+ All Categories
Home > Documents > GLAST LAT ProjectCAL Peer Design Review, Mar 17-18, 2003 P. Prat CNRS/IN2P3-LLR Ecole Polytechnique...

GLAST LAT ProjectCAL Peer Design Review, Mar 17-18, 2003 P. Prat CNRS/IN2P3-LLR Ecole Polytechnique...

Date post: 13-Dec-2015
Category:
Upload: beverly-robbins
View: 214 times
Download: 0 times
Share this document with a friend
Popular Tags:
18
GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003 P. Prat CNRS/IN2P3-LLR Ecole Polytechnique GLAST Large Area GLAST Large Area Telescope Telescope Calorimeter Subsystem Gamma-ray Large Gamma-ray Large Area Space Area Space Telescope Telescope 6.2 Thermal Design and Analysis Pierre Prat L.L.R. Ecole Polytechnique Calorimeter IN2P3 System Engineer [email protected] 33–1–69–33–39–25
Transcript

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat

CNRS/IN2P3-LLREcole Polytechnique

GLAST Large Area TelescopeGLAST Large Area TelescopeCalorimeter Subsystem

Gamma-ray Large Gamma-ray Large Area Space Area Space TelescopeTelescope

6.2 Thermal Design and Analysis

Pierre PratL.L.R. Ecole PolytechniqueCalorimeter IN2P3 System Engineer

[email protected]–1–69–33–39–25

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-2CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal DesignThermal Design

CAL Thermal Design is Passive

– Primary Mode of Heat Transfer from the AFEE Card is Conduction Through the CAL Base Plate to the LAT Grid

– Secondary Mode of Heat Transfer from the AFEE Card is Radiation from the CAL Side Panels to the LAT Grid Walls

– No Dedicated Radiator

– No Survival Heaters

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-3CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Design DriversThermal Design Drivers

Design Drivers –

– A Total of 4 W Maximum is Dissipated from the CAL Electronics (1 W per AFEE Card) – Defined by AFEE Card Thermal Analysis

– Majority of TEM Power Dissipated to the X-LAT Plate by Thermal Straps.

– Survival Temperature Requirement Driven by Dual Pin Photodiodes

– Survival Limit Cannot be Exceeded in Test

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-4CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis – TasksThermal Analysis – Tasks

Detailed Model of CAL Module

– Construction of the Detailed Model Reflecting Actual Design

– The Detailed Model Parameters Will Be Updated According to the Thermal Balance Test Measurements on the Engineering Module (In Particular, Contact Thermal Resistances Will Be Refined)

Detailed Model of AFEE Card – Presented in Section 7.0

Simplified Model of CAL Module

– Correlation of Results With Detailed Model

– Delivered to SLAC

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-5CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis – MethodologyThermal Analysis – Methodology

Static Analysis

– Adjustment of the Conductances of the Simplified Model to Correlate the Results with the Detailed Model for the Hot and Cold Environment Cases

Transient Analysis

– 10°C Temperature Step Applied on the Grid: Verification of the Correlation Between the Simplified and the Detailed Model

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-6CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis – Design Limit LoadsThermal Analysis – Design Limit Loads

CASE THERMAL LOADS

MIN MAX(deg C) (deg C)

OPERATING TEMPERATURE -15 +25

SURVIVAL TEMPERATURE -30 +50

ACCEPTANCE TEMPERATURE -20 +40

QUALIFICATION TEMPERATURE -30 +50

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-7CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis – AssumptionsThermal Analysis – Assumptions

Thermal Environment Design Parameters

Optical Properties– 6 CAL Aluminum Faces:

– Alodine 1200 Emissivity = 0.1

Tracker Grid TEM Temperature (°C) 18.5 18 34 Emissivity 0.04 0.75 0.04

Hot case Tracker Grid TEM Temperature (°C) -17 -15 -11 Emissivity 0.04 0.9 0.04

Cold case

Conductive coupling Conductances

(W/K)

Grid/base plate conductance (for each side: 4 sides) 2.67

TEM/base plate conductance (for each fixture: 4 fixtures) 0.03

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-8CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis – AssumptionsThermal Analysis – Assumptions

Material Properties

Contact conductivities

Conductivity W/(m.K)

Specific heat J/(kg.K)

Density g/m3

Composite (T300 1K PW/M76 ;40% ; 124AW) 5 1.1 - Aluminium 2618A 146 0.92 2.76 Aluminium 5754 132 0.945 2.67 CsI (Tl) 1.1 0.201 4.51 Polyimide 0.3 1 1.16 Copper 385 - - AFEE PCB (Polyimide + Copper) 8.72 1 1.16 Ti 6Al 4V 7 - -

Materials Contact

conductivity W/(cm2.K)

Aluminium / Aluminium 0.1650 Aluminium / Composite (T300 1K PW/M76 ;40% ; 124AW) 0.0109 Aluminium / Titanium (Ti 6Al 4V) 0.0151

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-9CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Model DescriptionThermal Model Description

– No Geometric Model

– Math Model (Not SINDA): Electrical Analogical Model Using the Orcad Pspice Simulation Software:

– Voltage (Volt) Temperature T (°C)– Current (Ampere) Power P (W)– Electrical Resistance (Ohm) Thermal Resistance (°C/W)– Electrical Capacitance (µF) Thermal Capacitance Cth (J/°C)– Time (µS) Time T (S)

– Simplified Thermal Model Simulation – Consists of 15 Nodes– Used for the Detailed LAT Thermal Model Simulation

– Detailed Thermal Model Simulation – Consists of 3150 Nodes– Objectives:

» Temperature Static Analysis in the Hot and Cold Cases» Temperature Transient Analysis: Determination of the Built-up Time

(CsI(Tl) Logs, Aluminum Plates, AFEE Boards)» Determine the Parameters Which Was Used for the Simplified

Thermal Model

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-10CNRS/IN2P3-LLR

Ecole Polytechnique

Simplified Thermal ModelSimplified Thermal Model

The Simplified Thermal Model Simulation Is Defined in the Document, LAT-TD-01163-03 (“CAL Simplified Simulation Thermal Model Definition”)

The CAL Consists of 15 Nodes As Follows:– 5 Nodes on the Aluminum Base-Plate– 1 Node on Each AFEE Board– 1 Node on Each Aluminum Side-Panel/Close-Out Plate Assembly

(Considered Each as a Single Plate)– 1 Node on the Center of the Composite Structure– 1 Node on the Top of the Composite Structure

Parameters:– Thermal Conductances Between Nodes (26)– Thermal Capacitances at Each Nodes (15)– Power Sources at Each AFEE Nodes (4)– Thermal Radiation Parameters (Surface , Emissivity) on Each

External Sides Nodes (6)

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-11CNRS/IN2P3-LLR

Ecole Polytechnique

Simplified Thermal ModelSimplified Thermal Model

N6 N4

N2

N3

N5 N1

N7

N8 N9 N11

N10

N12

N13

N15

X+

Y+

N14

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-12CNRS/IN2P3-LLR

Ecole Polytechnique

Detailed Thermal ModelDetailed Thermal Model

The Complete Simulation Thermal Model is Defined in the Document, GLAST-LLR-TN-054 (“Detailed Simulation Thermal Model Definition of a CAL Module”)

The CAL Model Consists of the Following Sub-Modules

– Base Plate: Modeled by a Plate of 5 X 5 Nodes

– 4 Close-Out Plates/Side Panels: Modeled as a Plate of 7 X 6 Nodes

– 4 AFEE Boards: Modeled as a Plate of 7 X 6 Nodes

– Top Frame: Modeled as a Frame of 16 Nodes

– Composite Structure With CDEs : Modeled by a Network of 2770 nodes

Radiative and Conductive Interfaces are Modeled with:

– LAT Grid (Radiative/Conductive)

– Tracker (Radiative)

– TEM (Radiative/Conductive)

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-13CNRS/IN2P3-LLR

Ecole Polytechnique

Detailed Thermal ModelDetailed Thermal Model

RL1-3

{Rlong}

RL1-1

{Rlong}

RL1-4

{Rlong}

RL1-2

{Rlong}

R2-3{Re}

R2-G{Rv }

R2-H

{Rh}

R2-D{Rv }

R3-H

{Rh}

R3-3{Re}

R3-G{Rv }

R3-B

{Rh}

R3-D{Rv }

R4-G{Rv }

R4-3{Re}

R4-D{Rv }

R4-B

{Rh}

R4-H

{Rh}

RL3-3

{Rlong}

RL3-1

{Rlong}

RL3-2

{Rlong}

RL4-3

{Rlong}

RL3-4

{Rlong}

R5-B

{Rh}

R5-H

{Rh}

R5-D{Rv }

R5-G{Rv }

R5-3{Re}

RL5-2

{Rlong}

RL5-1

{Rlong}

RL5-4

{Rlong}

RL5-3

{Rlong}

R2-2{Re}

C2{Cth}

C3{Cth}

R2-1{Re}

R3-2{Re}

C4{Cth}

R3-1{Re}

R4-2{Re}

R4-1{Re}

C5{Cth}

R5-1{Re}

R5-2{Re}

R6-G{Rv }

R6-B

{Rh}

R6-2{Re}

R6-H

{Rh}

C6{Cth}

R6-D{Rv } C7

{Cth}C8

{Cth}

RL6-1

{Rlong}

R7-1{Re}

R7-2{Re}

R6-1{Re}

R7-G

{Rv }

R6-3{Re}

R7-B

{Rh}

R7-D{Rv }

R7-H

{Rh}

RL7-1

{Rlong}

R7-3{Re}

RL7-3

{Rlong}

RL7-4

{Rlong}

RL7-2

{Rlong}

R8-D{Rv }

R8-G{Rv }

R8-H

{Rh}

R8-2{Re}

R8-1{Re}

R8-3{Re}

R9-1{Re}

R9-G{Rv }

R9-B

{Rh}

R9-2{Re}

C9{Cth}

R9-3{Re}

R9-H

{Rh}

R9-D{Rv }

RL9-4

{Rlong}

RL9-3

{Rlong}

R10-1{Re}

RL9-1

{Rlong}

R10-2{Re} R10-B

{Rh}

C10{Cth}

R10-D{Rv }

R10-H

{Rh}

R10-3{Re}

RL10-3

{Rlong}

R11-2{Re}

R11-1{Re}

R11-H

{Rh}

C11{Cth}

R11-B

{Rh}

RL11-1

{Rlong}

R11-D{Rv }

RL11-2

{Rlong}

RL11-3

{Rlong}

RL11-4

{Rlong}

R12-2{Re}

R12-1{Re}

C12{Cth}

R12-B

{Rh}

R12-H

{Rh}

R12-3{Re}

R12-D{Rv }

R12-4

{Re}

R10-4{Re} R11-4

{Re}R9-4

{Re}R7-4

{Re}

R8-4{Re}

R5-4{Re}

R6-4{Re}

R4-4{Re}

R2-4

{Re}

R3-4{Re}R2-B

{Rh}

RL2-1

{Rlong}

RL2-2

{Rlong}

RL2-4

{Rlong}

RL2-3

{Rlong}

RL4-1

{Rlong}

RL4-4

{Rlong}

RL4-2

{Rlong}

RL6-3

{Rlong}

RL6-4

{Rlong}

RL6-2

{Rlong}

RL8-2

{Rlong}

RL8-1

{Rlong}

RL10-1

{Rlong}

RL10-4

{Rlong}

RL10-2

{Rlong}

RL8-4

{Rlong}

RL9-2

{Rlong}

R8-B

{Rh}

R12-G{Rv }

R11-G{Rv }

R1-C

{Rcs i}

R2-C

{Rcs i}

R3-C

{Rcs i}

R4-C

{Rcs i}

R6-C

{Rcs i}

R5-C

{Rcs i}

R8-C

{Rcs i}

R7-C

{Rcs i}

R9-C

{Rcs i}

R11-C

{Rcs i}

R10-C

{Rcs i}

R10-G{Rv }

RL8-3

{Rlong}

R11-3{Re}

RL12-3

{Rlong}

RL12-1

{Rlong}

RL12-2

{Rlong}

R12-C

{Rcs i}

RL12-4

{Rlong}

C1{Cth/2}

R1-3{2*Re}

R1-1{2*Re}

R1-2{2*Re}

R1-4{2*Re}

R1-H

{2*Rh}

R1-D{2*Rv }

R1-B

{2*Rh}

R1-G

{2*Rv }

R13-3{2*Re}

R13-1{2*Re}

R13-4

{2*Re}R13-2{2*Re} R13-B

{2*Rh}

R13-D{2*Rv }

R13-H

{2*Rh}

R13-G{2*Rv } C13

{Cth/2}

00

N1-2

0

N2-3

N2-4N2-2

N2-1N1-3N1-1

N1-4

00000000 0

N4-2

N4-3N4-1

N3-4

N3-3

N3-2

N3-1

N6-4

N6-3N6-1N5-3

N5-4N5-2

N5-1

N4-4 N8-2

N8-3N8-1N7-3

N7-4N7-2

N7-1

N6-2

N10-3N10-1

N10-2

N9-1 N9-3

N9-4N9-2N8-4

N12-3

N12-2

N12-1

N11-4

N11-3

N11-2

N11-1

N10-4

0

N13-4

N13-3N13-1

N13-2N12-4 Composite CELL/CDE model diagram

R31{RLpcb1}

R30{RLpcb1}

R43{RLpcb1}

R32{RLpcb1}

R44{RLpcb1}

R54{RLpcb1}

R45{RLpcb1}

R55{RLpcb1}

R57{RLpcb1}

R56{RLpcb1}

R25

{RHpcb}

R58{RLpcb1}

R51

{RHpcb}

R21

{RHpcb}

R64

{RHpcb}

R47

{RHpcb}

R22

{RHpcb}

R60

{RHpcb}

R48

{RHpcb}

R35

{RHpcb}

R61

{RHpcb}

R36

{RHpcb}

R23

{RHpcb}0

R49

{RHpcb}

R24

{RHpcb}

R62

{RHpcb}

R50

{RHpcb}

R37

{RHpcb}

R63

{RHpcb}

R39

{RHpcb}

R26

{RHpcb}

R52

{RHpcb}

R67{RLpcb1}

R65

{RHpcb}

R69{RLpcb1}

R68{RLpcb1}

R70{RLpcb1}

R19{RLpcb2}

R71{RLpcb1}

R18{RLpcb2}

R17{RLpcb2}

R16{RLpcb2}

R42{RLpcb1}

R15{RLpcb2}

R29{RLpcb1}

R34

{RHpcb}

R28{RLpcb1}

R38

{RHpcb}

R14{RLpcb2*2}

R41{RLpcb1}

R20{RLpcb2*2}

R27{RLpcb1*2}

R40{RLpcb1*2}

R66{RLpcb1*2}

R53{RLpcb1*2}

R33{RLpcb1*2}

0

R59{RLpcb1*2}

R46{RLpcb1*2}

R77

{RHpcb*2}

R72{RLpcb1*2}

R73

{RHpcb*2}

R75

{RHpcb*2}

R74

{RHpcb*2}

R76

{RHpcb*2}

R1

{RHpcb*2}

R78

{RHpcb*2}

R3

{RHpcb*2}

R2

{RHpcb*2}

R4

{RHpcb*2}

R6

{RHpcb*2}

R5

{RHpcb*2}

I31+ -

I30+ -

I33+ -

I32+ -

I36+ -

I37+ -

I34+ -

I35+ -

I39+ -

I38+ -

I41+ -

I40+ -

I45+ -

I44+ -

I42+ -

I43+ -

I48+ -

I46+ -

I47+ -

I49+ -

PCB13

PCB12PCB8

PCB7PCB1

PCB28PCB27PCB26

PCB25PCB22

PCB21PCB17

PCB16

0

PCB5PCB4PCB3PCB2

PCB32PCB31PCB30PCB29

PCB19PCB18

PCB15PCB14

PCB11PCB10PCB9

PCB6

00

0

0

0

PCB24PCB23

PCB20

0

00

0

0

00

0

0

0

0

0

00

0

00

00000

00

C1

{Cpcb}

C2

{Cpcb}

C3

{Cpcb}

0

C4

{Cpcb}

C5

{Cpcb}

C6

{Cpcb}

C7

{Cpcb}

0

C8

{Cpcb}

C9

{Cpcb}

C10

{Cpcb}

0

C11

{Cpcb}

C12

{Cpcb}

C13

{Cpcb}

C14

{Cpcb}

0

C15

{Cpcb}

C16

{Cpcb}

C17

{Cpcb}

C18

{Cpcb}

0

C19

{Cpcb}

C20

{Cpcb}

0 0 0

R8

{Rbase}

R7

{Rbase}

R10

{Rbase}

R6

{Rbase}

R11

{Rbase}

R14

{Rbase}

R12

{Rbase}

R15

{Rbase}

R18

{Rbase}

R17

{Rbase}

R37

{Rbase}

R36

{Rbase}

R38

{Rbase}

R41

{Rbase}

R40

{Rbase}

R43

{Rbase}

TEM1

R45

{Rbase}

R44

{Rbase}

R47

{Rbase}

R46

{Rbase}

R48

{Rbase}

R50

{Rbase}

R53

{Rbase}

R51

{Rbase}

R65

{RinsB}

R60

{RinsB}

R75

{RinsB}

R70

{RinsB}

TEM2

R80

{RinsB}

R58

{RinsB}

R62

{RinsB}

R59

{RinsB}

R67

{RinsB}

R61

{RinsB}

R64

{RinsB}

R63

{RinsB}

R66

{RinsB}

R68

{RinsB}

R72

{RinsB}

R69

{RinsB}

TEM3

R71

{RinsB}

R73

{RinsB}

R76

{RinsB}

R77

{RinsB}

R74

{RinsB}

R82

{RinsB}

R78

{RinsB}

R81

{RinsB}

R88

{RintG}

R79

{RinsB}

R93

{RintG}

R94

{RintG}

R95

{RintG}

TEM4

R97

{RintG}

R96

{RintG}

R98

{RintG}

R100

{RintG}

R99

{RintG}

R89

{RintG}

R101

{RintG}

R90

{RintG}

R86

{RintG}

R91

{RintG}

R85

{RintG}

R1

{Rbase*2}

R84

{RintG}

R3

{Rbase*2}

R2

{Rbase*2}

R4

{Rbase*2}

R55

{Rbase*2}

R54

{Rbase*2}

R56

{Rbase*2}

R9

{Rbase*2}

R57

{Rbase*2}

R42

{Rbase*2}

R16

{Rbase*2}

R52

{Rbase*2}

R13

{Rbase*2}

R5

{Rbase*2}

R39

{Rbase*2}

R49

{Rbase*2}

C1{Cbase}

C11{Cbase}

C6{Cbase}

C16{Cbase}

C2{Cbase}

C21{Cbase}

C3{Cbase}

C5{Cbase}C4{Cbase}

C7{Cbase} C8{Cbase}C9

{Cbase}

C12{Cbase}

C10{Cbase}

C13{Cbase}

C15{Cbase}

C14{Cbase}

C18{Cbase}

C17{Cbase}

C19{Cbase}

C22{Cbase}

C20{Cbase}

C23{Cbase}

C25{Cbase}

C24{Cbase}

P9

P10

P17

P18

P19

P20

Q18

Q13

Q8

Q3

P16

P6

P7

P8

Q9Q10 Q6

Q2Q4Q5 Q1

Q23

Q17 Q16Q20

Q12Q14Q15 Q11

Q7

P3P2P1

Q24 Q22 Q21Q25

Q19

G1

P15 P14 P13 P12 P11

P5P4

G9

G8

G7

G6

G5G4G3G2

0

G16

G15

G14

G13 G12 G11 G10

0000

0000

00

00000

0

00000

000

AFEE board model diagram Base-plate model diagram

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-14CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis ResultsThermal Analysis Results

Static Results – Good Correlation– Hot Case

Location N° Node TEMP Ta

(°C) TEMP Tb

(°C) Ta –Tb (°C)

Simplified model

Detailed model

Base Plate – Center 1 18.74 18.64 0.1 Base plate –Face X+ Side 2 18.542 18.55 -0.008 Base plate –Face X- Side 3 18.542 18.55 -0.008 Base plate – Face Y+ Side 4 18.542 18.53 0.012 Base plate – Face Y- Side 5 18.542 18.53 0.012 Side panel – Center Face X+ 6 19.64 19.4 0.24 Side panel – Center Face X- 7 19.64 19.4 0.24 Side panel – Center Face Y+ 8 19.64 19.43 0.21 Side panel – Center Face Y- 9 19.64 19.43 0.21 Composite Structure - Top 10 19.188 19.02 0.168 Composite Structure – Center 11 19.171 19.01 0.161 AFEE board – face X+ 12 22.515 22.52 -0.005 AFEE board – face X- 13 22.515 22.52 -0.005 AFEE board – face Y+ 14 22.515 22.51 0.005 AFEE board – face Y- 15 22.515 22.51 0.005 Grid grid 18 18 0 TEM tem 34 34 0 Tracker tracker 18.5 18.5 0

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-15CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis ResultsThermal Analysis Results

Static Results – Good Correlation

– Cold Case

Location N° Node TEMP Ta

(°C) TEMP Tb

(°C) Ta –Tb (°C)

Simplified

model Detailed model

Base Plate – Center 1 -14.52 -14.57 0.05 Base plate –Face X+ Side 2 -14.588 -14.59 0.002 Base plate –Face X- Side 3 -14.588 -14.59 0.002 Base plate – Face Y+ Side 4 -14.588 -14.61 0.022 Base plate – Face Y- Side 5 -14.588 -14.61 0.022 Side panel – Center Face X+ 6 -13.483 -13.72 0.237 Side panel – Center Face X- 7 -13.483 -13.72 0.237 Side panel – Center Face Y+ 8 -13.483 -13.69 0.207 Side panel – Center Face Y- 9 -13.483 -13.69 0.207 Composite Structure - Top 10 -14.024 -14.15 0.126 Composite Structure – Center 11 -14.041 -14.15 0.109 AFEE board – face X+ 12 -10.608 -10.6 -0.008 AFEE board – face X- 13 -10.608 -10.6 -0.008 AFEE board – face Y+ 14 -10.608 -10.4 -0.208 AFEE board – face Y- 15 -10.608 -10.4 -0.208 Grid grid -15 -15 0 TEM tem -11 -11 0 Tracker tracker -17 -17 0

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-16CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Analysis ResultsThermal Analysis Results Transient Results – Good Correlation

– A 10°C Temperature Step was Applied on the Grid in Order to Verify the Correlation Between the Simplified and Detailed Models

Transient Response - Complex Model

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000

Time (s)

Te

mp

era

ture

(°C

) AFEE Y - Center

Side-panel Y - Center

Comp. Structure - Top

Comp. Structure - Center

Base-plate - Center

Transient Response - Simplified Model

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000

Time (s)

Te

mp

era

ture

(°C

) AFEE Y - Center (D14)

Side-panel Y - Center (D8)

Comp. Structure - Top (D10)

Comp. Structure - Center (D11)

Base-plate - Center (D1)

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-17CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Design StatusThermal Design Status

Detailed and Simplified Thermal Models Have Been Developed with Material and Thermal Contact Assumptions

The Temperature Build-Up Time of the CDEs is Very Dependent on the Contact Resistances Between Parts (Aluminum-Composite, Titanium-Aluminum, CDE-Composite):

– 24:30 hr – 32:00 hr for the Qualification Thermal Cycle

• A Step of Temperature Applied on the Grid: –30°C to +50°C With a Temperature Slope of 10°C / Hour

• Time Determined at +49°C

• Min and Max Contact Thermal Resistances are in a Ratio 1:12

GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

P. Prat 6.2-18CNRS/IN2P3-LLR

Ecole Polytechnique

Thermal Design Status - ContinuedThermal Design Status - Continued

The Detailed and Simplified Models Will Be Updated According to the Thermal Balance Test Results Achieved on the EM

– Model Update Will Only Affect the Parameter Values

– The Model of the Structure Will Not Change

The Current Thermal Simulations Show That the Thermal Design Is Sound:

– The Max Difference of Temperature Between CDEs is 0.7°C, Accounting for Max Values of Contact Thermal Resistances

Independent Review of Analysis is Complete


Recommended