+ All Categories
Home > Documents > GPSLecture Burgess

GPSLecture Burgess

Date post: 03-Apr-2018
Category:
Upload: piyushfordeals
View: 226 times
Download: 1 times
Share this document with a friend

of 38

Transcript
  • 7/29/2019 GPSLecture Burgess

    1/38

    ESSC 541-542 Lecture 4.14.05

    INTRODUCTION TO GPS:

    ESSC 541-542

    4.14.05

  • 7/29/2019 GPSLecture Burgess

    2/38

    ESSC 541-542 Lecture 4.14.05

    2

    Presentation OutlineI. Learning Format

    II. GPS Basics

    III. GPS Under the Hood

    IV.Datums and Coordinate Systems

    V. Mobile Mapping Technology

    VI.Hands on with GPS

  • 7/29/2019 GPSLecture Burgess

    3/38

    ESSC 541-542 Lecture 4.14.05

    3

    Learning Format Lecture

    One hour presentation and in class

    orientation to GeoXT

    Lab

    Field trip (when?) to practice using theGPS in the field

  • 7/29/2019 GPSLecture Burgess

    4/38

    ESSC 541-542 Lecture 4.14.05

    4

    What is GPS?The Global Positioning System (GPS)

    A Constellation of Earth-OrbitingSatellites Maintained by the United

    States Government for the Purpose ofDefining Geographic Positions On andAbove the Surface of the Earth. Itconsists of Three Segments:

    Control Segment

    Space Segment

    User Segment

  • 7/29/2019 GPSLecture Burgess

    5/38

    ESSC 541-542 Lecture 4.14.05

    5

    GPS Satellites (Satellite Vehicles(SVs)) First GPS satellite launched in

    1978

    Full constellation achieved in 1994

    Satellites built to last about 10years

    Approximately 2,000 pounds,17feet across

    Transmitter power is only 50 wattsor less

  • 7/29/2019 GPSLecture Burgess

    6/38

    ESSC 541-542 Lecture 4.14.05

    6

    GPS Lineage Phase 1: 1973-1979

    CONCEPT VALIDATION

    1978- First Launch of Block 1 SV

    Phase 2: 1979-1985

    FULL DEVELOPMENT AND TESTS

    Phase 3: 1985-Present

    PRODUCTION AND DEPLOYMENT

  • 7/29/2019 GPSLecture Burgess

    7/38

    ESSC 541-542 Lecture 4.14.05

    7

    Precise Positioning System (PPS) Authorized users ONLY

    U. S. and Allied military

    Requires cryptographicequipment, specially

    equipped receivers

    Accurate to 21 meters 95%of time

  • 7/29/2019 GPSLecture Burgess

    8/38

    ESSC 541-542 Lecture 4.14.05

    8

    Standard Positioning Service (SPS)

    Available to all users

    Accuracy degraded bySelective Availability until2 May 2000

    Horizontal Accuracy: 100m

    Now has roughly sameaccuracy as PPS

  • 7/29/2019 GPSLecture Burgess

    9/38ESSC 541-542 Lecture 4.14.05

    9

    Space Segment 24+ satellites

    6 planes with 55

    inclination Each plane has 4-5

    satellites

    Broadcasting position

    and time info on 2frequencies

    Constellation hasspares

  • 7/29/2019 GPSLecture Burgess

    10/38ESSC 541-542 Lecture 4.14.05

    10

    Space Segment Very high orbit

    20,200 km

    1 revolution inapproximately 12 hrs

    Travel approx. 7,000mph

    Considerations

    Accuracy

    Survivability

    Coverage

  • 7/29/2019 GPSLecture Burgess

    11/38ESSC 541-542 Lecture 4.14.05

    11

    Control Segment

    Master Control StationMonitor StationGround Antenna

    Colorado

    Springs

    Hawaii AscensionIslands

    DiegoGarcia

    Kwajalein

    Monitor and Control

  • 7/29/2019 GPSLecture Burgess

    12/38ESSC 541-542 Lecture 4.14.05

    12

    Control Segment: Maintaining the System

    (5) Monitor Stations

    Correct Orbitand clockerrors Create newnavigation message

    Observeephemerisand clock

    Falcon AFB

    Upload Station

  • 7/29/2019 GPSLecture Burgess

    13/38ESSC 541-542 Lecture 4.14.05

    13

    User Segment

    Over $19 Billion invested by DoD

    Dual Use System Since 1985

    (civil & military) Civilian community was quick to take

    advantage of the system Hundreds of receivers on the market

    3 billion in sales, double in 2 years 95% of current users

    DoD/DoT Executive Board sets GPSpolicy

  • 7/29/2019 GPSLecture Burgess

    14/38ESSC 541-542 Lecture 4.14.05

    14

    Common Uses for GPS

    Land, Sea and AirNavigation and

    Tracking

    Surveying/ Mapping

    Military Applications

    Recreational Uses

  • 7/29/2019 GPSLecture Burgess

    15/38ESSC 541-542 Lecture 4.14.05

    15

    How the system works

    Space Segment24+ Satellites

    The CurrentEphemeris is

    Transmitted toUsersMonitor

    Stations Diego Garcia Ascension Island Kwajalein

    Hawaii Colorado Springs

    GPS ControlColorado Springs

    EndUser

  • 7/29/2019 GPSLecture Burgess

    16/38ESSC 541-542 Lecture 4.14.05

    16

    Triangulation

    Satellite 1 Satellite 2

    Satellite 3 Satellite 4

  • 7/29/2019 GPSLecture Burgess

    17/38ESSC 541-542 Lecture 4.14.05

    17

    Distance Measuring

    Rate = 186,000 miles persecond (Speed of Light)

    Time = time it takessignal to travel from theSV to GPS receiver

    Distance = Rate x Time

    Each satellite carriesaround four atomicclocks

    Uses the oscillation of cesium andrubidium atoms to measure time

    Accuracy?plus/minus a second over more

    than 30,000 years!!

    The whole systemrevolves around

    time!!!

  • 7/29/2019 GPSLecture Burgess

    18/38ESSC 541-542 Lecture 4.14.05

    18

    SV and Receiver Clocks

    SV Clocks 2 Cesium & 2 Rubidium in each SV $100,000-$500,000 each

    Receiver Clocks Clocks similar to quartz watch Always an error between satellite

    and receiver clocks ( t)

    4 satellites required to solve forx, y, z, and t

  • 7/29/2019 GPSLecture Burgess

    19/38ESSC 541-542 Lecture 4.14.05

    19

    PROBLEM

    Cant use atomic

    clocks in receiver

    SOLUTION

    Receiver clocks

    accurate over shortperiods of time

    Reset often

    4th

    SV used torecalibrate receiverclock

    Cesium Clock =$$$$$$$!!!

    Size of PC

    4

  • 7/29/2019 GPSLecture Burgess

    20/38ESSC 541-542 Lecture 4.14.05

    20

    Breaking the Code

    Transmission Time

    Receiver

    The Carrier Signal...

    combined with

    The PRN code...

    produces the

    Modulated carrier signal

    which is transmitted...demodulated...

    And detected by receiver,Locked-on, butWith a time delay...

    Time delay

    Satellite

  • 7/29/2019 GPSLecture Burgess

    21/38ESSC 541-542 Lecture 4.14.05

    21

    Accuracy and Precision in GPS

    Accuracy

    The nearness of a measurement to the

    standard or true value Precision

    The degree to which several

    measurements provide answers very closeto each other.

    What affects accuracy andprecision in GPS?

  • 7/29/2019 GPSLecture Burgess

    22/38ESSC 541-542 Lecture 4.14.05

    22

    Sources of Error

    Selective Availability

    Intentional degradation of

    GPS accuracy 100m in horizontal and

    160m in vertical

    Accounted for most error instandard GPS

    Turned off May 2, 2000

  • 7/29/2019 GPSLecture Burgess

    23/38ESSC 541-542 Lecture 4.14.05

    23

    Sources of Error

    Geometric Dilution ofPrecision (GDOP)

    Describes sensitivity of receiver tochanges in the geometricpositioning of the SVs

    The higher the DOP value, thepoorer the measurement

    QUALITY DOP

    Very Good 1-3Good 4-5Fair 6Suspect >6

  • 7/29/2019 GPSLecture Burgess

    24/38ESSC 541-542 Lecture 4.14.05

    24

    Sources of Error

    Clock Error Differences between satellite

    clock and receiver clock

    Ionosphere Delays Delay of GPS signals as they

    pass through the layer ofcharged ions and free electronsknown as the ionosphere.

    Multipath Error Caused by local reflections ofthe GPS signal that mix withthe desired signal GPS

    Antenna

    Hard Surface

    Satellite

  • 7/29/2019 GPSLecture Burgess

    25/38ESSC 541-542 Lecture 4.14.05

    25

    Differential GPS Method of removing errors that affect GPS

    measurements

    A base station receiver is set up on a locationwhere the coordinates are known

    Signal time at reference location is compared totime at remote location

    Time difference represents error in satellitessignal

    Real-time corrections transmitted to remotereceiver Single frequency (1-5 m) Dual frequency (sub-meter)

    Post-Processing DGPS involves correcting at a

    later time

    Referencelocation

    Remotelocation

    = Error

    www.ngs.noaa.gov/OPUS

    Online post-processing

  • 7/29/2019 GPSLecture Burgess

    26/38ESSC 541-542 Lecture 4.14.05

    26

    Wide Area Augmentation System (WAAS)

    System of satellites and groundstations that provide GPS signalcorrections

    25 ground reference stations acrossUS

    Master stations create GPScorrection message

    Corrected differential messagebroadcast through geostationarysatellites to receiver

    5 Times the accuracy (3m) 95% oftime

  • 7/29/2019 GPSLecture Burgess

    27/38ESSC 541-542 Lecture 4.14.05

    27

    Datums and Coordinate Systems

    Many datums and coordinatesystems in use today

    Incorrect referencing ofcoordinates to the wrong datumcan result in position errors ofhundreds of meters

    With, sub-meter accuracyavailable with todays GPS,careful datum selection andconversion is critical!

    Why should I worry about datums andcoordinate systems when using GPS?

  • 7/29/2019 GPSLecture Burgess

    28/38

    ESSC 541-542 Lecture 4.14.05

    28

    Geodetic Datums: What are they?

    Define the size and shapeof the earth

    Used as basis forcoordinate systems

    Variety of models:

    Flat earth

    Spherical

    Ellipsoidal

    WGS 84 defines geoid

    heights for the entire earth

  • 7/29/2019 GPSLecture Burgess

    29/38

    ESSC 541-542 Lecture 4.14.05

    29

    Coordinate Systems: What are they?

    Based on Geodetic Datums

    Describe locations in two or three

    dimensions (ie. X,Y,Z or X,Y)

    Local and Global

    Common systems Geodetic Lat, Long (global) UTM (local) State Plane (local)

    Variety of transformation methodswww.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM

    Online conversion tool

  • 7/29/2019 GPSLecture Burgess

    30/38

    ESSC 541-542 Lecture 4.14.05

    30

    World UTM Zones

  • 7/29/2019 GPSLecture Burgess

    31/38

    ESSC 541-542 Lecture 4.14.05

    31

    Geodetic Latitude, Longitude

    Prime Meridian and Equator are referenceplanes used to define latitude and longitude

  • 7/29/2019 GPSLecture Burgess

    32/38

    ESSC 541-542 Lecture 4.14.05

    32

    Which is the correct location?

    Same location can have many reference positions,

    depending on coordinate system used

  • 7/29/2019 GPSLecture Burgess

    33/38

    ESSC 541-542 Lecture 4.14.05

    33

    Mobile Mapping

    Integrates GPS technologyand GIS software

    Makes GIS data directlyaccessible in the field

    Can be augmented withwireless technology

  • 7/29/2019 GPSLecture Burgess

    34/38

    ESSC 541-542 Lecture 4.14.05

    34

    Mobile Mapping Pros and Cons

    Pros More efficient data entry

    Ready access to GIS data

    Less transcription error

    Possible real-timeupload/download throughwireless

    Cons Cost

    Data storage limit

    Digital data can be

    lost/corrupted

  • 7/29/2019 GPSLecture Burgess

    35/38

    ESSC 541-542 Lecture 4.14.05

    35

    Hands on with GPS

  • 7/29/2019 GPSLecture Burgess

    36/38

    ESSC 541-542 Lecture 4.14.05

    Paul BurgessUniversity of Redlands

    Redlands [email protected]

    Questions?

  • 7/29/2019 GPSLecture Burgess

    37/38

    ESSC 541-542 Lecture 4.14.05

    37

    OBJECTID Northing Easting GPSDate GPSDateTime

    1 3982854.745 656956.881 09-Apr-04 09-Apr-04

    2 3982854.748 656956.885 09-Apr-04 09-Apr-043 3982854.84 656956.953 09-Apr-04 09-Apr-04

    4 3982854.697 656957.42 09-Apr-04 09-Apr-04

    5 3982854.55 656957.393 09-Apr-04 09-Apr-04

    6 3982854.539 656957.365 09-Apr-04 09-Apr-04

    7 3982854.443 656957.304 09-Apr-04 09-Apr-04

    8 3982854.37 656957.461 09-Apr-04 09-Apr-04

    9 3982854.303 656957.619 09-Apr-04 09-Apr-04

    10 3982854.089 656957.571 09-Apr-04 09-Apr-04

    11 3982854.062 656957.672 09-Apr-04 09-Apr-04

    12 3982854.02 656957.581 09-Apr-04 09-Apr-04

    13 3982853.882 656957.36 09-Apr-04 09-Apr-04

    14 3982853.776 656957.314 09-Apr-04 09-Apr-04

    15 3982853.821 656957.262 09-Apr-04 09-Apr-04

    16 3982853.9 656957.222 09-Apr-04 09-Apr-04

    17 3982853.865 656956.896 09-Apr-04 09-Apr-04

    18 3982853.825 656956.811 09-Apr-04 09-Apr-04

    19 3982854.382 656954.229 09-Apr-04 09-Apr-04

    20 3982857.014 656958.041 09-Apr-04 09-Apr-04

  • 7/29/2019 GPSLecture Burgess

    38/38

    38

    References

    Bertorelli, Paul. GPS Explained. Downloaded April 2005: http://www.eaa1000.av.org/technicl/gps/gps.htm

    Henstridge, Fred N and Bob Nelson. Introduction to GPS. Presentation for the ICAO/FAA WGS-84 Seminarand Workshop, November 9, 1999, San Salvador. Accessible on the International OceanographicCommissions website at : Http--ioc.unesco.org-oceanteacher-OceanTeacher2-02_InfTchSciCmm-01_CmpTch-10_enavsys-gps_0008.ppt.url

    Peter H. Dana. Coordinate Systems Overview. Accessible at:

    http://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys_f.html Peter H. Dana. Geodetic Datum Overview. Accessible at:

    http://www.colorado.edu/geography/gcraft/notes/datum/datum_f.html

    38

    http://www.eaa1000.av.org/technicl/gps/gps.htmhttp://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys_f.htmlhttp://www.colorado.edu/geography/gcraft/notes/datum/datum_f.htmlhttp://www.colorado.edu/geography/gcraft/notes/datum/datum_f.htmlhttp://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys_f.htmlhttp://www.eaa1000.av.org/technicl/gps/gps.htm

Recommended