+ All Categories
Home > Documents > GRADUATION PROJECT Murtaza Yıldırım 110140127

GRADUATION PROJECT Murtaza Yıldırım 110140127

Date post: 05-Feb-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
25
i ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS GRADUATION PROJECT June, 2021 HORIZANTAL AXIS WIND TURBINE AERODYNAMIC ANALYSIS Thesis Advisor: Res. Assis. Cemil KURTCEBE Murtaza Yıldırım 110140127 Department of Astronautical Engineering
Transcript
Page 1: GRADUATION PROJECT Murtaza Yıldırım 110140127

i

ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS

GRADUATION PROJECT

June, 2021

HORIZANTAL AXIS WIND TURBINE AERODYNAMIC ANALYSIS

Thesis Advisor: Res. Assis. Cemil KURTCEBE

Murtaza Yıldırım

110140127

Department of Astronautical Engineering

Page 2: GRADUATION PROJECT Murtaza Yıldırım 110140127

ii

Thesis Advisor : Res. Assis. Cemil KURTCEBE ..............................

İstanbul Technical University

Jury Members : Prof. Dr. Name SURNAME .............................

Yıldız Technical University

Prof. Dr. Name SURNAME .............................. Boğaziçi University

Prof. Dr. Name SURNAME ..............................

Gebze Institute of High Technology

(If exists) Prof. Dr. Name SURNAME ..............................

Şişli Etfal Teaching Hospital (If exists) Prof. Dr. Name SURNAME ..............................

Bilkent University

Murtaza Yıldırım, student of ITU Faculty of Aeronautics and Astronauticsstudent

ID 110140127, successfully defended the graduation entitled “HORIZANTAL

AXIS WIND TURBINE AERODYNAMIC ANALYSIS”, which he/she prepared

after fulfilling the requirements specified in the associated legislations, before the

jury whose signatures are below.

Date of Submission : 14 June 2021

Date of Defense : 26 June 2021

Page 3: GRADUATION PROJECT Murtaza Yıldırım 110140127

iii

To my family,

Page 4: GRADUATION PROJECT Murtaza Yıldırım 110140127

iv

FOREWORD

For the foreword, 1 line spacing must be set. The foreword, written as a first page of

the thesis must not exceed 2 pages.

The acknowledgements must be given in this section.

After the foreword text, name of the author (right-aligned), and the date (as month and

year) must be written (left-aligned). These two expressions must be in the same

line.The foreword is written with 1 line spacing.

June 2021

Murtaza Yıldırım

Page 5: GRADUATION PROJECT Murtaza Yıldırım 110140127

v

Page 6: GRADUATION PROJECT Murtaza Yıldırım 110140127

vi

TABLE OF CONTENTS

Page

FOREWORD ....................................................................................................... iv TABLE OF CONTENTS ................................................................................... vi

ABBREVIATIONS ............................................................................................ vii LIST OF TABLES ............................................................................................ viii LIST OF FIGURES ............................................................................................ ix

SUMMARY ............................................................................................................x 1. INTRODUCTION...........................................................................................12

1.1 OBJECTIVE AND SCOPE OF THE THESIS ............... Hata! Yer işareti

tanımlanmamış. 1.2 Ansys.................................................... Hata! Yer işareti tanımlanmamış.

2. LITERATURE REVIEW .......................... Hata! Yer işareti tanımlanmamış.

2.1 Horizontal axis wind turbines............. Hata! Yer işareti tanımlanmamış. 2.2 Vertical axis wind turbines ................. Hata! Yer işareti tanımlanmamış.

3. BLADE GEOMETRY ................................ Hata! Yer işareti tanımlanmamış.

3.1 Airfoil................................................... Hata! Yer işareti tanımlanmamış. 3.2 Pitch angle ........................................... Hata! Yer işareti tanımlanmamış. 3.3 Twist angle .......................................... Hata! Yer işareti tanımlanmamış.

4. DESIGN and MODELLING ..................... Hata! Yer işareti tanımlanmamış. 5. CFD ANALSYS ........................................... Hata! Yer işareti tanımlanmamış.

6. CONCLUSION ................................................................................................17

REFERENCES ....................................................................................................25

Page 7: GRADUATION PROJECT Murtaza Yıldırım 110140127

vii

ABBREVIATIONS

CL : Lift coeffient

CD : Drag coefficient

App : Appendix

BP : Backpropagation

CGI : Common Gateway Interface

ESS : Error sum-of-squares

GARCH : Generalized Autoregressive Conditional Heteroskedasticity

GIS : Geographic Information Systems

HCA : HierarchicalCluster Analysis

Mbps : Megabits per second

St : Station

SWAT : Soil and Water Assessment Tool

UMN : University of Minnesota

Page 8: GRADUATION PROJECT Murtaza Yıldırım 110140127

viii

LIST OF TABLES

Page

Table 1.1 :Table with single row and centered columns ...............................................2

Table 2.1 : Table captions must be ended with a full stop. ...........................................4

Table3.1 : Multi-line captions: all lines belonging to the same caption must be

aligned. .........................................................................................................11

Table 4.1:Example table ................................................................................................14

Table 5.1 :Example table in chapter 5 ..........................................................................16

Table 6.1 :Example table in chapter 6 ..........................................................................18

Table A.1:Example table in appendix ...........................................................................25

Page 9: GRADUATION PROJECT Murtaza Yıldırım 110140127

ix

LIST OF FIGURES

Page

Figure 1.1 : Model structures.................................Hata! Yer işareti tanımlanmamış.

Figure 2.1 :Advanced structures................................................................................... 14

Figure 3.1 : Neuron cell, adapted from Zadeh(1965). ...................... Hata! Yer işareti

tanımlanmamış. Figure 3.2 : For multi-line figure captions, it is important that all the lines of the

caption must be aligned. ....................Hata! Yer işareti tanımlanmamış. Figure 3.3 : Figure captions must be ended with a full stop............. Hata! Yer işareti

tanımlanmamış. Figure 3.4 : Landscape-oriented, full-page figure. ............................ Hata! Yer işareti

tanımlanmamış. Hata! Başvuru kaynağı bulunamadı.Hata! Başvuru kaynağı bulunamadı. . Hata!

Yer işareti tanımlanmamış.

Hata! Başvuru kaynağı bulunamadı.Hata! Başvuru kaynağı bulunamadı. . Hata!

Yer işareti tanımlanmamış.

Hata! Başvuru kaynağı bulunamadı.Hata! Başvuru kaynağı bulunamadı. . Hata!

Yer işareti tanımlanmamış. Figure A.1 :Regional maps: (a)Rain. (b)Flow. (c)Evapotranspiration … ....Hata! Yer

işareti tanımlanmamış.

Page 10: GRADUATION PROJECT Murtaza Yıldırım 110140127

x

THESIS TITLE IN ENGLISH HERE

SUMMARY

There are several types wind turbines designed in many different geometries and

sizes. Various modeling programs are used while designing these wind turbines and

making improvements on them. Thanks to the data obtained from the analyzes, it is

possible to design more advanced wind turbines with the development of material

technology and the use of new techniques. CFD analysis has an important role in

modeling the wind turbine and testing it after modeling. In this study, a 3-blade wind

turbine was created using the Autodesk Fusion 360 with using the NCEL s809 airfoil

and its geometry data. This wind turbine was dynamically tested via the Ansysy

program. Finally, the results are reported.

Page 11: GRADUATION PROJECT Murtaza Yıldırım 110140127

xi

Page 12: GRADUATION PROJECT Murtaza Yıldırım 110140127

12

1. INTRODUCTION

Energy exists in many different forms like thermal, kinetic, potential, electrical, chemical …

etc. According to first law of thermodynamics energy cannot produced from nothing neither

vanished neverthelss, it can be transformed form to another.. A form of energy cannot be

appropriate to usage so unuseable energy form needed to be transferred into a another useful

one. In order to convert the energy from one form to another, some tools should be used. All

moving object has a kinetic energy coming from its motion. Air in the atmosphere has a

motion , so it has a kinetic energy that occurs wind which is very important for natural

pheonomenons such as fertilization of trees and rains. On the other hand, considering industrial

and urban needs , the kinetic energy of the wind can be more useful when it can be converted

into electrical energy. Electrical energy can be obtained from wind by using wind turbines. The

main mission of the wind turbines is to convert the kinetic energy of the wind into mechanical

energy via blades and after into electrical energy by using generator in the wind turbine.

Electricity has a crucial place in daily life .Thus, wind turbines have been improving every

passing day. Wind turbine analsys helps to accelerate this progress

1.1 OBJECTIVE AND SCOPE OF THE THESIS

The main purpose of wind turbines is to convert the kinetic energy of the wind into electrical

energy. In order for the wind turbine to do this in the most efficient way, it must be designed

aerodynamically very carefully. In this thesis, the analysis of a wind turbine designed in the

Fusion 360 environment from the s809 NCEL airfoil. Then that wind turbine will be investigate

using Ansys Fluent as shown in Figure 1.1.

Figure 1.1 : Ansys project schematic

Page 13: GRADUATION PROJECT Murtaza Yıldırım 110140127

13

1.2 ANSYS

Ansys is a engineering application that can models many environments such as scientific

experiments. Ansysy is a program that creates simulations and analyzes them. Ansys and

similar programs meet the requirements for the design of a product even before a test prototype

is produced or the product to be designed because, it can realistically determine before

production begins. It will reduce costs both in tests and in mass production and in order to

make a quality design, than what can be done manually in the analysis will give better results.

2. LITERATURE REVIEW

2.1 Horizontal Axis Wind Turbines

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod

Figure 2.1 : Various horizontal-axis wind turbines

Page 14: GRADUATION PROJECT Murtaza Yıldırım 110140127

14

2.2 Vertical Axis Wind Turbines

Sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam

voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

Figure 2.1 : Advanced structures.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor

invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et

justo duo dolores et ea rebum. At vero eos et accusam et justo duo dolores et ea rebum. At vero

eos et accusam et justo duo dolores et ea rebum.

3. Blade Geometry

3.1 Airfoil

Airfoil is determines the aerodynamic charactertics of the blade. Airfoil and its parameters that

are CL and CD affect efficiency of wind turbine directly.

Figure 3.1 : NREL’s S809 airfoil

Page 15: GRADUATION PROJECT Murtaza Yıldırım 110140127

15

Figure 3.1 : CL&CD slopes of NREL S809 airfoil

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor

invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et

justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum

dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore

sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor

invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et

justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum

dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore

sit et dolore magna.

3.2 Pitch Angle

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod

Page 16: GRADUATION PROJECT Murtaza Yıldırım 110140127

16

3.3 Twist angle

Twist angle can be defined as the angle between aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 3.3.1 : Aerodynamic force coefficient conventions[nerel]

4. DESIGN AND MODELING

Page 17: GRADUATION PROJECT Murtaza Yıldırım 110140127

17

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor

Figure 4.1 : Blade planform dimensions

Figure 4.1 :

Page 18: GRADUATION PROJECT Murtaza Yıldırım 110140127

18

Figure 4.1 :

sada

Page 19: GRADUATION PROJECT Murtaza Yıldırım 110140127

19

5. CFD

Vc

Figure: 5.1 Mesh distrubution of CFD model

Page 20: GRADUATION PROJECT Murtaza Yıldırım 110140127

20

Page 21: GRADUATION PROJECT Murtaza Yıldırım 110140127

21

Aa

Page 22: GRADUATION PROJECT Murtaza Yıldırım 110140127

22

Page 23: GRADUATION PROJECT Murtaza Yıldırım 110140127

23

Figure

Page 24: GRADUATION PROJECT Murtaza Yıldırım 110140127

24

6. CONCLUSION

Page 25: GRADUATION PROJECT Murtaza Yıldırım 110140127

25

REFERENCES

Abrahart, R. J., and See, L. (1998). Neural Network vs. ARMA Modelling: Constructing

Benchmark Case Studies of River Flow Prediction. In GeoComputation ’98.

Proceedings of the Third International Conference on GeoComputation,

University of Bristol, United Kingdom, 17–19 September (CD-ROM).


Recommended