+ All Categories
Home > Documents > Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

Date post: 25-Dec-2015
Category:
Upload: surajnambiar
View: 7 times
Download: 1 times
Share this document with a friend
Description:
The purpose of the indicator is to understand and compare cities across the world based on their carbon emissions taking into consideration varying climate conditions. This however is easier said than done. Cities and their power consumption can differ based on factors such as country, continent, governance, history, primary industry, topography, population and most importantly, climate. In this document, we try and eliminate the effect of such “discrepancies” in a dual pronged approach
Popular Tags:
24
Indicators of WellBeing and Sustainability ClimateAdjusted Carbon Footprint Indicator for Cities Heikki Keskiväli & Suraj Nambiar
Transcript
Page 1: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

 

 

Indicators  of  Well-­‐Being  and  Sustainability  

Climate-­‐Adjusted  Carbon  Footprint  Indicator  for  Cities    

 

Heikki  Keskiväli  &  Suraj  Nambiar  

   

 

 

   

 

Page 2: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

Table  of  Contents  1.   Introduction  and  background  ...........................................................................................................  2  

1.1   Global  urbanization  ....................................................................................................................  3  

1.2   Existing  indicators  ......................................................................................................................  3  

2.   Methodology  .....................................................................................................................................  4  

2.1   Heating  and  cooling  degree  days  ...............................................................................................  4  

3.   Data  ...................................................................................................................................................  5  

3.1   CO2  emissions  ............................................................................................................................  5  

3.2   City  specifications  ......................................................................................................................  6  

3.3   Heating  and  cooling  degree  days  ...............................................................................................  6  

4.   Results  ...............................................................................................................................................  6  

4.1   Approach  used  ...........................................................................................................................  6  

4.2   Findings  ......................................................................................................................................  8  

5.   Discussion  ........................................................................................................................................  14  

5.1   Used  data  .................................................................................................................................  14  

5.2   Alternative  data  source  ............................................................................................................  15  

5.3   Policy  recommendations  .........................................................................................................  16  

5.4   Building  the  Perfect  Indicator:  Scope  and  Shortcomings  .........................................................  17  

Conclusion  ..............................................................................................................................................  19  

Appendix  1  ..............................................................................................................................................  20  

Bibliography  ............................................................................................................................................  21  

 

   

Page 3: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

1. Introduction  and  background  As   the  world  population   increases,   the   importance  of  urbanization,  and   therefore  cities,  has  grown  

significantly.  Cities  have  an   increasingly   important   role   in   reducing  emissions  globally  because  even  

though   they   account   for   only   2  %  of   the   Earth’s   land   surface,   roughly   75  %  percent  of   the  world’s  

emissions  are  produced  in  cities  (City  of  Sydney,  2013).  

Current  widely  used  indicators  for  cities  rely  mostly  on  gross  domestic  product  (GDP)  that  is  proven  to  

be  an  inaccurate  metric  for  environmental  impact  and  sustainability  in  various  geographies.  Electricity  

consumption   and   carbon   emissions,   however,   do   give   more   accurate   results   on   these   aspects.  

Moreover,   indicators   that   take   carbon   emissions   into   account   and   aim   to   compare   electricity  

consumed   in   cities   across   the   world,   do   not   cover   the   fundamental   aspect   of   cities’   varying  

temperature,  a  component  that  directly  affects  per  capita  electrical  consumption.  For  example,   it   is  

not  meaningful   to   compare   a   city   in   Antarctica  with   a   city   in   California  with   each   other,   since   the  

extremes  of  the  climate  vary  significantly.  

The   purpose   of   the   indicator   is   to   understand   and   compare   cities   across   the  world   based   on   their  

carbon   emissions   taking   into   consideration   varying   climate   conditions.   This   however   is   easier   said  

than  done.  Cities  and  their  power  consumption  can  differ  based  on  factors  such  as  country,  continent,  

governance,  history,  primary  industry,  topography,  population  and  most  importantly,  climate.  In  this  

document,  we  try  and  eliminate  the  effect  of  such  “discrepancies”  in  a  dual  pronged  approach  by:  

• Normalizing   the  weather   conditions   of   different   cities   (sophisticated   adjustments  where  

the  intention  is  to  bring  the  entire  distributions  of  adjusted  values  into  alignment)  

• Looking   at   citys’   energy   use   not   by   electrical   consumption,   but   rather   by   taking   into  

account  their  total  carbon  emissions.  

This  analysis  aims  to  create  an  indicator  to  globally  benchmark  cities  based  on  their  carbon  emissions,  

adjusted  with   climate   characteristics   and   population,   thereby   allowing   cities   to   be  measured   on   a  

level  playing  field.  The  indicator  could  be  used  in  the  future  as  a  guideline  for  energy  efficiency,  city  

planning,  or  regulative  improvements  for  any  given  city.  

Page 4: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

1.1 Global  urbanization  According  to  the  United  Nations,  3.6  billion  people,  equaling  over  51  %  of  the  world  population  of  7.0  

billion,  were  living  in  urban  areas  in  2011,  and  this  share  is  set  to  increase.  In  2050,  it  is  expected  that  

the  world  population  will  reach  9.3  billion,  of  which  6.3  billion  would  live  in  urban  areas.  Therefore,  

cities  are  not  only  covering  for  all  population  growth,  they  are  also  accounted  for  population  decrease  

in  rural  areas.  (The  United  Nations,  2012)  

Even   though   over   half   of   the   world   population   lives   already   in   urban   areas,   there   are   significant  

geographical   differences   between   continents.   For   example,   it   is   expected   that   the   level   of  

urbanization  will   reach   50  %   of   the   population   in   Asia   and   Africa   by   2020   and   2035,   respectively.  

Therefore,   cities   and   towns   in   less   developed   countries   are   in   general   gaining   most   of   the   urban  

population  growth  in  the  coming  years.  Asia,  Africa,  and  Latin  America  along  with  Caribbean  will  add  

1.4  billion,  0.9  billion  and  0.2  billion  to  their  urban  population,  respectively.  This  means  that  roughly  

2.5  billion  out  of  2.7  billion  people,  who  will  begin  living  in  urban  areas,  will  do  so  outside  the  more  

developed  world.  (The  United  Nations,  2012)  

These   growing   trends   do   not   come   without   complications.   Some   cities   have   already   faced   severe  

environmental   problems   that   have  made   everyday   lives   difficult   due   environmental   issues   such   as  

poor   outdoor   air   quality.   Centralized   burning   of   fossil   fuels   near   the   population   centers   combined  

with   increasing   amount   of   combustion   engines   in   the   traffic   have   generated   high   amounts   of  

emissions  and  small  particles.  Especially  in  China,  concepts  of  eco-­‐city,  low  carbon  city  and  low  carbon  

eco-­‐city   are   introduced   to   make   an   impact   to   local   policies,   since   the   rapid   urbanization   and  

development  in  standard  of  living  have  been  testing  the  limits  of  sustainability  (Yu,  2014).    

1.2 Existing  indicators  One   of   the   most   extensive   indicators   for   cities   and   their   environmental   efficiency   is   the   Siemens  

Green  City   Index.   The   Index   research   series  has  measured  environmental   performance  of  over  120  

cities  in  Europe,  Latin  America,  US  &  Canada,  Asia  and  Africa.  For  example,  the  European  Green  City  

Index,   conducted   by   the   Economist   Intelligence   Unit   and   sponsored   by   Siemens,   has   collected   30  

different  countries  from  Europe  to  form  a  ranking  of  cities  based  on  several  factors  that  include  CO2  

emissions,   energy,   buildings,   transport,   water,   waste   and   land   use,   air   quality   and   environmental  

Page 5: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

governance.   The   scope   of   this   study   is   limited   to   redefining   the   CO2   emissions   in   city   comparison.  

(Siemens,  2014)  

According   to   the   Green   City   Index,   best   environmental   performance   in   Europe   can   be   found   from  

Copenhagen,  Stockholm,  and  Oslo.  North  America  is  led  by  San  Francisco,  Vancouver  and  New  York,  

as   Asia   is   led   by   Singapore,   Tokyo   and   Seoul.   Even   though   this   indicator   takes   CO2   emissions   into  

account,   different   climates   are   not   accounted   for   in   the   calculations,   hence   the   findings   from   this  

study  could  be  used  to  complement  further  analysis  of  the  Green  City  Index.  

Many   respectable   entities   such   as  WorldBank   and   CIA   World   Factbook   do   also   have   nationwide  

carbon  emission  figures  but  most  of  the  data  is  not  detailed  in  the  resolution  of  metropolitan  areas.  

2. Methodology  

2.1 Heating  and  cooling  degree  days  It   is   obvious   that   installing   and   maintaining   infrastructure   in   different   countries   and   cities   is   use  

different  amounts  of  electricity  for  its  needs,  but  often  the  impact  of  the  surrounding  climate  is  not  

taken  into  account.  To  normalize  such  different  data,  heating  degree  days  (HDD)  and  cooling  degree  

days  (CDD)  are  used.  These  metrics  indicate  the  amount  of  required  heating  or  cooling,  reflecting  the  

outdoor  temperature’s  difference  from  the  base  temperature  of  indoors.  

Calculating  degree  days   is   usually   a   compromise  between   the  effort   and   the   accuracy  of   data.   The  

most  accurate  data  can  be  obtained  by  integrating  temperature  distribution  density  throughout  each  

day  but  this  approach  requires  high  amounts  of  accurate  data  and  a  lot  of  processing  power  for  long-­‐

term  information  (Martinaitis,  1998).  

More  effortless,  but  yet   sufficiently  accurate  approach,   is   to  compare   the  base   indoor   temperature  

with  the  mean  of  the  daily  maximum  and  minimum  temperatures.  This  data   is  widely  available  and  

therefore  more  suitable   for   low-­‐resource   research.  Simple  method   to  calculate  heating  and  cooling  

degree  days  could  be  conducted  with  Equation  (1)  and  Equation  (2):  

Heating:   𝐻𝐷𝐷! = (𝑇!,! − 𝑇!,!)!!"!!!           (1)  

Page 6: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

Cooling:   𝐶𝐷𝐷! = (𝑇!,! − 𝑇!,!)!!"!!! ,           (2)  

where  Te,d  equals  the  mean  of  daily  minimum  and  maximum  values  of  outdoor  temperature  of  a  day  

d,  while  Tb,h  and  Tb,c   represent   the   chosen  base   temperatures   for  heating  and   cooling,   respectively.  

Plus  sign  indicates  that  only  positive  values  in  the  calculation  are  taken  into  account.  (De  Rosa,  et  al.,  

2014)  

For  this  paper,  a  temperature  data  resolution  of  30  minutes  to  60  minutes  is  used,  depending  on  the  

quality   of   the   local   data   provided.   The   same   aforementioned   approach   is   used,   but   with   higher  

accuracy   since   instead   of   two   data   points   during   the   day1,   24   to   48   data   points   are   used2.  

Temperatures  chosen  for  this  paper  are  17  degrees  Celsius  for  HDD,  and  23  degrees  Celsius  for  CDD.  

These  values   can  be  widely  used  as   the   range   for   comfortable   living,  but  preferences  differ   slightly  

between   geographical   location.   However,   these   preferences   are   not   taken   into   account   in   this  

analysis.  

3. Data  

3.1 CO2  emissions  To  conduct  our  analysis  on  several  cities,  homogenous   information  across  all   the  comparative  cities  

had  to  be  used.  

OECD  provides  CO2  emission  data   for  metropolitan  areas  with  a  breakdown  to  energy   industry  and  

transportation   emissions.   This   data   is   easily   accessible   and   covers   several   hundreds   of   locations,  

exportable   conveniently   in   Excel   format.   Since  homogenous  data   for  multiple   locations   in   different  

climates   is   needed   to   conduct   this   analysis,   this   database  was  used.  By  using  data   from  one   single  

source  mitigates  risk  from  comparing  apples  with  oranges  and  should  provide  coherent  picture  of  the  

existing  reality.  (OECD,  2014)  

                                                                                                               1  Minimum  and  maximum  temperatures.  2  Temperatures  every  30  to  60  minutes.  

Page 7: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

3.2 City  specifications  As  part  of  our  analysis,  population  density  is  one  of  the  defining  factors  of  city  characteristics.  To  have  

reliable   population   density   data,   both   the   total   amount   of   population   and   the   area   of   the   city   are  

required.  Since  data  discrepancy  might  affect  our  results  substantially,  our  primary  data  for  both  city  

population  and  area  are  obtained  from  the  same  survey  responses  than  those  of  the  emissions.  It  is  

important   to   use   the   data   for   all   the   metrics   from   the   same   source   since   the   three3   are   highly  

correlated  with  each  other.  This  will  mitigate  the  risk  of  having  different  interpretations  of  the  city’s  

specifications  that  would  widely  affect  our  outcome.  

However,  if  all  of  the  aforementioned  data  is  not  available  from  OECD,  the  use  other  sources  for  the  

analysis  have  been  identified  for  backtracking  purposes.  

3.3 Heating  and  cooling  degree  days  To  acquire   substantial   amounts  of   temperature  data   for   the  analysis,   a  web-­‐based   service  by  BizEE  

Software,   DegreeDays,   was   used.   The   platform   acquires   temperature   data   from   Weather  

Underground  database  with  30  to  60  minute  resolution,  and  calculates  the  HDD  and  CDD  with  given  

range  of  temperature.  The  temperature  for  HDD  was  chosen  to  be  17  degrees  Celsius,  and  for  CDD,  

23  degrees  Celsius.  Airport  weather  stations  are  used  as  primary  source  for  HDD  and  CDD  due  to  the  

nature  of  its  high  quality  and  low-­‐resolution  data.  (DegreeDays,  2014)  

Averaged  data  for  the  last  5  years  is  used  to  get  as  extensive  dataset  as  possible  to  mitigate  the  risk  of  

using  extreme  years  as  a  base  for  the  analysis.  All  the  gathered  data  used  from  the  platform  can  be  

found  from  Appendix  1.  

4. Results  

4.1 Approach  used  The  objective   in  this  paper   is  to  achieve  a  temperature-­‐neutral   indicator  for  the  carbon  footprint  of  

cities  around  the  world.  Currently  power  consumption  figures  are  paired  up  with  whole  countries  and  

while  doing  so,  no  adjustments  based  on  the  climate  are  being  made.  It  is  easy  to  see  why  it  is  unfair  

                                                                                                               3  Area,  population  and  emissions.  

Page 8: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

for  a  city  that  faces  extreme  climate  requiring  substantial  amounts  of  heating  and  cooling  throughout  

the  year  to  be  compared  with  one  that  has  more  forgiving  weather  conditions.    

For  temperature  adjusting,  heating  and  cooling  degree  days  are  used.  For  each  city,  the  sum  of  both  

will   be   generated.   Additionally,   the   CO2   emissions   are   emissions   are   used   to   enable   the   paper   to  

comment  on  the  amount  of  clean  energy  used.  Note  that  CO2emissions  that  are  caused  due  to  waste  

are  omitt,  since  those  emissions  do  not  correlate  with  outdoor  temperature.  By  combining  HDD,  CDD  

and   CO2   emissions,   we   find   base   level   and   temperature-­‐correlated   emissions   from   the   results,   as  

illustrated  in  Figure  1.  

 

Figure  1.  Expected  illustration  of  the  gathered  data.  No  real  data  was  used  to  generate  this  graph.  

With  the  help  of  this  dynamic  illustration,  we  can  determine  the  average  per  capita  CO2  emissions  in  a  

city.  This  value,  to  be  called  base  value  in  this  paper,  attains  a  value  of  83  as  shown  in  the  illustration  

above.  The  value  is  determined  by  the  point  where  the  city  sample  data  trend  line  crosses  the  y-­‐axis.  

This   is   the   data   point   where   corresponding   to   zero   degree   days,   (no   temperature   correlated  

emissions,   such  as  heating  or   cooling)   is   taken   into  account.  As   the  amount  of  heating  and   cooling  

increases,  the  trend  line  signals  the  correlation  factor  that  is  being  awarded  for  cities  because  of  the  

more  extreme  climate.  Hence,   it   is  more  acceptable  for  a  city  with  5000  degree  days  of  cooling  and  

heating  to  generate  more  emissions  than  it  is  for  one  with  a  10  degree  days  city.  

City  D  

City  E  

City  H  

City  J  

City  C  

City  F  

City  K  

City  B  

City  A  

City  I  

City  G  y  =  0.0347x  +  83.022  

0  

50  

100  

150  

200  

250  

300  

0   500   1000   1500   2000   2500   3000   3500   4000   4500   5000  

CO2  em

ission

s  per  cap

ita  (in  tonn

es)  

HDD  +  CDD  =  Total  degree  days  

City  sample  

Linear  (City  sample)  

Page 9: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

After  generating  this  formula,  every  city  is  then  issued  with  a  difference  value.  This  is  calculated  as  the  

negative  or  positive  difference  of  the  city’s  data  from  the  trend  line  of  all  cities,  and  this  value  is  then  

combined  with  the  base  value.  For  example,  say  City  C  and  D  have  emission  values  of  100  and  150,  

respectively.  Both  of  these  cities  have  degree-­‐days  of  1000,  where  trend   line   is  at  1184.  This  means  

that  City  C  is  below  it  by  18  and  City  D  above  by  32.  These  differences  are  then  applied  to  the  zero-­‐

point  figure  of  83,  which  means  City  C  and  D  will  end  up  with  temperature-­‐adjusted  emission  values  

of  65  and  115,  respectively.  

The  higher  the  number,  the  more  the  city  has  to  do  with  its  energy  efficiency.  Below  average  numbers  

indicate  that  given  cities  are  ahead  of  the  game.  Hence,  as  more  data   is  applied,  the  values  change  

dynamically  and  there  will  always  be  cities  above  and  below  average  (trend  line).  

4.2 Findings  The  carbon  footprint  and  degree  days  for  50  cities5  were  collected  for  further  analysis.  These  results  

can  be  found  from  Figure  2.  These  emissions  were  defined  as  “estimates  of  CO2  emissions”  (expressed  

in   tonnes)   in   metropolitan   areas   divided   by   population.   The   values   are   disaggregated   from   the  

corresponding   national   values”   after   (OECD,   2014).   As   can   be   seen   from   Figure   2,   there   are   three  

cities  with  significantly  higher  CO2  emissions  than  any  other  location  chosen  for  this  analysis.  The  city  

with  5473  total  degree  days  is  Edmonton,  the  city  with  2797  total  degree  days  is  Aachen,  and  the  city  

with  2767  total  degree  days  is  Kansas  City.  

Further   studying   showed   that   all   the   aforementioned   cities   had   a   significant   presence   of   either  

manufacturing   or   energy   industry   within   the   metropolitan   limits   that   account   for   the   abnormal  

numbers.   Edmonton   has   12,8   %   of   its   GDP   generated   by   manufacturing   industry   and   12,7   %   by  

construction  (City  of  Edmonton,  2014),  while  Aachen  houses  several  energy  intensive  manufacturing  

and   communications   companies   like   Denso   Automotive,   Ericsson,   Phillips   and   Ford   (NRW.Invest,  

2014),   and  Kansas  City  works   as   a  hub   for   intermodal   transportation,  warehousing,  manufacturing,  

and  distribution  (City-­‐Data.com,  2005).  

                                                                                                               4  This  can  be  calculated  by  using  the  formula  found  on  Figure  1.  In  this  case,  0.0347*1000+83.022=117.72.  5  All  used  data  can  be  found  from  Appendix  1.  

Page 10: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

 

Figure  2.  CO2  emissions  of  50  metropolitan  areas.  

Since   the   aim   of   this   study   is   to   evaluate   the   energy   efficiency   and   carbon   footprint   of   cities   in  

different   climates,   these   distinctive   samples  were   removed   from   the   group,  which   leads   to   a   total  

number  of  used  cities  at  47  for  further  analysis.  Our  motivation  is  to  produce  statistical  methods  that  

are   not   unduly   affected  by  such  outliers,   and  hence   these   distinctive   samples   are   taken  out   of   the  

group  of  cities  under  observation.  

The   CO2   emissions   of   the   remaining   cities   by   total   amount,   energy   industry6,   transportation7,   and  

other8  are  presented  in  Figure  3,  Figure  4,  Figure  5  and  Figure  6.  

 

Figure  3.  Total  CO2  emissions  of  47  metropolitan  areas,  excluding  Kansas  City,  Edmonton  and  Aachen.  

                                                                                                               6  “Share  of  CO2  emissions  from  the  energy  industry  over  total  metropolitan  CO2  emissions”,  after  (OECD,  2014).  7  “Share  of  CO2  emissions  from  transport  (road  and  non-­‐road  ground  transport)  over  total  metropolitan  CO2  emissions”,  after  (OECD,  2014).  8  As  energy   industry  and   transportation  emissions  are  deducted   from   the   total   amount,   the   remaining   is   considered  as  ’other’  emissions.  

Edmonton  

Aachen  

Kansas  City   y  =  0.0026x  +  4.6159  

0  5  10  15  20  25  30  35  40  45  50  

0   1000   2000   3000   4000   5000   6000  

CO2  p

er  cap

ita  (in  tonn

es)  

Total  degree  days  

y  =  0.0013x  +  6.7473  

0  

5  

10  

15  

20  

0   1000   2000   3000   4000   5000   6000  

CO2  e

mission

s  per  cap

ita  

(in  to

nnes)  

Total  degree  days  

Page 11: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

 

Figure  4.  CO2  emissions  of  47  metropolitan  areas  from  energy  industry,  excluding  Kansas  City,  Edmonton  and  Aachen.  

 

Figure  5.  CO2  emissions  of  47  metropolitan  areas  from  transportation,  excluding  Kansas  City,  Edmonton  and  Aachen.  

 

Figure  6.  CO2  emissions  of  47  metropolitan  areas  from  category  ‘other’,  excluding  Kansas  City,  Edmonton  and  Aachen.  

y  =  0.0001x  +  1.2745  

0  1  2  3  4  5  6  7  

0   1000   2000   3000   4000   5000   6000  CO2  e

mission

s  per  cap

ite  (in  

tonn

es)  

Total  degree  days  

y  =  -­‐4E-­‐05x  +  2.6718  

0  1  2  3  4  5  6  7  8  9  

0   1000   2000   3000   4000   5000   6000  

CO2  e

mission

s  per  cap

ita  (in  

tonn

es)  

Total  degree  days  

Krakow  

y  =  0.0012x  +  2.801  

0  

5  

10  

15  

20  

0   1000   2000   3000   4000   5000   6000  

CO2  e

mission

s  per  cap

ita  (in  

tonn

es)  

Total  degree  days  

Page 12: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

As   can   be   seen   from   the   figures,   energy   industry   consumption   and   transportation   emissions   show  

very   little,   if   any,   correlation  with   the   increased   amount   of   total   degree  days.   Also,   Transportation  

emissions   not   correlating  with   the   climate  makes   sense,   but   findings  with   the   energy   industry   are  

surprising.  As   it   seems   from   the   results,  OECD   is   calculating   energy   industry   emissions   from  where  

they  are  produced,  and  not  where  they  are  consumed.  This  strongly  distorts  the  values  attained  from  

several   cities   where   OECD   reports   no   energy   industry   emissions   at   all,   which   is   highly   unlikely  

considering  global  energy  needs.  

To  demonstrate  one  city’s  new  index,   let’s  use  Krakow  as  an  example  (marked  to  Figure  6).  Krakow  

had   CO2   emissions   per   capita   at   7,99   tonnes,   which   positioned   Krakow   to   be   19th   best   city   in   the  

sample  of  47  cities.  Krakow’s  emissions  were  1,32  and  2,10  tonnes  per  capita  for  transportation  and  

energy  industry,  respectively.  Other  category  amounted  to  4,57  tonnes,  which  was  then  adjusted  with  

3511  degree  days,  since  it  correlates  with  temperature.  As  the  trend  line  has  a  value  of  7,01  with  this  

many  degree  days,  the  benefit  for  the  city  is  7,01  –  4,57  =  2,44.  This  benefit  is  then  deducted  from  the  

temperature  correlated  emissions  baseline  of  2,80,  which  will  result  in  other  category’s  emissions  of  

2,80  –  2,44  =  0,36.  To  compare  different  cities  with  each  other,  all   temperature  adjusted9  and  non-­‐

adjusted10  emissions  are  summed  up,   forming  a  value  of  3,7811   for  Krakow.  The  same  value   is   then  

determined  for  all  47  cities  and  then  normalizing  the  index  by  using  Equation  (3):  

!"#$!%  !"#$%!!"#"!$!  !"#$%!"#$!%!  !"#$%!!"#"!$!  !"#$%

= 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  𝑖𝑛𝑑𝑒𝑥,                  (3)  

where   actual   value   is   Krakow’s   3,78,  minimum   value   Guadalajara’s   1,33   and  maximum   value   New  

York’s   14,79.   Therefore,   index   value   for   Krakow   is   0,18,   zero   being   the   best   and   1,00   the   worst.  

Indexing  logic  is  presented  in  Figure  7.    

                                                                                                               9  Category  ’other’  emissions.  10  Categories  transportation  and  energy  industry.  11  0,36  (other)  +  1,32  (transportation)  +  2,10  (energy  industry)  =  3,78  (total)  

Page 13: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

 

Figure  7.  Temperature  adjusted  city  CO2  emission  index  logic.  

As  all  cities  are  put  in  order,  this  improves  Krakow’s  ranking  by  7,  from  19th  position  to  12th.  All  cities,  

their  index  values,  initial  rankings  with  original  CO2  emissions  and  with  new  method  are  presented  in  

Table  1.  

It  can  be  seen  from  the  results  that  cities  that  improved  their  CO2  ranking  with  temperature  adjusting  

with  five  spots  or  more  were  Stockholm  (7),  Seoul  (5),  Tallinn  (12),  Ljubljana  (5),  Krakow  (7),  Warsaw  

(7),  Winnipeg   (8),   Calgary   (7),  Quebec   (7),   Oslo   (6)   and  Helsinki   (6).   On   the   other   hand,   cities   that  

worsened   their   CO2   ranking   with   temperature   adjusting   with   five   spots   or  more   were   Lisbon   (-­‐6),  

Barcelona  (-­‐7),  Tokyo  (-­‐8),  Osaka  (-­‐6),  Nice  (-­‐10),  Rome  (-­‐5),  Dublin  (-­‐5),  Phoenix  (-­‐5),  Washington  (-­‐5)  

and  San  Francisco  (-­‐5).  

Table  1.  Results  of  temperature  adjusted  CO2  emissions  in  different  cities.  Initial  ranking  was  based  on  straightforward  CO2  emissions  published  by  (OECD,  2014)  and  adjusted  ranking  to  the  temperature  adjusted  city  CO2  emission   index   logic.  Difference   implies  the  change  in  the  position  for  the  given  city  as  the  ranking  type  has  been  changed.  

Index  value  for  city  emissions  

Baseline  -­‐  (actual  value  -­‐  trend  line)  

Other  

Not  temperature  correlated  

Energy  industry  

Not  temperature  correlated  

Transportanon  

Sum  all  parts  and  scale  to  0-­‐1  for  comparison  

Weather  adjustment  

 

Page 14: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

 

 

Name  of  the  city Initial  rank Adjusted  rank Difference Index  value    Guadalajara 1 1 0 0,00    Stockholm 9 2 7 0,02    Seoul  Incheon 8 3 5 0,04    Mexico  City 2 4 -­‐2 0,09    Tallinn 17 5 12 0,10    Monterrey 3 6 -­‐3 0,11    Athens 6 7 -­‐1 0,13    Málaga 4 8 -­‐4 0,14    Copenhagen 12 9 3 0,15    Ljubljana 15 10 5 0,16    Lisbon 5 11 -­‐6 0,17    Kraków 19 12 7 0,18    Warsaw 20 13 7 0,21    Barcelona 7 14 -­‐7 0,22    Madrid 14 15 -­‐1 0,22    Milan 16 16 0 0,22    Munich 21 17 4 0,23    Tokyo 10 18 -­‐8 0,25    Osaka 13 19 -­‐6 0,25    Paris 18 20 -­‐2 0,27    Nice 11 21 -­‐10 0,29    Budapest 23 22 1 0,34    Brussels 24 23 1 0,36    Stuttgart 26 24 2 0,40    Winnipeg 33 25 8 0,41    Graz 27 26 1 0,42    Rome 22 27 -­‐5 0,43    Marseille 25 28 -­‐3 0,45    Calgary 36 29 7 0,51    Montreal 30 30 0 0,52    Quebec 38 31 7 0,53    Berlin 28 32 -­‐4 0,54    Prague 31 33 -­‐2 0,57    Dublin 29 34 -­‐5 0,57    Oslo 41 35 6 0,59    Vancouver 34 36 -­‐2 0,67    Phoenix 32 37 -­‐5 0,69    Helsinki 44 38 6 0,69    Vienna 39 39 0 0,70    Washington 35 40 -­‐5 0,71    Amsterdam 42 41 1 0,78    San  Francisco 37 42 -­‐5 0,81    Miami 40 43 -­‐3 0,88    Linz 46 44 2 0,93    Las  Vegas 45 45 0 0,96    Los  Angeles 43 46 -­‐3 0,98    New  York 47 47 0 1,00

Page 15: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

5. Discussion  

5.1 Used  data  OECD   reports   CO2   emissions   for   metropolitan   areas   in   three   different   categories:   transportation,  

energy  industry,  and  other.  Transportation  for  a  given  city  is  a  good  metrics  since  it  is  locally  used  no  

significant  energy  flows  are  moving  between  areas.  However,  this  does  not  apply  for  energy  industry.  

As  many  cities  are  reported  to  have  no  CO2  emissions  for  energy  industry  in  their  given  metropolitan  

area,   it   is   reasonable   to   believe   that   only   the   energy   production   is   accounted   for,   not   the   energy  

consumption.  This  raises  an  issue  of  the  fact  that  energy  can  be  transported  between  locations  and  

energy  hubs  can  account  for  a  significant  amount  of  area’s  energy  production,  as  some  metropolitan  

areas,   such  as  Guadalajara,  Quebec  and  Malaga,  might  produce  none  of   their  consumed  electricity.  

This  would  also  explain  the  lack  of  correlation  with  the  energy   industry  emissions  and  temperature,  

because   common   sense   approach   would   lean   toward   the   exact   opposite;   consumption   of   energy  

increases   with   larger   temperature   fluctuations.   Therefore   the   data   used   for   this   primary   analysis  

contains  a  lot  of  emission  allocation  that  is  unjust.  This  could  be  easily  corrected  if  OECD  would  start  

reporting  the  emissions  occurring  from  the  energy  consumption  within  the  metropolitan  area.  

Another   addressable   concern   is   the   amount   of   manufactured   goods.   As   only   three   different  

categories   for   emissions   were   announced,   none   of   which   were   industry   activity,   the   emission  

allocation  can  be  assumed  to  be  in  the  category  other.  The  same  logic  applies  for  them  as  they  can  be  

easily   transported  between   locations,   so  only  accounting   for   the  amount  of  manufactured  goods   is  

not   a   sufficient   approach.   To   fairly   calculate   the   emissions   for   a  metropolitan   area,   the   emissions  

occurred  from  the  consumption  of  the  goods  should  be  accounted  for.  This  situation  was  clearly  seen  

in  the  cases  of  Aachen  and  Edmonton,  for  example.  

Results  of  this  study  raised  another  concern  about  the  validity  of  the  data  used  from  OECD.  According  

to  the  source  used,  Oslo  and  Helsinki  have  CO2  emissions  of  14,61  and  15,78  tonnes,  respectively,  per  

capita.   However,   several   sources   such   as   (MetroVancouver,   2011)   and   (YTV,   2011)   suggest   that  

Helsinki  had  CO2  emissions  per  capita  of  6,3  in  2004  and  5,5  tonnes  in  2010.  Additionally,  sources  such  

as   (Siemens,  2014)  and   (WWF,  2013)   suggest   that  Oslo  had  CO2  emissions  of  2,19  and   in  2007  and  

2,20  in  2011.  This  magnitude  of  CO2  emissions  for  Oslo  and  Helsinki  are  also  supported  by  Samsung’s  

Page 16: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

Green  City  Index  Data  (Siemens,  2014).  Therefore,  the  ultimate  results  in  this  study  can  be  questioned  

despite  the  added  value  by  the  chosen  approach.  

5.2 Alternative  data  source  As  the  OECD  data  used  for  this  analysis  has  proved  in  some  cases  to  be  questionable,  additional  data  

should  be  acquired  to  increase  the  trustworthiness  of  the  results  made.  

An   initiative   called  Carbon  Disclosure   Project   (CDP)   “provides   a   voluntary   climate   change   reporting  

platform   for   city   governments.   The   program   is   open   to   any   city   government,   regardless   of   size   or  

geographic  location”  (CDP,  2014a).  As  the  results  of  this  platform  are  based  on  volunteering,  the  data  

is   not   available   on   every  major   city   but   could   work   as   a   starting   point   for   further,  more   in-­‐depth  

analysis.  Currently   the  CDP  data   is  available   for  more  than  200  cities,  however,  no  single   list  of   the  

emissions   have   been   composed   by   CDP,   which   makes   an   extensive   city   comparison   much   more  

difficult.   Additionally,   restricted   access   to   this   data   of   200   cities  was   a   limiting   factor   of   using   this  

database  for  this  analysis.  

CDP   survey   follows   the   same   logic   from   city   to   city,   but   unfortunately   not   all   cities   answer   all   the  

questions  fully  provided  by  CDP.  This  limits  significantly  the  amount  of  usable  data  obtained  from  the  

platform.   For   our   indicator,   information   provided   in   the   section   C1.6,   which   is   aimed   to   provide  

information  about  the  community’s  greenhouse  gas  (GHG)  emissions  by  given  segment,  would  prove  

useful   for   further   analysis.   Reported   segments   vary,   and   may   include   residential,   non-­‐residential,  

commercial,  industrial  and  municipal  consumers.  Additionally,  some  cities  report  their  transportation  

and  waste   disposal   related  GHG  emissions.   Therefore   this   data  would   provide  more   insight   on   the  

results  than  the  data  from  OECD.  

Other  source  for  relevant  data  could  be  Siemens’  Green  City  Index  database,  which  holistically  collects  

environmental   data   about   several   cities   around   the   world,   including   data   about   water   usage,   air  

pollution,  commuting,  waste  amounts,  carbon  emissions  and  energy  policies.  However,  this  platform  

was  unfortunately  discovered  too  late  to  be  used  for  extensive  usage  but   its  future   implementation  

with  the  findings  of  this  study  would  be  complementary  for  improved  results.  

Page 17: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

5.3 Policy  recommendations  • The   promotion   of   Energy   Efficiency   and   renewable   energy   through   Energy   Auditing   can  

encourage  more  successful  governments  to  share  experiences  on  existing  audit  methodologies  

and   best   practices   with   the   aim   to   improve   the   effectiveness   and   quality   of   commercially  

available  audit  services.  

• To  the  transfer  of  knowledge  and  the  harmonization  of  audit  schemes,  allows  strengthening  

regional  policy  frameworks.  

• Since  buildings  take  up  a  majority  of  the  electrical  consumption,   (in  some  cases  over  40%  of  

entire  city’s  consumption)  it  is  critical  that  more  successful  countries  in  our  indicator  share  the  

best  more.  

• Some   measures   to   improve   efficiency   and   reduce   demand   of   buildings   that   may   be  

incorporated  as  norms  by  local  and  national  governments,  either  in  the  form  of  incentives  for  

good  performance  or,  on  the  other  hand,  penalties  for  poor  ones  should  concentrate  on:  

o Modification  of  set  point  temperatures  

o Improvement  in  the  insulation  level  

o Influence  of  level  of  infiltration  

o Incorporation  of  free  cooling  and  heating  recovery  

o Modification   of   system:   cool/heat   production   systems,   transport   system,   terminal  

units,  etc.  

o Use  innovative  technologies  and  materials  available  

• Public  bodies  can  play  a  pivotal  role  as  awareness  raisers  of  the  issues  relating  to  energy  use  

(such  as  air  conditioning  and  heating  threshold  tempratures)  and  as  providers  of  incentives  to  

improve   energy   performance   towards   the   main   stakeholders   of   their   territories.   Therefore  

Public  Bodies  should  be  promoter  of  campaigns  or  projects  actively  involving  a  wide  range  of  

citizens  on  the  issue  of  energy  saving/efficiency!  

 

 

 

Page 18: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

5.4 Building  the  Perfect  Indicator:  Scope  and  Shortcomings  A  major   factor   that  affects  CO2  emission   is   the  nature  of   the  power  supply   itself.  Cities,   commonly  

have   power   stations   that   use   generators   that   convert   energy   (mostly   mechanical)   into   electrical  

energy.  The  energy  source  harnessed  to  turn  the  generator  varies  widely.  It  depends  chiefly  on  which  

fuels  are  easily  available,  cheap  enough  and  on  the  types  of  technology  that  the  power  company  has  

access   to.  Most   power   stations   in   the   world   burn   fossil   fuels   such   as   coal,   oil,   and   natural   gas   to  

generate  electricity,  and  some  use  nuclear  power,  but  there  is  an  increasing  use  of  cleaner  renewable  

sources  such  as  solar,  wind,  wave  and  hydroelectric.  

 These   factors   can   have   significant   impact   on   the   overall   power   consumption   from   a   sustainability  

standpoint,  which  allows  for  discrepancies  in  producing  a  fair  indicator.  

In  order  to  make  the  indicator  highly  accurate,  one  must  now  consider  the  nature  of  the  involvement  

of   such   data,   and   its   affect   on   the   overall   outcome.   The   following   points   would   help   make   this  

indicator  more  holistic.  We  can  classify  this  based  on  the  following:  

Logical/Empirical  assessment:  

• Heating  Degree  Day  (HDD)/Cooling  Degree  Day  (CDD)  as  mentioned  in  the  earlier  part  of  the  

paper   is   a  measurement   designed   to   reflect   the   demand   for   energy   needed   to   heat/cool   a  

building.   It   is   derived   from   measurements   of   outside   air   temperature.   The   heating  

requirements   for   a   given   structure   at   a   specific   location   are   considered   to   be   directly  

proportional   to   the   number   of   HDD/CDD   at   that   location.   This  metric   is   generally   used   for  

buildings,  thus  our  report  relies  on  an  underlying  assumption  that  cities  are  a  dense  cluster  of  

buildings  that  consume  energy  based  on  its  nature  and  size.  

• The   range  of  optimal   temperature  has  been   taken  within   range  of   global   standard  of   17-­‐23  

Degree  Celsius.  The  rankings  between  cities  may  vary  slightly  when  this  range  is  tweaked.    

Data  measurement  and  quality  assessment:  

• Data   on   break   down   of   emissions   based   on   type   of   industry   emitting   it.   Lack   of   clear  

definitions   or   classifications   of   data   carries   with   it   discrepancies,   for   instance,   in   the  

classification  of  goods,  types  of  employment,  or  classification  of  companies  within  industries.  

Page 19: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

• Detailed   breakdown   of   emissions:   Currently   all   the   emissions   are   broken   into   Energy,  

Transportation  and  other.  A  holistic  and   informed  policy  change  would  surely  would  require  

access   to   data  with   further   breakdown   of   emissions   such   as   residential,   commercial,   public  

transportation,  private  transportation  etc.    

• A  more  holistic  temperature  component  than  HDD/CDD  that  would  consider  cities  in  general,  

which  was  that  can  be  used  for  a  limited  resource  project  

• Data  on  percentage  of  the  industrial  sector  (high  power  consuming)  presence  within  city  limits  

with  type  of  industry  classified  is  currently  done  when  discrepancies  in  our  graph  was  found.  

There  may  yet  be  some  uncovered  facts   that   lay  hidden  among  the  cities   that   landed   in   the  

average.  

• Bureaucracy   within   cities:   Classification   of   the   dynamic   relationship   between   the   power  

distribution  board,  and  the  local  government.  

• An   indicator   that   gives   data   about   the   geographical   factors   of   cities   that   affect   the   total  

amount  of  power  used  for  public  utility   like  water  supply   (such  as  proximity  to  a  river,  dam,  

ocean)  so  we  can  group  and  analyze  better.    

• Percentage  of  building  cover  (and  type  of  building,  say  LEED  rating  that  can  help  us  categorize  

and  detect  pain  points  of  cities)  opposed  to  overall  land  cover  would  help  analyze  per  capita  vs  

per  built  up  area  consumption.  

• Looking  at  overall  public  psychology  toward  the  need  to  save  or  demand  for  clean  electricity  in  

would  help  analyze  softer  patterns  within  cities.  

• Cross  validation  of  data  used  by  a  third  party  to  strengthen  the  indicator  

• Transportation  network  structure  plays  a  huge  role   in  commuting  the  cities  population   from  

one  place  to  the  other.    Data  that  classifies  different  cities  based  on  their  efficiency  of  moving  

each  person  would  be  very  beneficial  to  further  derive  conclusions  for  certain  trends.  

 

   

Page 20: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

6. Conclusion  Results  from  temperature-­‐adjusted  city  CO2  emission  approach  are  encouraging.  Never  before  has  the  

cities’  emissions  been  adjusted  with  climate  conditions  even  though  it  is  inevitable  that  cities  in  very  

cold  or  very  hot  climates  have   to  use  more  energy   to   reach   the  same  comparable   living   standards.  

This  approach  could   increase  the  amount  of  comparing  city  efficiencies  with  each  other  as   it  brings  

more   justice   to   the   benchmarking   approach   than   earlier   existing   indicators   of   straightforward   CO2  

emissions.  This  would  in  turn  encourage  for  global  city  comparison  and  effective  policies.  

However,  a  lot  more  in-­‐depth  analysis  should  be  done.  Especially  the  allocation  of  energy  generation  

emissions   for   cities   seems   to   be   incorrect   in   the  OECD  data,   and  more   in   depth  breakdown  of   the  

generation  sources  for  CO2  should  be  available.  Especially  high  level  of  manufacturing  industry  offsets  

clearly  results  for  any  given  city,  just  like  was  seen  in  the  cases  of  Edmonton,  Kansas  City  and  Aachen.  

Later  on  it  was  also  found  that  Linz,  a  city  that  stood  last  but  fourth  in  the  study,  is  one  of  the  major  

chemical  manufacturing  centrals  of  Austria,  which  has  a  clear  effect  on  the  results.  

This  new  kind  of   indicator  could  work  as  a  step  towards  environmentally  better  performing  cities.   If  

more  data  could  be  accessed  for  various  locations,  the  causes  for  the  city  emissions  could  be  further  

analyzed  and  reflected  to  the  results  more  thoroughly.  As  existing   indicators  such  as  the  Green  City  

Index  does  holistically  rank  cities  based  on  several  categories,  CO2  emissions  being  one  of  them,  the  

temperature   adjusted   emissions   that  were   found   in   this   study   to  make   a   significant   difference   for  

some  cities,  could  be  used  to  improve  Green  City  Index  results.  

We   really   do   think   that   used   CO2   emissions   for   city   rankings   require   redefining,   and   our   approach  

could  offer  an  alternative  way  of  benchmarking  cities  and  metropolitan  areas  by  taking  into  account  

the  climate  in  the  given  location.  

   

Page 21: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

Appendix  1  Table  2.  All  used  data  in  the  analysis.  

 

   

Name  of  the  city Population Area  [km2] Density Total  CO2  per  capita Energy  industry  CO2 Transportation  CO2 Other  CO2 HDD CDD Total  DD    Vienna 2710331 9093,10 298,06 14,23 3,29 3,44 7,50 2750 137 2887    Graz 614454 3074,20 199,87 10,69 3,95 2,71 4,03 2986 127 3113    Linz 609054 3523,70 172,85 17,58 1,24 0,03 16,31 3009 96 3105    Brussels 2510626 30326,00 82,79 9,48 1,21 2,48 5,79 2726 36 2762    Edmonton 1199616 1414,20 848,26 44,07 25,21 3,28 15,58 5444 29 5473    Ca lgary 1306924 12478,50 104,73 13,84 0,69 2,39 10,76 4658 34 4692    Winnipeg 813580 19808,00 41,07 13,41 0,12 4,45 8,83 5370 100 5470    Vancouver 2358711 12478,50 189,02 13,44 0,04 3,79 9,61 2568 4 2572    Quebec 834215 21715,50 38,42 14,21 0,00 3,37 10,84 4739 47 4786    Montreal 4226756 5063,60 834,73 13,02 0,04 3,29 9,69 3784 107 3891    Prague 1848898 3929,00 470,58 13,04 3,15 1,77 8,13 3353 66 3419    Berl in 4380489 6176,40 709,23 12,1 3,07 2,06 6,97 2893 69 2962    Munich 2874409 6263,10 458,94 8,48 1,91 1,42 5,14 3287 66 3353    Stuttgart 1957507 1987,60 984,86 10,31 3,25 1,87 5,20 2951 73 3024    Aachen 578522 775,30 746,19 29,69 24,67 1,78 3,24 2755 42 2797    Copenhagen 1998568 4083,70 489,40 7,05 1,41 2,18 3,46 3072 6 3078    Ta l l inn 530698 4326,30 122,67 7,7 3,63 1,18 2,89 4137 8 4145    Madrid 6640335 11537,60 575,54 7,14 0,14 3,11 3,89 1887 483 2370    Barcelona 3716802 1362,00 2728,93 5,74 0,42 2,26 3,05 1008 229 1237    Málaga 849191 1623,10 523,19 4,43 0,00 1,06 3,37 739 288 1027    Hels inki 1466120 6350,70 230,86 15,78 2,33 2,29 11,16 4235 11 4246    Paris 11777101 12089,40 974,17 7,91 0,25 2,70 4,96 2389 66 2455    Marsei l le 1734789 4230,80 410,04 9,53 2,61 1,61 5,32 1530 259 1789    Nice 850073 3096,90 274,49 6,82 0,02 1,21 5,60 1197 174 1371    Athens 3555307 1656,10 2146,79 5,13 0,08 2,23 2,83 991 695 1686    Budapest 2854222 6056,90 471,23 9,45 1,90 1,72 5,83 2759 223 2982    Dubl in 1690947 4767,20 354,70 12,37 2,39 4,03 5,95 2793 1 2794    Rome 4042286 5686,50 710,86 9,11 2,33 1,50 5,27 1384 325 1709    Mi lan 4084591 2637,80 1548,48 7,43 0,67 3,08 3,68 2345 216 2561    Tokyo 35204263 8592,10 4097,28 6,8 1,29 1,44 4,08 1420 380 1800    Osaka 17270651 7003,90 2465,86 7,06 1,25 1,51 4,30 1478 534 2012    Seoul  Incheon 22938013 4673,10 4908,52 5,74 0,30 1,49 3,95 2979 297 3276    Monterrey 4291614 10984,40 390,70 4,42 1,27 0,97 2,18 404 958 1362    Guadala jara 4509743 2478,40 1819,62 2,42 0,00 0,89 1,52 515 391 906    Mexico  Ci ty 19522493 5101,70 3826,66 3,42 0,04 1,72 1,66 658 106 764    Amsterdam 2383313 2819,80 845,21 15,06 6,34 2,05 6,67 2672 22 2694    Os lo 1490619 7099,20 209,97 14,61 0,06 2,05 12,50 4476 5 4481    Warsaw 2994909 8611,70 347,77 8,33 2,51 1,60 4,23 3375 79 3454    Kraków 1354499 3749,10 361,29 7,99 2,10 1,32 4,57 3420 91 3511    Li sbon 2818338 3988,30 706,65 5,1 0,98 1,77 2,36 1014 186 1200    Stockholm 1978017 7106,90 278,32 6,17 0,54 2,24 3,39 3830 8 3838    Ljubl jana 571708 3145,00 181,78 7,28 1,88 2,16 3,25 3007 139 3146    New  York 16582772 9882,10 1678,06 17,71 1,97 8,19 7,55 2232 201 2433    Washington 5336371 12085,40 441,56 13,5 2,75 4,38 6,37 1790 420 2210    Kansas  Ci ty 1937235 16608,30 116,64 23,25 12,44 5,79 5,02 2220 547 2767    San  Francisco 6883043 17089,90 402,76 13,87 1,35 5,38 7,14 1400 12 1412    Las  Vegas 2065960 67988,50 30,39 16,97 5,98 3,99 7,00 1359 904 2263    Los  Angeles 17214555 83682,20 205,71 15,3 1,06 5,81 8,43 544 50 594    Phoenix 3900900 23889,10 163,29 13,38 2,40 4,12 6,86 1825 460 2285    Miami 5623920 14179,40 396,63 14,47 1,11 4,44 8,92 43 1041 1084

Page 22: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

Bibliography  CDP,  2014a.  CDP  Website.  [Online]    

Available  at:  https://www.cdp.net/en-­‐US/  

[Accessed  July  2014].  

CDP,  2014b.  CDP  Global  Cities  Report  2014.  [Online]    

Available  at:  https://www.cdp.net/CDPResults/CDP-­‐global-­‐cities-­‐report-­‐2014.pdf  

[Accessed  July  2014].  

CDP,  2014.  CDP  Website.  [Online]    

Available  at:  https://www.cdp.net/en-­‐US/  

[Accessed  July  2014].  

City  of  Edmonton,  2014.  City  of  Edmonton  website.  [Online]    

Available  at:  http://www.edmonton.ca/business_economy/demographics_profiles/industries.aspx  

[Accessed  12  August  2014].  

City  of  Sydney,  2013.  State  of  the  Environment  Report  2011/12.  [Online]    

Available  at:  

http://www.cityofsydney.nsw.gov.au/__data/assets/pdf_file/0005/122387/StateOfEnvironmentRepo

rt201112Final.pdf  

[Accessed  29  July  2014].  

City-­‐Data.com,  2005.  City-­‐Data.com.  [Online]    

Available  at:  http://www.city-­‐data.com/us-­‐cities/The-­‐Midwest/Kansas-­‐City-­‐Economy.html  

[Accessed  12  August  2014].  

De  Rosa,  M.,  Bianco,  V.,  Scarpa,  F.  &  Tagliafico,  L.,  2014.  Heating  and  cooling  building  energy  demand  

evaluation;  a  simplified  model  and  a  modified  degree  days  approach.  Applied  Energy,  Volume  128,  pp.  

217-­‐229.  

Page 23: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

DegreeDays,  2014.  DegreeDays  website.  [Online]    

Available  at:  http://www.degreedays.net/  

[Accessed  27  July  2014].  

Martinaitis,  V.,  1998.  Analytic  calculation  of  degree-­‐days  for  the  regulated  heating  season.  Energy  and  

Buildings,  Volume  28,  pp.  185-­‐189.  

MetroVancouver,  2011.  Data  profiles.  [Online]    

Available  at:  http://www.metrovancouver.org/2011IRBC/DataProfiles/DataProfileSheets/Helsinki.pdf  

[Accessed  13  August  2014].  

NRW.Invest,  2014.  Aachen  Region.  [Online]    

Available  at:  

http://www.nrwinvest.com/NRW_at_a_glance/Economic_Regions_in_NRW/Aachen/index.php  

[Accessed  12  August  2014].  

OECD,  2014.  Metropolitan  areas.  [Online]    

Available  at:  http://stats.oecd.org/Index.aspx?Datasetcode=CITIES  

[Accessed  12  August  2014].  

Siemens,  2014.  European  Green  City  Index.  [Online]    

Available  at:  

http://www.siemens.com/entry/cc/features/urbanization_development/all/en/pdf/oslo.pdf  

[Accessed  13  August  2014].  

The  United  Nations,  2012.  World  Urbanization  Prospects:  The  2011  Revision.  [Online]    

Available  at:  http://esa.un.org/unup/pdf/WUP2011_Highlights.pdf  

[Accessed  July  2014].  

WWF,  2013.  Oslo  governance.  [Online]    

Available  at:  

http://wwf.panda.org/what_we_do/footprint/cities/urban_solutions/themes/energy/?212918  

[Accessed  13  August  2014].  

Page 24: Global Cities' Climate-Adjusted Carbon Footprint Indicator By Suraj Nambiar and Heikki Keskivali

 

Suraj  Nambiar  &  Heikki  Keskiväli  

YTV,  2011.  Climate  Change  in  Focus  in  the  Helsinki  Metropolitan  Area.  [Online]    

Available  at:  http://energy-­‐cities.eu/IMG/pdf/climate_change_in_focus_web.pdf  

[Accessed  13  August  2014].  

Yu,  L.,  2014.  Low  carbon  eco-­‐city:  New  approach  for  Chinese  urbanisation.  Habitat  International,  

Volume  44,  pp.  102-­‐110.  

 

 


Recommended