+ All Categories
Home > Documents > grauls_v54n6 overpressures

grauls_v54n6 overpressures

Date post: 18-Aug-2015
Category:
Upload: carlos801
View: 221 times
Download: 5 times
Share this document with a friend
Description:
petroleum
Popular Tags:
12
Oil & Gas Science and Technology – Rev. IFP, Vol. 54 (1999), No. 6, pp. 667-678 Copyright © 1999, Éditions Technip Overpressures: Causal Mechanisms, Conventional and Hydromechanical Approaches D. Grauls 1 1 Elf Exploration Production, Évaluation du pétrole et modélisation du bassin, Avenue Larribau, 64000 Pau - France e-mail: [email protected] Résumé Surpressions : origine, approches conventionnelle et hydromécanique On rencontre souvent des régimes anormaux de pression dans les bassins sédimentaires. Les relations entre la contrainte verticale effective et la porosité ont été appliquées, depuis 1970, dans la région de la Gulf Coast, afin d'évaluer ces surpressions. Des résultats ont été obtenus en faisant appel à la sismique et à la modélisation de bassin dans les bassins tertiaires de sable argileux à contrainte verticale dominante et en déséquilibre de compaction. Cependant, les surpressions d'origines différentes et/ou additionnelles (contrainte tectonique, génération d'hydrocarbures, contrainte thermique, transfert lié aux failles, fractura- tion hydraulique) ne peuvent pas être quantifiées en utilisant cette approche. En plus des méthodes conventionnelles, une approche hydromécanique est proposée. Pour toute profon- deur, la limite supérieure est contrôlée par les conditions de fracturation hydraulique ou par la réactiva- tion de failles. La fracturation hydraulique suppose un système ouvert par période, en régime de contrainte effective mineure proche de zéro. Une connaissance approfondie des régimes de contraintes tectoniques actuels permet une estimation directe de l'évolution de la contrainte minimale. Une évaluation quantitative de la pression avec la profondeur est donc possible, puisque dans les systèmes géologiques compartimentés et/ou non drainés, les régimes de pression, quelles que soient leurs origines, ont tendance à atteindre rapidement une valeur proche de la contrainte principale mineure. Ainsi, l'évaluation de la sur- pression sera améliorée, puisque cette méthodologie peut être appliquée à divers environnements géolo- giques où les surpressions ont d'autres origines, les mécanismes étant souvent combinés. Cependant, les tendances de l'évolution de pression dans les zones de transition sont plus difficiles à éva- luer de façon correcte. Une recherche complémentaire sur les couvertures et les fermetures sur faille est donc nécessaire pour améliorer leur prévision. En plus de l'évaluation de la surpression, le concept de contrainte principale mineure permet de mieux appréhender le système pétrolier. En effet, les transferts d'hydrocarbures liés aux failles, les domaines de fracturation hydraulique et l'étanchéité du recouvrement dépendent d'une interaction subtile, dans le temps, entre la surpression et les régimes de contrainte princi- pale mineure. Mots-clés : surpressions, contrainte mineure, fracturation hydraulique, transfert par faille, propriétés mécaniques. Abstract Overpressures: Causal Mechanisms, Conventional and Hydromechanical Approaches Abnormal fluid pressure regimes are commonly encountered at depth in most sedimentary basins. Relationships between effective vertical stress and porosity have been applied, since 1970 to the Gulf Coast area, to assess the magnitude of overpressures. Positive results have been obtained from seismic and basin-modeling techniques in sand-shale, vertical-stress-dominated tertiary basins, whenever compaction disequilibrium conditions apply. However, overpressures resulting from other and/or additional causes (tectonic stress, hydrocarbon generation, thermal stress, fault-related transfer, hydrofracturing...) cannot be quantitatively assessed using this approach.
Transcript

Oil & Gas Science and Technology Rev. IFP, Vol. 54 (1999), No. 6, pp. 667-678Copyright 1999, ditions TechnipOverpressures: Causal Mechanisms, Conventionaland Hydromechanical ApproachesD. Grauls11 Elf Exploration Production, valuation du ptrole et modlisation du bassin, Avenue Larribau, 64000 Pau - Francee-mail: [email protected] Surpressions :origine,approchesconventionnelleethydromcanique Onrencontresouventdesrgimesanormauxdepressiondanslesbassinssdimentaires.Lesrelationsentrelacontrainteverticaleeffectiveetlaporositonttappliques,depuis1970,danslargiondelaGulfCoast, afin d'valuer ces surpressions. Des rsultats ont t obtenus en faisant appel la sismique et lamodlisation de bassin dans les bassins tertiaires de sable argileux contrainte verticale dominante et endsquilibredecompaction.Cependant,lessurpressionsd'originesdiffrenteset/ouadditionnelles(contrainte tectonique, gnration d'hydrocarbures, contrainte thermique, transfert li aux failles, fractura-tion hydraulique) ne peuvent pas tre quantifies en utilisant cette approche.En plus des mthodes conventionnelles, une approche hydromcanique est propose. Pour toute profon-deur, la limite suprieure est contrle par les conditions de fracturation hydraulique ou par la ractiva-tiondefailles.Lafracturationhydrauliquesupposeunsystmeouvertparpriode,enrgimedecontrainteeffectivemineureprochedezro.Uneconnaissanceapprofondiedesrgimesdecontraintestectoniques actuels permet une estimation directe de l'volution de la contrainte minimale. Une valuationquantitative de la pression avec la profondeur est donc possible, puisque dans les systmes gologiquescompartiments et/ou non drains, les rgimes de pression, quelles que soient leurs origines, ont tendance atteindre rapidement une valeur proche de la contrainte principale mineure. Ainsi, l'valuation de la sur-pression sera amliore, puisque cette mthodologie peut tre applique divers environnements golo-giques o les surpressions ont d'autres origines, les mcanismes tant souvent combins.Cependant, les tendances de l'volution de pression dans les zones de transition sont plus difficiles va-luer de faon correcte. Une recherche complmentaire sur les couvertures et les fermetures sur faille estdoncncessairepouramliorerleurprvision.Enplusdel'valuationdelasurpression,leconceptdecontrainte principale mineure permet de mieux apprhender le systme ptrolier. En effet, les transfertsd'hydrocarbures lis aux failles, les domaines de fracturation hydraulique et l'tanchit du recouvrementdpendent d'une interaction subtile, dans le temps, entre la surpression et les rgimes de contrainte princi-pale mineure.Mots-cls : surpressions, contrainte mineure, fracturation hydraulique, transfert par faille, proprits mcaniques.Abstract Overpressures:CausalMechanisms,ConventionalandHydromechanicalApproaches Abnormalfluidpressureregimesarecommonlyencounteredatdepthinmostsedimentarybasins.Relationshipsbetweeneffectiveverticalstressandporosityhavebeenapplied,since1970totheGulfCoast area, to assess the magnitude of overpressures. Positive results have been obtained from seismicandbasin-modelingtechniquesinsand-shale,vertical-stress-dominatedtertiarybasins,whenevercompactiondisequilibriumconditionsapply.However,overpressuresresultingfromotherand/oradditionalcauses(tectonicstress,hydrocarbongeneration,thermalstress,fault-relatedtransfer,hydrofracturing...) cannot be quantitatively assessed using this approach. Oil & Gas Science and Technology Rev. IFP, Vol. 54 (1999), No. 6INTRODUCTIONThestudyofoverpressuresinpetroleumexplorationstartedin1970inoffshoreGulfCoastareas.Someconventionalmethods,essentiallybasedonempiricalporosityversuseffectiveverticalstressrelationships,havebeenappliedworldwidewithsomesuccess,insand-shaleTertiarybasinswhenevercompactiondisequilibriumwasthemaincausalmechanism. The failure of some pressure predictions, and therecentevolutionofpetroleumexplorationtowardsdeepertargetsintectonicallycomplexbasins(NorthSeaforinstance), and in frontier areas (deep offshore areas), led us toreviewoverpressureassessmentandtoproposesomecomplementaryapproaches,tobeusedinadditiontoconventionalapproaches.Arapidreviewofthecausesofoverpressuring was first carried out in order to rank the maincausalmechanismsandtoevaluatetheirrelativecontributions. That was used as background for proposing, inasecondstage,anotherquantitativeapproachtoassessabnormalpressureregimesatdepth.Thishydromechanicalapproach,calledminimumstressapproach,wasbasedontheknowledgeoftheinsitu minimumprincipalstress(S3)versusdepthprofile.Theapplicabilityofthisapproachwasillustratedusingcasestudieswherethepresent-dayoverpressureregimesoriginatedfromdifferentcausalmechanisms,veryoftencoupledtogether,andwherethecontribution of each phenomenon cannot always be correctlyidentified and assessed.668Ahydromechanicalapproachisthenproposedinadditiontoconventionalmethods.Atanydepth,theupperboundfluidpressureiscontrolledbyinsitu conditionsrelatedtohydrofracturingorfaultreac-tivation. Fluid-driven fracturing implies an episodically open system, under a close to zero minimumeffective stress regime. Sound knowledge of present-day tectonic stress regimes allows a direct estimationof minimum stress evolution. A quantitative fluid pressure assessment at depth is therefore possible, as inundrainedor/andcompartmentedgeologicalsystems,pressureregimes,whatevertheirorigin,tendtorapidly reach a value close to the minimum principal stress. Therefore, overpressure assessment will beimproved,asthismethodologycanbeappliedtovariousgeologicalsettingsandsituationswherepresent-day overpressures originated from other causal mechanisms, very often combined. However, pressure trends in transition zones are more difficult to assess correctly. Additional research oncap rocks and fault seals is therefore required to improve their predictability. In addition to overpressureassessment,theminimumprincipalstressconceptallowsabetterunderstandingofpetroleumsystem,asfault-relatedhydrocarbondynamictransfers,hydrofractureddomainsandcap-rocksealingefficiencyde-pend on the subtle interaction, through time, between overpressure and minimum principal stress regimes.Keywords: overpressure, minimum stress, hydrofracturing, fault transfer, mechanical properties.(Chaney, 1950)(Hedberg, 1974)(Meissner, 1976)(Du Rouchet, 1981)(Barker, 1972)(Powers, 1967)(Burst, 1969)(Master, 1979)(Foster, 1980)v = fluid volume differential por. = porosity = total stress 1= maximum principal stressv= vertical stress 2= intermediate principal stress3= minimum principal stresssOVERPRESSURESCAUSES OF(Jones, 1968)(Gussow, 1938)(Hubbert and Rubbey,1959)CompressionOil crackinggasgeneration(Dickinson, 1953)(Terzaghi and Peck, 1968)KerogencrackingVincreaseOilgenerationThermalstressesMechanicalstressesOsmosisAquathermalexpansionClaydiagenesisFluid-rockinteractionsPor.-decreaseFault openandhydofracturing HydraulicfractureregimeReservoirLateralup dipflowchargingover-vincreaseDarcyflowOthersDynamical transfersChemicalstressesincreasepor.decreaseThrust-faultsvLateralstrainStrike-slip-faultCompactionv = 1v =2v=3disequilibriumNormal-faultvincrease-+(Finch, 1969)(Berry, 1973)ArtesianBuoyancyeffectFigure 1Main overpressure causal mechanisms (Grauls, 1997).D Grauls / Overpressures: Causal Mechanisms, Conventional and Hydromechanical Approaches1 CAUSES, CONTRIBUTIONS, AND CONVENTIONALASSESSMENT OF OVERPRESSURESThe general overview of the different causal mechanisms andtheirrelativecontributionstothepresentdayoverpressureregimeissupportedbydifferentkeypublications(Fertl,1976; Magara, 1978), the recent research onto overpressures(OsborneandSwarbrick,1997)andthein-houseresultsonhydrofracturingandinsitu minimumstressevaluation.AsshownonFigure 1,andbyorderofimportance:mechanicalstresses,thermaleffect,dynamictransfers,andchemicalstressesarebelievedtobethemainfactorsingeneratingabnormal pressures in present-day hydrocarbon systems.1.1 Mechanical StressIn recent sand-shale dominated Tertiary basins, the weight ofoverburdenorverticalstress(Sv)contributestothedevel-opment of overpressures in poorly drained, low permeabilityshale-proneintervals.SinceDickinson(1953),thecompac-tion disequilibrium phenomena has been considered by manyauthorsasthemaincauseofoverpressuringinsedimentarybasins(Fertl,1976;Magara,1978).ThemagnitudeofthispressureregimewasquantitativelyassessedfromsoilmechanicsprinciplesdevelopedbyTerzaghi(1968).Empiricalapproachesorporosityversusverticaleffectivestressrelationships(MannandMackensie,1990)havebeendeveloped(Fig. 2).Otherempiricalrelationshipsarestillusedforpredictingabnormalpressuresbeforedrilling,fromlow frequency, seismic-derived interval velocities (Grauls etal., 1995).Thesuccessratioobtainedfromseismicpredictions,wascloseto65%consideringarelativeuncertaintyonoverpressureestimate(OVP)lessthanorequalto10%(deltaOVP/OVP P S3S3OverchargingTransitionzoneSanddominateddomainShaledominateddomainHP open-fractured domainAt well locationSv= vertical stress S3= minimum stress PN= normal hydrostaticpressure trend P = pressure evolution Figure 8ExamplefromSouthChinaSea:abnormalpressureregimesrelatedtostrike-slipfaulttectonics,deephydrofractureddomainandtothecharging of the above undrained reservoir level, are controlled at depth byin situ minimum stress. Close to zero minimum effective stress(S3 P = 0) conditions allow transient fault and fracture related vertical transfers and charging of the reservoir.Oil & Gas Science and Technology Rev. IFP, Vol. 54 (1999), No. 6intervalwasnotclearlydefined.Abetterunderstandingofcap rock sealing properties is required.3.3.2 Central North SeaAsshownonthelefthandsideofFigure9,atypicalcross-section in central North Sea area allows three main intervalsto be successively identified, from top to bottom: AshalymostdominatedTertiarysection,wheremaxi-mumthicknessreaches3000mandcompactiondisequi-libriumapplies.Maximumpressuregradients,closeto1.55 g/cm3EMW are encountered at 2000-2500 m depth.The Palaeocene sands act as regional drain and cause thepressure regime to kick back to subhydrostatic regime. AnormallycompactedCretaceoussectiondownto4500-5000 m, composed of shales and chalk, where the pressureregime is usually hydrostatic. APre-CretaceoussectioncomposedbyJurassicandTriassic overpressured reservoirs overlain by Late Jurassicand lower Cretaceous shaly cap-rocks.Thepresent-daypressureregimeintheJurassicplayisessentially due to the high compartimenting of reservoir dueto faulting and to rapid burial during Neogene times. In sucha closed system, the pressure increased to a maximum valuecorrespondingtotheleakagepressureinthehigheststructural-pointpressurecell.Suchavalue,closetothein situ minimum stress, cannot be accounted for by conven-tionalapproaches.Thegeometryofthecompartmentedstructureconditionsthetypeofleakage.Tiltedblockgeometryfavorspreferentialleakagealongthefault.Inthatcase, excess fluid pressure can contribute to the propagationofthefaultunderhydrofractureconditions.Thisopenordilatantfaultactedasapreferentialpathwayforepisodichydrocarbon transfer up to the Palaeocene sands. In addition,ashighlightedonFigure9,thisopen-faultzone,whenintersectedbyanexploratorywell,canleadtoasuddenpressureincreasetoavalueclosetoS3,withinaveryshortrange of a few meters. That can lead to unexpected problemssuchasunresolvedkick,intermediateadditionalcasingsetting,losttime,andextracost.Oppositely,theanticlineshapestructurefavorsaleakagethroughthecap-rock.Extradosfracturesarereactivatedandpropagatedinmode I, at the apex of structure, forming a pressure transitionzonethatcanbedetectedfromseismicvelocitiesiftheintervalthicknessexceeds100-150 msTWT.Insummary,theS3approachcontributestoabetterunderstandingofdynamictransfers,andaswelltoabetterassessmentofpresent-dayabnormalpressureregimesdevelopedintectonicallymulti-phasebasins,andresultingfromdifferentorigins:compactiondisequilibrium,compartimenting,fault-related transfers and buoyancy effect.4 LIMITATIONS As previously emphasized, the S3approach can be used as acomplementtomoreconventionalmethods.However,thismethodologypresentssomelimitationsduetothefactthatpetroleumsystemsareneverfullyopenorclosed.Thatintermediatepressureregimesstronglydependonthedynamicsofverticalandlateralchargingandcompartmentsize. Therefore, assessing overpressures in transition domains676TertiaryundercompactedshalesPressure and stress Sv PWellPalaeocenesandCretaceousLPOilwaterJurassiccompartmentedpressure cell "Open"faultTopreservoir. . . . .. . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . .S3ShalycaprockTransitionzoneStressDepthP S3P S3Figure 9Example from North Sea: abnormal pressures through undercompacted Tertiary section, open fault zone and at top of reservoir compartmentare controlled by the minimum stress regime. Leakage (LP) and fault transient behaviour are dependent on in situ minimum effective stress(S3 P), and account well for vertical hydrocarbon migration from structural highs to Palaeocene sands.D Grauls / Overpressures: Causal Mechanisms, Conventional and Hydromechanical Approachesismorecomplex.Thetransitionzonesaredevelopedbothvertically and laterally, and their importance in overpressuredsystems has already been demonstrated by Swarbrick (1996).Theverticaltransitionzone,aspreviouslyemphasized,ismorefrequentlyobservedattopofanticlinestructures,andcorresponds to an hydrofractured interval indicating a lack ofsealingintegrityoftheoverlyingcap-rock.Thelateraltransitionzoneismoreoftenrelatedtocompartmentsize,drainage area and to the relative efficiency of faults limitingthe different compartments. These transition zones are clearlydisplayed on Figure 10.Figure 10Sketch showing lateral transition domain linked to semi-openfaulted compartments and vertical transition domains inducedby hydraulic fracturing leakage through cap-rock.Inbothcases,pressureprofileswithintransitionzonescannotbeprovidedwithhighaccuracy,andadditionalresearch on cap-rock and fault seal is still needed to improvetheir predictability. CONCLUSIONSThegeneralreviewofmaincausalmechanismsgeneratingoverpressuresledtotheconclusionthatmechanicalandthermalstressesalongwithdynamictransfersarethemaincausesforgeneratingoverpressuresinpetroleumsystems.Someconventionalapproachesbasedonporosityversuseffective vertical stress relationships have been applied withsomesuccesssince1970insand-shaleTertiarybasinstoassesscompaction-disequilibrium-relatedoverpressuring,usingseismicvelocityandbasinmodelingapproaches.However,abnormalpressurescannotbecorrectlyassessedinmultiphasesedimentarybasins(NorthSea),and/orwhenever additional causal mechanisms are involved (lateralstrain,thermaleffect,ordynamicprocesses).Inaddition,thepresent-dayfluidpressureprofileobservedisoftentheresultofseveralcausesactingtogether, eveninsand-shaledominatedbasinswherecompactiondisequilibriumisassumedtobetheonlycontribution.Intheseconditions,assessingthemagnitudeofabnormalpressureregimeisalmost impossible, as the present-day pressure value cannotbeprovidedbyasimplesummationofdifferentcontributions.Ahydromechanicapproachbasedontheparameters controlling the magnitude of abnormal pressureswasproposed.Thisminimumprincipalstressapproachconsidersthatoverpressuresdevelopedingeologicallyundrainedsystemsatdeptharecontrolledbyrockfailureconditions whatever the mode of rupture (mode I, I/II, or II).Suchconditionsdependonfluidpressuremagnitude,rockmechanical properties and deviatoric stress, and occur underverylowminimumeffectivestressregimes(S3 Pf# 0),orunderpressureregimesclosetotheminimumprincipalstressS3.TheS3profile,dependentontectonicregime,canbequantitativelyassessedusingapowerlawfunctionofdepth.Atagivendepth,theS3valueincreasesasthetectonicregimeevolvesfromnormal,tostrike-slipandthrustfault.Therefore,soundknowledgeofpresent-daygeologicalcontextsandtectonicregimesshouldallowtheminimumprincipalstressprofiletobeevaluatedand,consequently, the pressure regime to be well-assessed. ThisS3-basedapproachiswellsuitedtooverpressuringinducedbylateralstresses,hydrocarbongeneration,reservoircompartmentingandovercharging,fault-relateddynamictransfers,hydrofracturing,andespeciallywhenmultiplecausalmechanismsareinvolvedinthesamearea.Suchanapproach must be considered as a powerful method that canbeappliedinadditiontoconventionalones,anddoesnotexcludethemanyway.Somelimitations,however,mustbementioned.Theyareduetothefactthathydrocarbonsystemsarenotfullyclosedoropenatdepth,andthattransitionzonesorintermediatepressureregimesexistwithvalues in between hydrostatic and minimum principal stress.Better assessment of pressure regimes in vertical and lateraltransitiondomainscertainlydependsonabetterunder-standingofcap-rockintegrityandlateralfaultsealingefficiency.REFERENCESBarker,C.(1972)AquathermalPressuring:RoleofTemperatureinDevelopmentofAbnormalPressureZone. Am.Assoc.Pet.Geol. Bull., 56, 2068-2071.Berry,F.A.F.(1973)HighFluidPotentialinCaliforniaCoastRangesandtheirTectonicSignificance. Am.Assoc.Pet.Geol.Bull., 57, 1219-1249.Burst,J.K.(1969)DiagenesisofGulfCoastClayeySedimentsand its Possible Relation to Petroleum Migration. Am. Assoc. Pet.Geol. Bull., 53, 73-93.Dickinson,G.(1953)GeologicalAspectsofReservoirPressureinGulfCoastLouisiana. Am.Assoc.Pet.Geol.Bull., 37,410-432.VTZHTZC D B AP P PS3S3S3P S3VTZHPNPReservoirCap rockHP = high pressure domain;NP = normal pressure domainHTZ = horizontal transition zone; VTZ = vertical transition zone677Oil & Gas Science and Technology Rev. IFP, Vol. 54 (1999), No. 6Du Rouchet, J. (1978) Stress Fields, a Key to Oil Migration. Am.Assoc. Pet. Geol. Bull., 65, 74-85.Fertl,W.H.(1976)AbnormalFormationPressures,Devel-opments in Petroleum Science 2, Elsevier, Amsterdam.Finch,W.C.(1969)AbnormalPressureinAntelopeFieldNorthDakota. JPT, 213, 170-179.Grauls, D. and Cassignol, C. (1992) Fluid Pressure Induced OpenFracture Anomaly. Characterization from Well Data and SeismicVelocities.MechanismsandImplications. BulletinElfAquitaine,16, 276-284, December 1992.Grauls, D. and Baleix, J.M. (1993) Role of Overpressures and InSitu Stresses in Fault Controlled Hydrocarbon Migration. Marineand Petroleum Geology, 11, 6, December 1994.Grauls,D.,Dunand,J.P.andBeaufort,D.(1995)PredictingAbnormalPressurefrom2DSeismicVelocityModeling.Offshore Technology Conference, Paper OTC7692, 525-534.Grauls,D.(1997)MinimumPrincipalStressasControlofOverpressures in Sedimentary Basins. Geofluids II97 - ExtendedAbstracts Hendry, J.P. (ed.), 219-222.Harrisson,W.J.andSumma,L.L.(1991)PaleohydrologyoftheGulfofMexicoBasin.AmericanJournalofScience, 291,109-176.Hedberg,H.D.(1974)RelationofMethaneGenerationtoUndercompacted Shales, Shale Diapirs, and Mud Volcanoes. Am.Assoc. Pet. Geol. Bull., 58, 668-673.Hubbert,M.K.andRubey,W.W.(1959)MechanicsofFluidFilled Porous Solids and its Application to Overthrust Faulting. 1,RoleofFluidPressureinMechanicsofOverthrustFaulting.Geol. Soc. Am. Bull., 70, 115-166.Luo,X.andVasseur,G.(1992)ContributionsofCompactionand Aquathermal Pressuring to Geopressure and the Influence ofEnvironmental Conditions. Am. Assoc. Pet. Geol. Bull., 76, 1550-1559.Magara,K.(1978)CompactionandFluidMigration,PracticalPetroleum Geology, Elsevier Scientific Publishing Company.Mann, D.M. and Mackensie, A.S. (1990) Prediction of Pore FluidPressuresinSedimentaryBasins.MarineandPetroleumGeology, 7, 55-65. Meissner,F.(1978)PetroleumGeologyoftheBakkenShalesFormation,WillistonBasinNorthDakotaandMontana.Proceedingsof1978WillistonBasinSymposium, MontanaGeological Society, Billings, 207-227.Osborne,M.J.Swarbrick,R.E.(1997)MechanismsforGenerating Overpressure in Sedimentary Basins: a Re-evaluation.Am. Assoc. Pet. Geol. Bull., 81, 1023-1041.Sibson(1981)ControlsonLowStressHydro-FractureDilatancyin Thrust, Wrench and Normal Fault Terrains. Nature, 289.SpencerC.W.(1987)HydrocarbonGenerationasaMechanismforOverpressuringinRockyMountains.Am.Assoc.Pet.Geol.Bull., 71, 4, 368-388.Swarbrick,R.E.andOsborne,M.(1996)TheNatureandDiversity of Pressure Transition Zones. Petroleum Geoscience, 2,111-116.Terzaghi,K.andPeck(1968)SoilMechanicsinEngineeringPractice. John Wiley and Sons, New York, N.Y.Traugott,M.(1996)ThePorePressureCentroidConcept:Reducing Drilling Risks. Abstract, Compaction and OverpressureCurrent Research, 9-10 December, IFP, Paris.Yardley,G.(1999)LateralTransfer:aSourceofExtremeOver-pressure?IntendedforpublicationinMarineandPetroleumGeology.Yassir.,N.A.(1994)AbnormallyHighPressuresandAssociatedPorosities and Stress Regimes in Sedimentary Basins. Eurock 94,Balkema, Rotterdam, 879-886.Final manuscript received in July 1999678


Recommended