+ All Categories
Home > Documents > GRAVITATIONAL WAVES FROM ACCRETING NS

GRAVITATIONAL WAVES FROM ACCRETING NS

Date post: 16-Jan-2016
Category:
Upload: ashton
View: 49 times
Download: 0 times
Share this document with a friend
Description:
GRAVITATIONAL WAVES FROM ACCRETING NS. A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne) X-ray timing → LMXB spins → GW “stalling” → promising kHz sources! Thermal mountains & r-modes Magnetic mountains: GW spectrum Precession & superfluid circulation. NS SPINS IN LMXBs. - PowerPoint PPT Presentation
Popular Tags:
17
GRAVITATIONAL WAVES FROM ACCRETING NS A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne) 1. X-ray timing → LMXB spins → GW “stalling” → promising kHz sources! 2. Thermal mountains & r-modes 3. Magnetic mountains: GW spectrum 4. Precession & superfluid circulation
Transcript
Page 1: GRAVITATIONAL WAVES FROM ACCRETING NS

GRAVITATIONAL WAVESFROM ACCRETING NS

A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne)

1. X-ray timing → LMXB spins → GW “stalling” → promising kHz sources!

2. Thermal mountains & r-modes3. Magnetic mountains: GW spectrum 4. Precession & superfluid circulation

Page 2: GRAVITATIONAL WAVES FROM ACCRETING NS

NS SPINS IN LMXBs

• Low-mass ~ MSun X-ray binaries: disk accretion

• kHz oscillations in thermonuclear X-ray bursts• Simultaneous pulses → stellar spin• Much slower than breakup (Chakrabarty et al. 03)

breakup

narrow rangeRXTE timing

fNS

LX

Page 3: GRAVITATIONAL WAVES FROM ACCRETING NS

GW “STALLING”

• GW torque f balances accretion torque dM/dt)Rdisk

1/2 (Wagoner 84; Bildsten 98)

• Minimum quadrupole moment

• Narrow range of f since NGW f (steep!)

• BUT rad’n pressure → Nacc < 0 (Andersson et al. 05)

Promising sources (e.g. Sco X-1):

known period, sinusoidal, persistent & strong!

2/52/1

1Sun

98

Hz300yr10

/10

f

M

dtdM

Page 4: GRAVITATIONAL WAVES FROM ACCRETING NS

I. THERMAL MOUNTAIN

• Lateral T • e capture (A,Z) → (A,Z1) • Occurs at lower in hot

spots (Bildsten 98)

• “Wavy” capture layers →

• (A,Z) & heating gradient ↔ T ↔ thermal conductivity & nuclear reaction rate

Page 5: GRAVITATIONAL WAVES FROM ACCRETING NS

• Is large enough?• Elastic crust adjusts

→ reduces • Need T/T ≈ 5% at

base of outer crust• Slow conduction &

cracking (shear < NkT), so persists

GW correlated with thermal X-rays

N core

SF core

LMXB data

(A,Z)

heat)

(Ushomirsky et al. 00)

Page 6: GRAVITATIONAL WAVES FROM ACCRETING NS

II. r-MODES

• Rossby waves continuously excited in core (Andersson et al. 99); cf. ocean r-modes (Heyl 04)

• Amplitude (→ ) set by shear modulus, normal-superfluid friction (Lindblom & Mendell 99), boundary layer viscosity (Bildsten & Ushomirsky 00), radial crust-core coupling (Levin & Ushomirsky 01)

• Thermal instability (Levin 99)

Quiescent LX ~ 1034 erg s-1 from NS transients, e.g. Aql X-1… not seen! (Brown & Ushomirsky 00)

Page 7: GRAVITATIONAL WAVES FROM ACCRETING NS

Onset of instability(Bildsten & Ushomirsky 00)

VBL + normal core

Thermal runaway cycle(Levin 99)

VBL + superfluid core

no VBL

MSPs

newly born NS

accreting NS

1

r-mode grows2

3 GW losses

4

Page 8: GRAVITATIONAL WAVES FROM ACCRETING NS

III. MAGNETIC BURIAL

• Polar accretion • Equatorward spreading

• Hydro pressure balanced by tension in compressed equatorial B:

×B)×BP = 0

• Flux freezing → ds /|B|• Need 10-5MSun (cf. Brown &

Bildsten 98)

B

10-5MSun

10-8MSun

(Payne & Melatos 04)

B

Page 9: GRAVITATIONAL WAVES FROM ACCRETING NS

GW SIGNAL

• Magnetic mountain → → wave strain hc

• Integrate for one yr

• Resistivity, sinking…

• Magnetic moment ↓ (see NS binaries)

• Predict h -1

10-8MSun

10-2MSun

LIGO I

LIGO II

(Melatos & Payne 05)

Page 10: GRAVITATIONAL WAVES FROM ACCRETING NS

Is this (distorted) magnetic field unstable? No!

Parker instability “already” happened (and line tying)

PARKER“BLISTER”

mass & fluxloss < 1%

“DRAINAGE”

Page 11: GRAVITATIONAL WAVES FROM ACCRETING NS

MHD OSCILLATIONS

• Perturb in Zeus 3D: “sloshes” stably for 2500 TAlfven

• Alfvén mode (slow) frequency depends on Ma

• Sound mode (fast) frequency independent of Ma

Sun

Page 12: GRAVITATIONAL WAVES FROM ACCRETING NS

GW SPECTRUM

f

h+ hLIGO ILIGO II

2f

fd3Ixz/dt3

2fd3Ixy/dt3

x y

z

t

Page 13: GRAVITATIONAL WAVES FROM ACCRETING NS

PRECESSION

Magnetic mountain inclined to

• Precession undamped: GW near f and 2f

• Precession damped: e3 → , no X-ray pulses, GW at 2f only (if triaxial)

Excitation• Disk-magnetosphere torque (Jones & Andersson 02)

• Near-zone magnetic dipole torque (Melatos 00)

Page 14: GRAVITATIONAL WAVES FROM ACCRETING NS

IV. SUPERFLUID CIRCULATION

• Rotation in sphere drives meridional circulation• Time-dependent & asymmetric at high Re ~ 1011

• Precession: asymmetric KE of fluid → GW

torque

Re=104

EKMANPUMPING

Page 15: GRAVITATIONAL WAVES FROM ACCRETING NS

• 3-dim superfluid hydro code (HVBK theory)

• GW near 2f broadened by Ekman & precession

STREAMLINES

KE SURFACEuu= const

(t) FFT →f

QUADRUPOLE

Page 16: GRAVITATIONAL WAVES FROM ACCRETING NS

SUMMARY

• LMXB spins → GW “stalling” if ≈ 108

• Thermal & magnetic mountains & r-modes• Detectable by LIGO II• Spectrum broadened by (MHD) oscillations• Precession

• Accretion by SN fallback? (Watts & Andersson 03)

• Surface asymmetry after r-p burning? (Jones 05)

Page 17: GRAVITATIONAL WAVES FROM ACCRETING NS

Gone!


Recommended