  velocities  increase,  depending  on  the  

amount  of  gas  hydrate  saturation,  primary  velocity  most  notably  (Lee  and  Collett,  2009).  Gas  

hydrates  have  also  been  shown  to  prefer  sediments  with  large  pore  spaces,  or  as  the  filling  of  

large  secondary  pore  spaces,  such  as  joints  and  fractures  (Chand  and  Minshull,  2003).  

Understanding  the  elastic  behavior  caused  by  gas  hydrate  formation  in  marine  sediments  

allows  us  to  explain  the  various  anomalies  found  in  seismic  reflection  surveys.    

Geophysical  Anomalies  of  Gas  Hydrate  Bearing  Sediments  

Bottom-­‐Simulating  Reflector  

The  most  notable  method  for  determining  the  presence  of  gas  hydrates  in  a  seismic  section  is  a  

Bottom  Simulating  Reflector  (BSR).  The  interpretation  of  the  BSR  is  dependent  upon  the  

knowledge  of  how  seismic  waves  propagate  through  gas  hydrates  and  their  relation  to  

surrounding  mediums.  A  seismic  reflection  survey  measures  the  amount  of  energy  that  is  

reflected  at  an  interface  in  the  subsurface,  this  energy  is  described  quantitatively  as  a  fraction  

termed  the  Reflection  Coefficient  and  is  basically  the  ratio  of  acoustic  impedance  between  

layers  (Kearey  and  Brooks,  1984):  

Page 12: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

11    

11  

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒  𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒  𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡

=  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  ! −  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  !𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  !  +  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  !

 

𝑾𝒉𝒆𝒓𝒆:  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  ! = 𝑨𝒄𝒐𝒖𝒔𝒕𝒊𝒄  𝑰𝒎𝒑𝒆𝒅𝒂𝒏𝒄𝒆  𝒐𝒇  𝑳𝒂𝒚𝒆𝒓  𝟏  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  ! = 𝑨𝒄𝒐𝒖𝒔𝒕𝒊𝒄  𝑰𝒎𝒑𝒆𝒅𝒂𝒏𝒄𝒆  𝒐𝒇  𝑳𝒂𝒚𝒆𝒓  𝟐  

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  ! > 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  != 𝑷𝒐𝒍𝒂𝒓𝒊𝒕𝒚  𝒐𝒇  𝒘𝒂𝒗𝒆  𝒖𝒏𝒄𝒉𝒂𝒏𝒈𝒆𝒅  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  ! < 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦!"#$%  !𝐷𝑒𝑛𝑠𝑖𝑡𝑦!"#$%  != 𝑷𝒐𝒍𝒂𝒓𝒊𝒕𝒚  𝒐𝒇  𝒘𝒂𝒗𝒆  𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅  

 

 

  The  BSR  is  a  reflection  of  a  chemical  phase  boundary,  it  marks  the  interface  of  either  

high  velocity  gas  hydrate  bearing  sediments  over  sediments  of  normal  velocity,  or  between  gas  

hydrate  bearing  sediments  and  low  velocity  free  gas  trapped  beneath.  This  appears  in  a  seismic  

section  to  run  parallel  to  the  bedding  plane  cross-­‐cutting  the  strata  (Chand  and  Minshull,  2003).  

BSRs  can  appear  in  a  seismic  section  in  multiple  environments,  but  one  of  the  key  

determinations  of  gas  hydrate  bearing  sediments  is  a  polarity  reversal  (Holbrook  et  al.,  2002).  In  

most  environments,  the  BSR  will  have  the  same  polarity  as  the  sea  floor  reflection.  However  

when  gas  hydrates  are  present,  polarity  above  and  below  the  BSR  are  reversed  (Sunjay  et  al.,  

2011).    

    The  occurrence  of  a  BSR  beneath  the  subsurface  in  a  GHSZ  is  the  most  important  

geophysical  indicator  of  the  presence  of  gas  hydrates.  However,  gas  hydrates  can  be  present  

without  a  BSR.  In  the  case  where  free  gas  is  trapped  beneath,  a  BSR  must  be  indicated  in  a  

Page 13: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

12    

12  

seismic  section.  This  is  due  to  the  fact  that  hydrate  bearing  sediments  must  sufficiently  stiffen  

the  medium  to  trap  the  gas  (Sunjay  et.  al.,  2011).    

  Using  seismic  methods  when  quantifying  gas  hydrate  saturation  depends  on  the  

assumption  that  primary  velocity  increases  with  hydrate  saturation  above  the  BSR.  More  so  

than  the  normal  velocity  increase  that  occurs  in  sediment  due  to  compaction.  Below  the  BSR,  

velocity  is  assumed  to  decrease  due  to  the  presence  of  free  gas  or  the  absence  of  hydrate  

bearing  sediments.  Secondary  velocity  is  assumed  to  incrementally  increase,  but  only  

noticeably  if  the  hydrate  acts  as  a  cement  in  the  sediment  (Chand  and  Minshull,  2003).  

  The  initial  confirmation  of  a  BSR’s  appearance  that  indicated  the  presence  of  gas  

hydrates  stems  from  seismic  reflection  surveys  completed  on  the  Blake  Outer  Ridge,  in  the  

Atlantic  Ocean  off  of  the  East  Coast  of  the  United  States.  Geophysicists  at  the  Lamont-­‐Doherty  

Geological  Observatory  noticed  that  BSRs  in  seismic  surveys  of  this  area  appeared  to  cross-­‐cut  

strata  in  multiple  areas  (Kvenvolden,  1983).  Later  Sonobuoy  measurements  conducted  by  

Bryan,  confirmed  the  relation  of  BSRs  observed  in  the  Blake  Outer  Ridge  to  gas  hydrate  bearing  

sediments  (Holbrook  et  al.,  2002).  

  The  BSR  in  the  Blake  Outer  Ridge  occurs  at  0.6  seconds  sub-­‐bottom  depth  on  the  flank  

of  the  Ridge,  and  has  been  determined  the  base  of  the  gas  hydrate  formation  in  this  area  (See  

Figure  8a,  Shipley  et  al.,  1979).  Landward  dipping  bedding  plane  reflections  are  also  seen  in  

seismic  sections,  composed  of  silty  clay  beds  intersecting  the  BSR  (Shipley  et  al.,  1979).  The  high  

amplitude  calculated  in  this  area  led  Bryan  to  suggest  that  the  medium  stiffness  could  be  high  

enough  to  trap  free  gas  beneath  (Shipley  et  al.,  1979).    

Page 14: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

13    

13  

  Kvenvolden  and  Barnard  outline  the  three  types  of  geophysical  evidence  present  in  the  

Blake  Outer  Ridge  that  indicate  gas  hydrate  bearing  sediments  in,  “Hydrates  of  Natural  Gas  in  

Continental  Margins  (1980).”  The  first  is  the  presence  of  a  BSR,  the  second  being  sonobuoy  

measurements  indicating  higher  velocity  above  and  lower  velocity  below  the  acoustic  reflector,  

and  lastly  a  polarity  reversal  above  and  below  the  BSR.  The  reflector  has  been  shown  to  cut  

across  the  strata  and  parallel  the  seafloor,  with  an  interestingly  high  P-­‐wave  velocity  above  the  

reflector  (Kvenvolden  and  Barnard,  1980).    

  Since  the  discovery  at  the  Blake  Outer  Ridge,  multiple  BSRs  have  been  attributed  to  gas  

hydrate  bearing  sediments  around  the  world.  In  a  seismic  section  off  the  coast  of  Panama,  a  

BSR  was  discovered  at  0.4  seconds  sub-­‐bottom  depth  (See  Figure  8b,  Shipley  et  al.,  1979).  

Offshore  of  the  Nicoya  Peninsula  in  Costa  Rica  occurs  a  BSR  in  less  than  1,000  meters  water  

depth,  similarly  in  the  American  Trench  south  of  Acapulco,  Mexico  (See  Figure  8c  and  8d,  

Shipley  et  al.,  1979).      

Amplitude  Anomalies  

Depending  on  gas  hydrate  concentration,  seismic  reflectance  can  either  be  enhanced  or  

suppressed.  It  has  been  shown  that  gas  hydrates  tend  to  form  in  more  porous  strata,  which  has  

less  velocity.  Once  formed,  the  gas  hydrates  raise  the  velocity  of  the  more  porous  strata,  

relative  to  the  higher  velocity  layers  that  surround  it.  This  occurs  mostly  in  small  gas  hydrate  

concentrations,  reducing  the  impedance  contrast  between  the  hydrate  bearing  sediments  and  

the  surrounding  medium.    This  is  termed  “blanking”  when  seen  on  a  seismic  section.  At  high  gas  

hydrate  concentrations,  gas  hydrate  bearing  sediments  can  have  a  significantly  higher  velocity  

Page 15: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

14    

14  

than  the  surrounding  medium,  enhancing  seismic  reflectance  (See  Figure  9,  Holbrook  et  al.,  

2002).  These  are  shown  as  “bright  spots”  or  enhanced  reflections  and  are  most  commonly  from  

free  gas  dispersed  in  sediments,  which  scatters  acoustic  energy,  resulting  in  this  anomaly’s  

appearance  in  a  seismic  section  (Popescu  et  al.,  2007).    

Anomalies  Caused  by  Gas  and  Fluid  Flow  

Other  disturbances  appearing  in  a  seismic  reflection  survey  are  narrow  zones  of  low  reflectivity  

that  can  be  attributed  to  the  seepage  of  gas  or  the  movement  of  sediment  below  the  surface  

(Popescu  et  al.,  2007).  In  both  cases,  heat  is  drawn  up  from  below  cooling  the  temperature  

beneath  the  surface.  Because  gas  hydrates  can  only  form  in  a  stable  environment  of  certain  

temperature  and  pressure  ranges,  the  GHSZ  is  shifted  when  these  disturbances  occur.  When  

the  temperature  beneath  the  surface  shifts  enough  and  the  GHSZ  changes,  so  does  the  location  

of  the  BSR.    During  seismic  reflection  surveys,  if  this  phase  boundary  shift  was  recent,  a  

spurious  BSR  may  be  indicated  in  the  seismic  section.  This  is  called  a  Paleo-­‐BSR  (Chand  and  

Minshull,  2003).  During  a  GHSZ  phase  shift  gas  hydrates  destabilize,  causing  a  rapid  release  in  

gas.  This  is  evident  as  chimneys  in  seismic  sections  (See  Figure  10  and  11,  Holbrook  et  al.,  2002).  

Water  seepage  could  also  be  the  cause.  As  gas  hydrates  form,  water  in  the  pore  space  of  the  

sediments  is  pushed  out  causing  shifts  in  the  subsurface.  This  can  also  be  attributed  to  some  of  

these  disruptions  seen  in  seismic  surveys  (Chand  and  Minshull,  2003).    

 

 

 

Page 16: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

15    

15  

Conclusion  

(1) Gas  hydrate  bearing  sediments  actively  change  the  elastic  properties  of  the  sediments  

they  form  in.  Especially  in  a  case  where  the  gas  hydrates  are  acting  as  the  cement  of  the  

sediment.  This  change  in  elastic  properties  is  reflected  in  the  behavior  of  seismic  waves  

as  they  move  in  gas  hydrate  bearing  sediment.    

(2) Gas  hydrates  have  been  show  to  preferentially  form  in  two  cases;  in  the  pore  space  of  

coarse-­‐grained  sediment,  or  either  with  or  around  secondary  pore  spaces  such  as  joints  

and  fractures.  In  any  sediment  they  occupy,  gas  hydrate  saturation  increases  with  

porosity.    

(3) Both  P  and  S-­‐wave  velocities  increase  with  gas  hydrate  saturation.  P-­‐wave  velocity  

increases  the  most  with  gas  hydrate  saturation.  S-­‐wave  velocity  changes  minimally,  

unless  the  gas  hydrates  are  part  of  the  framework  of  the  sediment.    

(4) The  behavior  of  seismic  waves  in  gas  hydrate  bearing  sediments  depends  on  how  they  

occur  in  nature.  Understanding  these  behaviors  enable  us  to  determine  the  anomalies  

that  occur  in  a  seismic  reflection  survey  as  indicative  of  the  presence  of  gas  hydrate  

bearing  sediments.  

(5) Seismic  attenuation  increases  with  gas  hydrate  saturation  instead  of  decreasing.  This  is  

due  to  the  difference  in  permeability  between  the  host  sediments  and  the  amount  of  

fluid  flow  present.    

(6) The  presence  of  a  BSR  in  an  area  that  can  be  classified  as  the  GHSZ  is  the  most  

important  indicator  of  the  presence  of  gas  hydrate  bearing  sediments.  A  BSR  was  first  

Page 17: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

16    

16  

noticed  in  seismic  sections  taken  at  the  Blake  Outer  Ridge  to  be  cross  cutting  strata.  It  

was  not  until  later  that  studies  confirmed  its  relation  to  the  presence  of  gas  hydrates.  

Since  this  discovery,  multiple  BSRs  have  been  found  and  correlated  to  the  presence  of  

gas  hydrates.    

(7) Depending  on  the  strata  in  which  they  formed,  gas  hydrates  can  either  suppress  or  

enhance  reflectance  in  a  seismic  survey.  At  small  gas  hydrate  concentrations  “blanking”  

occurs.  When  the  subsurface  contains  sediments  with  high  concentrations  of  gas  

hydrates,  “bright  spots”  occur  on  the  seismic  section.    

(8) Multiple  other  anomalies  seen  in  seismic  section  can  be  attributed  to  gas  or  fluid  flow  

within  the  sediment  caused  by  gas  hydrates.  These  include  chimneys,  pipes,  narrow  

zones  of  low  reflectivity,  paleo-­‐BSRs,  etc.  If  the  GHSZ  shifts,  gas  hydrates  destabilize  and  

release  gas.  Also  during  formation  of  gas  hydrates  in  sediment,  the  water  already  

present  in  the  pores  is  pushed  out.  This  causes  the  disruption  of  normal  subsurface  

sedimentary  structures.    

 

   

Page 18: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

17    

17  

References  Cited  

Carroll,  J.,  2003,  Natural  Gas  Hydrates:  A  Guide  for  Engineers;  Burlington,  MA,  Gulf  Professional  Publishing,  270  p.  

Chand,  S.,  2008,  Gas  Hydrate  Anomalies  in  Seismic  Velocities,  Amplitudes  and  Attenuation:  What  Do  They  Imply?:  Trondheim,  Norway,  Geological  Survey  of  Norway,  4  p.  

Chand,  S.,  and  T.  Minshull,  2003,  Seismic  Constraints  on  the  Effects  of  Gas  Hydrate  on  Sediment  Physical  Properties  and  Fluid  Flow:  A  Review:  Geofluids,  v.  3,  p.  275-­‐289.  

Chand,  S.,  and  T.  Minshull,  2004,  The  Effect  of  Hydrate  Content  on  Seismic  Attenuation:  A  Case  Study  for  Mallik  2L-­‐38  well  data,  Mackenzie  Delta,  Canada:  Geophysical  Research  Letters,  v.  31,  L14609,  p.  1-­‐4.  

Collett,  T.,  2013,  Gas  Hydrate  Reservoir  Properties:  Unconventional  Resources  Technology  Conference,  Denver,  Colorado,  August  2013,  p.  1929-­‐1937.  

Holbrook,  W.  S.,  A.  R.  Gorman,  M.  Hornbach,  K.  L.  Hackwith,  and  J.  Nealon,  2002,  Seismic  Detection  of  Marine  Methane  Hydrate:  The  Leading  Edge,  July  2002,  P.  686-­‐689.  

Kearey,  P.,  and  M.  Brooks,  1984,  An  Introduction  to  Geophysical  Exploration:  Osney  Mead,  Oxford,  Blackwell  Scientific  Publishing,  296  p.    

Kvenvolden,  K.  A.,  and  M.  A.  McMenamin,  1980,  Hydrates  of  Natural  Gas:  A  Review  of  Their  Geologic  Occurrence:  Geological  Survey  Circular,  825,  6  p.    

Kvenvolden,  K.  A.  and  L.  A.  Barnard,  1983,  Hydrate  of  Natural  Gas  in  Continental  Margins,  in  Watkins,  J.  S.  and  C.  L.  Drake,  eds.,  in  Studies  in  Continental  Margin  Geology:  AAPG  Memoir  34,  p.  631-­‐640.  

Lee,  M.  L.,  and  T.  S.    Collett,  2000,  Elastic  Properties  of  Gas  Hydrate-­‐Bearing  Sediments:  Geophysics,  v.  66,  no.  3,  p.  763-­‐771.  

Lee,  M.  W.,  T.  S.  Collett,  and  T.  L.  Inks,  2009,  Seismic-­‐Attribute  Analysis  for  Gas-­‐Hydrate  and  Free-­‐Gas  Prospects  on  the  North  Slope  of  Alaska,  in  T.  Collett,  A.  Johnson,  C.  Knapp,  and  R.  Boswell,  eds.,  Natural  Gas  Hydrates:  Energy  Resource    Potential  and  Associated  Geologic  Hazards:  AAPG  Memoir  89,  P.  541-­‐554.    

Makogon,  Y.  F.,  1981,  Hydrates  of  Natural  Gas:  Tulsa,  Oklahoma,  PennWell  Books,  237  p.  

Max,  M.  D.,  and  A.  Lowrie,  1996,  Oceanic  Methane  Hydrates:  A  “Frontier”  Gas  Resource:  Journal  of  Petroleum  Geology,  v.  19,  no.  1,  p.  41-­‐56.  

Sava,  D.,  and  B.  Hardage,  2009,  Rock-­‐Physics  Models  for  Gas-­‐Hydrate  Systems  Associated  with  Unconsolidated  Marine  Sediments,  in  T.  Collett,  A.  Johnson,  C.  Knapp,  and  R.  Boswell,  eds.,  Natural  Gas  Hydrates:  Energy  Resource  Potential  and  Associated  Geologic  Hazards:  AAPG  Memoir  89,  p.  505-­‐524.    

Page 19: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

18    

18  

Shipley,  T.  H.,  M.  H.  Houston,  R.  T.  Suffler,  F.  Jeanne  Shaub,  K.  J.  Mcmillen,  J.  W.  Ladd,  and  J.  L.  Worzel,  1979,  Seismic  Evidence  for  Widespread  Possible  Gas  Hydrate  Horizons  on  Continental  Slopes  and  Rises:  AAPG  Bulletin,  v.  63,  no.  12,  p.  2204-­‐2213.    

Sunjay,  M.  Banerjee,  and  N.  P.  Singh,  2011,  Geophysical  Techniques  for  Exploration  and  Production  of  Gas  Hydrate:  Proceedings  of  the  7th  International  Conference  on  Gas  Hydrates,  Edinburgh,  Scotland,  July  17-­‐21,  3  p.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 20: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

19    

19  

 

 

 

Figure  1:  A:  Gas  Hydrate  Structures:  a)  form  with  14  faces,  Structure  1,  b)  Pentagonal  Dodecahedron,  c)  form  with  16  faces,  Structure  2.    B:  Unit  Cells:  a)  Structure  1,  b)  Structure  2.    (from  Makogon,  1981)  

Figure  2:  Phase  Boundary  Diagram  showing  free  methane  gas  and  methane  hydrate  for  a  fresh  water-­‐pure  methane  system.  Addition  of  NaCl  to  water  lowers  temperature  of  hydrate  formation,  in  effect  shifting  gas-­‐hydrate  curve  to  the  left.  Addition  of  other  hydrocarbons  raise  the  temperature  of  hydrate  formation,  shifting  the  curve  to  the  right.  Therefore,  impurities  in  natural  gas  will  increase  area  of  hydrate  stability  field  (from  Kvenvolden  and  Mcmenamin,  1980).  

Page 21: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

20    

20  

 

 

 

 

 

   

Figure  4:  Modeled  velocities  using  the  modified  Biot-­‐Gassman  theory  in  the  Lee,  Collett,  and  Inks  study.  A)  Modeled  seismic  velocities  with  respect  to  gas  hydrate  saturation,  in  sediment  with  38%  porosity  and  10%  clay  content.  B)  Modeled  seismic  velocities  with  respect  to  gas  saturation,  in  a  sediment  with  38%  porosity  and  10%  clay  content  (from  Lee  et  al.,  2009).    

Figure  3:  A)  Graph  showing  measured  P-­‐wave  velocities,  porosities,  and  clay  contents  at  depths  between  2500-­‐3000  ft.  Data  obtained  at  the  Conoco  Milne  Point  Unit  D-­‐1  well  on  the  North  Slope  of  Alaska.  B)  Reservoir  and  Seal  model  obtained  from  well  data  and  used  for  further  model  calculations  (from  Lee  et.  al.,  2009).  

Page 22: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

21    

21  

 

 

 

 

   

Figure  5:  Velocities  of  gas  hydrate  bearing  sediments  with  respect  to  water  porosities.  Velocities  calculated  in  the  study  by  Lee  and  Collett  (2000)  are  shown,  as  well  as  data  collected  from  the  Mallik  2L-­‐38  well  (from  Lee  and  Collett,  2000).    

Page 23: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

22    

22  

 

 

 

 

 

 

 

 

 

 

 

Figure  7:  Top:  P-­‐wave  attenuation  by  Chand  and  Minshull  (2004).  Modeled  in  sediment  with  equal  amounts  of  clay  and  quartz  as  a  function  of  frequency  (Hz)  and  gas  hydrate  saturation.  Bottom:  Predicted  S-­‐wave  attenuation.  Modeled  in  the  same  sediment  as  top  (from  Chand  and  Minshull,  2004).    

Figure  6:  Top  Left:  P-­‐wave  velocity  as  a  function  of  the  volumetric  fraction  of  gas  hydrate  (Cgh)  in  sediments  of  pure  quartz  for  the  four  models  discussed  in  the  Sava  and  Hardage  study  (2009)  Model  C,  Dotted  line  represents  layers  of  pure  gas  hydrates  producing  slow  P-­‐waves,  solid  line  represents  fast  P-­‐waves.  Model  D,  layers  of  disseminated,  load-­‐bearing  gas  hydrates  producing  slow  P-­‐waves  (dotted  line),  and  fast  P-­‐waves  (solid  line).    

Bottom  Left:  S-­‐wave  velocity  plotted  in  the  same  way  as  the  top  left.  Model  C,  S-­‐  waves  with  slow  polarization  (dotted  line),  S-­‐waves  with  fast  polarization  (solid  line).  Model  D,  same  as  above  but  shows  slow  and  fast  S-­‐wave  polarization  on  solid  and  dotted  line,  respectively.    

Top  Right:  P-­‐wave/S-­‐wave  ratio  as  a  function  of  the  volumetric  fraction  of  gas  hydrate  (Cgh)  in  sediments  of  pure  quartz  for  the  four  models  in  the  study  discussed  by  Sava  and  Hardage  (2009).  Models  C  and  D  same  Ratio  of  P  and  S-­‐waves  indicated  above.  (from  Sava  and  Hardage,  2009).  

Page 24: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

23    

23  

 

 

   

Figure  8a:  12-­‐fold  multichannel  seismic  reflection  profile  from  the  crest  and  eastern  flank  of  the  Blake  Outer  Ridge.    

8b:  12-­‐fold  seismic  reflection  profile  from  offshore  of  the  Pacific  Ocean  in  Panama.    

8c:  24-­‐fold  seismic  reflection  profile  from  the  Nicoya  Peninsula,  Costa  Rica.    

8d:  24-­‐fold  seismic  reflection  profile  of  Middle  America  Trench,  south  of  Acapulco,  Mexico  (from  Shipley  et  al.,  1979).    

Page 25: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

24    

24  

 

   

Figure  9:  Single  channel  seismic  reflection  profile  of  the  Outer  Blake  Ridge  area,  indicating  a  blanking  zone  and  the  BSR  (from  Chand  and  Minshull,  2003).    

Figure  10:  Chimneys  evident  in  a  seismic  section  taken  at  the  Blake  Out  Ridge,  line  3D-­‐03  (from  Holbrook  et  al.,  2002).  

Page 26: Geophysical Attributes of Natural Gas Hydrates

Geophysical  Attributes  of  Natural  Gas  Hydrates  

 

25    

25  

 

Figure  11:  Seismic  section  taken  at  the  Blake  Outer  Ridge,  line  R38.  Shows  high-­‐amplitude  reflections  and  a  disrupted  BSR  attributed  to  movement  of  free  gas  beneath  the  surface  due  to  gas  hydrates  (from  Holbrook  et  al.,  2002).    


Recommended