+ All Categories
Home > Documents > Graph Theory and Modal Logic - Chapman...

Graph Theory and Modal Logic - Chapman...

Date post: 04-Sep-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
43
Graph Theory and Modal Logic Yutaka Miyazaki Osaka University of Economics and Law (OUEL) Aug. 5, 2013 BLAST 2013 at Chapman University Yutaka Miyazaki Graph Theory and Modal Logic
Transcript
Page 1: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

.

.

. ..

.

.

Graph Theory and Modal Logic

Yutaka Miyazaki

Osaka University of Economics and Law (OUEL)

Aug. 5, 2013

BLAST 2013 at Chapman University

Yutaka Miyazaki Graph Theory and Modal Logic

Page 2: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 3: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 4: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 5: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 6: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 7: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 8: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 9: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 10: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 11: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Kripke frames and graphs

Undirected Graphs = Symmetric Kripke frames

Every point (node) in an undirected graph must be treatedas an irreflexive point!

Yutaka Miyazaki Graph Theory and Modal Logic

Page 12: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Kripke frames and graphs

Undirected Graphs = Symmetric Kripke frames

Every point (node) in an undirected graph must be treatedas an irreflexive point!

Yutaka Miyazaki Graph Theory and Modal Logic

Page 13: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 14: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 15: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 16: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 17: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

A Hybrid Language

¤ 2 sorts of variables:

• Φ := p, q, r, . . . · · · the set of prop. variables• Ω := i, j, k, . . . · · · the set of nominals

where Φ ∩ Ω = ∅.

Nominals are used to distinguish points(states) in a frame from one another.

¤ Our language L (the set of formulas) consists ofA ::= p | i | ⊥ | ¬A | A ∧ B | 2A

· · · No satisfaction operator (@i)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 18: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Normal hybrid logic(1)

A normal hybrid logic L over L is a set of formulas in Lthat contains:

(1) All classical tautologies

(2) 2(p → q) → (2p → 2q)

(3) (i ∧ p) → 2n(i → p) for all n ∈ ω: (nominality axiom)

and closed under the following rules:

(4) Modus PonensA, A → B

B

(5) NecessitationA

2A

Yutaka Miyazaki Graph Theory and Modal Logic

Page 19: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Normal hybrid logic(2)

(6) Sorted substitution

AA[B/p] ,

AA[j/i]

p : prop. variable, i, j: nominals

(7) Namingi → A

A

i: not occurring in A

(8) Pasting(i ∧ 3(j ∧ A)) → B

(i ∧ 3A) → B

j 6≡ i, j:not occurring in A or B.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 20: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Normal hybrid logic(3)

H: the smallest normal hybrid logic over L

For Γ ⊆ L,

H ⊕ Γ: the smallest normal hybrid extension containing Γ

Yutaka Miyazaki Graph Theory and Modal Logic

Page 21: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Semantics

F := 〈W,R〉: a (Kripke) frame

M := 〈F , V 〉: a model,where, V : Φ ∪ Ω → 2W such that:

For p ∈ Φ, V (p): a subset of W ,for i ∈ Ω, V (i): a singleton of W .

Interpretation of a nominal:

(M, a) |= i if and only if V (i) = a

In this sense, i is a name for the point a in this model M!

Yutaka Miyazaki Graph Theory and Modal Logic

Page 22: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Soundness for H

For a frame F ,

F |= A ⇐ def ⇒ ∀V on F ,∀a ∈ W,((〈F , V 〉, a) |= A

)

.

Theorem (Soundness for the logic H)

.

.

.

. ..

.

.

For A ∈ L, A ∈ H implies F |= A for any frame F .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 23: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Soundness for H

For a frame F ,

F |= A ⇐ def ⇒ ∀V on F ,∀a ∈ W,((〈F , V 〉, a) |= A

)

.

Theorem (Soundness for the logic H)

.

.

.

. ..

.

.

For A ∈ L, A ∈ H implies F |= A for any frame F .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 24: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Completeness for H

For Γ ⊆ L, A ∈ L,

H : Γ ` A⇐ def ⇒ ∃B1, B2, . . . , Bn ∈ Γ

(H ` (B1∧B2∧· · ·∧Bn) → A

)

.

Theorem (Strong completeness for the logic H)

.

.

.

. ..

.

.

For Γ ⊆ L, A ∈ L, suppose that H : Γ 6` A.Then there exists a model M and a point a such that:

(1) (M, a) |= B for all B ∈ Γ,

(2) (M, a) 6|= A

Yutaka Miyazaki Graph Theory and Modal Logic

Page 25: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Completeness for H

For Γ ⊆ L, A ∈ L,

H : Γ ` A⇐ def ⇒ ∃B1, B2, . . . , Bn ∈ Γ

(H ` (B1∧B2∧· · ·∧Bn) → A

)

.

Theorem (Strong completeness for the logic H)

.

.

.

. ..

.

.

For Γ ⊆ L, A ∈ L, suppose that H : Γ 6` A.Then there exists a model M and a point a such that:

(1) (M, a) |= B for all B ∈ Γ,

(2) (M, a) 6|= A

Yutaka Miyazaki Graph Theory and Modal Logic

Page 26: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

FMP and Decidability for H

.

Theorem

.

.

.

. ..

.

.

(1) H admits filtration, and so, it has the finite modelproperty.

(2) H is decidable.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 27: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Axiom for Irreflexivity

.

Proposition

.

.

.

. ..

.

.

For any frame F = 〈W,R〉,F |= i → 2¬i if and only if F |≡ ∀x ∈ W

(Not(xRx)

).

.

Proof.

.

.

.

. ..

.

.

(⇒:) Suppose that there is a point a ∈ W s.t. aRa. Definea valuation V as: V (i) := a. Then a 6|= i → 2¬i(⇐:) Suppose F 6|= i → 2¬i. Then, ther exists a ∈ W , s.t.a |= i, but a 6|= 2¬i, which is equivalent to a |= 3i. Thelatter means that there is b ∈ W s.t. aRb and b |= i. Then,V (i) = a = b. Thus a = b and that aRa

Yutaka Miyazaki Graph Theory and Modal Logic

Page 28: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Axiom for Irreflexivity

.

Proposition

.

.

.

. ..

.

.

For any frame F = 〈W,R〉,F |= i → 2¬i if and only if F |≡ ∀x ∈ W

(Not(xRx)

).

.

Proof.

.

.

.

. ..

.

.

(⇒:) Suppose that there is a point a ∈ W s.t. aRa. Definea valuation V as: V (i) := a. Then a 6|= i → 2¬i(⇐:) Suppose F 6|= i → 2¬i. Then, ther exists a ∈ W , s.t.a |= i, but a 6|= 2¬i, which is equivalent to a |= 3i. Thelatter means that there is b ∈ W s.t. aRb and b |= i. Then,V (i) = a = b. Thus a = b and that aRa

Yutaka Miyazaki Graph Theory and Modal Logic

Page 29: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 30: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 31: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 32: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 33: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

F : a graph (irreflexive and symmetric frame)

(1) Degree of a graphEvery point in F has at most n points that connects toit iff F |= Altn

Altn := 2p1∨2(p1 → p2)∨· · ·∨2(p1∧· · ·∧pn → pn+1)

(2) Diameter of a graphThe diameter of F is less than n iff F |= ¬ϕn.

ϕ1 := p1.

ϕn+1 := pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1 ∧ 3¬ϕn.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 34: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

F : a graph (irreflexive and symmetric frame)

(1) Degree of a graphEvery point in F has at most n points that connects toit iff F |= Altn

Altn := 2p1∨2(p1 → p2)∨· · ·∨2(p1∧· · ·∧pn → pn+1)

(2) Diameter of a graphThe diameter of F is less than n iff F |= ¬ϕn.

ϕ1 := p1.

ϕn+1 := pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1 ∧ 3¬ϕn.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 35: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

F : a graph (irreflexive and symmetric frame)

(1) Degree of a graphEvery point in F has at most n points that connects toit iff F |= Altn

Altn := 2p1∨2(p1 → p2)∨· · ·∨2(p1∧· · ·∧pn → pn+1)

(2) Diameter of a graphThe diameter of F is less than n iff F |= ¬ϕn.

ϕ1 := p1.

ϕn+1 := pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1 ∧ 3¬ϕn.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 36: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(3) Hamilton cyclesF : a graph that has n points.F has a Hamilton cycle iff F sat ψn, soF does NOT have a Hamilton cycle iff F |= ¬ψn.

ψn := σ1 ∧ 3(σ2 ∧ 3(· · ·3(σn ∧ 3σ1) · · · )), whereσk := ¬i1 ∧ ¬i2 ∧ · · · ∧ ik ∧ · · · ∧ ¬in

(Q:) How to characterize having Euler cycles?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 37: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(3) Hamilton cyclesF : a graph that has n points.F has a Hamilton cycle iff F sat ψn, soF does NOT have a Hamilton cycle iff F |= ¬ψn.

ψn := σ1 ∧ 3(σ2 ∧ 3(· · ·3(σn ∧ 3σ1) · · · )), whereσk := ¬i1 ∧ ¬i2 ∧ · · · ∧ ik ∧ · · · ∧ ¬in

(Q:) How to characterize having Euler cycles?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 38: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(4) ColoringF : a graph whose diameter is at most n.

F is k-colorable iff F sat color(k), soF is NOT k-colorable iff F |= ¬color(k)

color(k) := 2(n)( k∨

`=1

c` ∧k∧

`=1

(c` → 2¬c`)),

each c` is a prop. variable representing a color.

(Q:) How to characterize being planar?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 39: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(4) ColoringF : a graph whose diameter is at most n.

F is k-colorable iff F sat color(k), soF is NOT k-colorable iff F |= ¬color(k)

color(k) := 2(n)( k∨

`=1

c` ∧k∧

`=1

(c` → 2¬c`)),

each c` is a prop. variable representing a color.

(Q:) How to characterize being planar?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 40: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Future Study

(1) What kind of graph properies are definable over thelogic G?

(2) Can we prove theorems from graph theory byconstructing a fromal proof?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 41: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Future Study

(1) What kind of graph properies are definable over thelogic G?

(2) Can we prove theorems from graph theory byconstructing a fromal proof?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 42: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 43: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Yutaka Miyazaki Graph Theory and Modal Logic


Recommended