+ All Categories
Home > Documents > Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research...

Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research...

Date post: 29-Jan-2016
Category:
Upload: magdalen-farmer
View: 213 times
Download: 0 times
Share this document with a friend
37
Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia
Transcript
Page 1: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Gerhardt R. MeurerInternational Centre for Radio Astronomy

ResearchUniversity of Western Australia

Page 2: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Outline

High Mass Star formation tracersSINGG & SUNGG SurveysWhy study extragalactic HMSF?Results

The Star Formation LawThe Initial Mass FunctionModes of star formation

Take home points

2

Page 3: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010: 3

H traces O stars M* > ~20 Msun

t < ~7 Myr

Vacuum UV traces O and B stars M* > ~3 Msun

B stars dominate Dominates emitted

spectrum of star forming regions

t < ~ 300 MyrStarburst99 CSFR models

(Leitherer et al 1999, ApJS, 123, 3)

Mu = 100 Msun UV HMu = 30 Msun UV H

Page 4: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Dust reprocessingIRX-: dust absorption

correlates with UV colourRequires that much of

dust is in a foreground screen or shell near SF

Allows crude dust correction

Different relationships for starburst and normal galaxies

Meurer et al. (1999, ApJ, 521, 64)

Wong et al. (2010 in prep…)

Gil de Paz et al. (2007, ApJS, 173, 185)

4

Page 5: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Other HMSF tracersMid-IR Radio continuum

24 8 3.6• 24m + H trace O stars• 8m (PAH) not as good HMSF tracer Calzetti et al. (2007, ApJ, 666, 870)

• Strong linear Radio – FIR correlation• neither trace HMSF well at low L • FIR + FUV should trace HMSF wellBell (2003, ApJ, 586, 794)

5

Page 6: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010: 6

HIPASS, SINGG, and SUNGG HI Parkes All Sky Survey

(HIPASS) HI 21cm Parkes 64m 4315 sources

Survey of Ionization in Neutral Gas Galaxies (SINGG) H & R band CTIO 1.5m 468 sources selected 331 observed

Survey of Ultraviolet emission in Neutral Gas Galaxies (SUNGG) FUV & NUV Galex 0.5m 139 selected ~200 observed

Page 7: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Some resultsAll HI galaxies are

forming starsMultiple emission line

galaxies commonDiverse morphologies

7

Meurer et al. 2006, ApJS, 165, 307Hanish et al. 2006, ApJ, 649, 150

Page 8: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Why study extragalactic HMSF?Obvious reasons:

Avoid galactic planeKnown distanceSample large ranges of

Gas densities Abundance Radiation intensity

(extremes esp. important)

HMSF useful forHighlighting dynamicsFinding companions…the most luminous

galaxies..the most distant

galaxiesTracing cosmic

evolution

Probe Physics of HMSF!

8

Page 9: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Highlighting dynamics with HMSF

NIR: stellar mass distribution

H: better defined usually

UV: often washed out, but outer disks light up

9

Page 10: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Finding companion galaxiesHIPASS J2149-60

HIPASS J1059-09

10

Page 11: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

The most luminous galaxiesUltra-Luminous Infrared

Galaxies (ULIRGs)Lbol > 1012 Lsun

Highly dust extinctedUsually disturbed or

interacting

Hyper-Luminous Infrared GalaxiesLbol > 1013 Lsun

Mostly known at z > 1Often contain AGNDisturbed morphology

Arp220 HST/ACS

HST/NICMOS

Farrah et al. (2002, 329, 605)

11

Page 12: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

The most distant galaxiesLyman Break

Galaxiesz > ~1 Need a rest frame

UV spectrum dominated by HMSF

z ~ 8 is state of the art

Can also select in Rest frame FIRRadio

Dickinson (1998, astro-ph/9802064)Bouwens et al. (2010, ApJL, 709, L133)

12

Page 13: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Tracing cosmic evolutionHMSF as shorthand

for galaxy evolutionOver 10x decline

since z~1.5 (~7 Gyr ago)Fuel running out?Less accretion?

SFRD from H and UV differ

Hopkins & Beacom (2006, ApJ, 651, 142)

13

Page 14: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

The Star Formation LawDefinition: the SFR (Msun/year)

given the properties of the ISM

Schmidt (1959, ApJ, 129, 243)

SFR ∝ gn; n ~ 2

Kennicutt (1989, ApJ, 344, 685; 1998, ApJ, 498, 541; Martin & Kennicutt 2001, ApJ, 555, 301)

SFR ∝ gN ; N ~ 1.4

when g > c =Q

Q = /(gG) disk stability

= epicyclic frequency

14

Page 15: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Kennicutt (1998) global SFL15

GlobalAnd galaxy centers

SFR ~ 0.4 dex

Page 16: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

THINGS SFL results

1. SFR ~ H2 (N = 1.0) Linear relation between molecular gas and SFR

2. Rmol = H2/HI ~ * molecular fraction set by hydrostatic pressure

3. Q(2 Fluids) ~ constant ISM disks maintained at constant stabilityLeroy et al. (2008, AJ, 136, 2782) , Bigiel et al. (2008, AJ, 136, 2846)

16

Page 17: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Test with SINGG global fluxes

H/HISFR/HIH2/HIRmolP(!)

Expect 1:1 correlation with R

17

X-axis SFR R

rxy 0.76 -0.80 Slope 0.71 0.89 y 0.28 0.27 x 0.40 0.30

Page 18: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

SFL Implications

Tighter than the Kennicut SFLFrom optical observations can estimate HI

content to better than a factor of 2Good physical understanding of the results

Star formation in the molecular phase of a pressure regulated disk near critical stability

Stellar disk important for setting the equilibrium pressure

18

Page 19: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Some SFL complications from M83…

SF edges not always seen in UV (e.g. Thilker et al. 2005, ApJ, 619, L79)

SFR(UV) traces HI at very low g (Bigiel et al. 2010, ApJ, 720, L31)

19

Page 20: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

The Initial Mass FunctionDefinition: the mass

distribution of stars formed in a single event

The argument for a constant IMF: Same Salpeter IMF slope seen

where it can be measured well - populous star clusters(Kroupa 2001, MNRAS, 322, 231)

All stars form in star clusters (Lada & Lada, 2003, ARA&A, 41, 57)

(later they disperse…)

20

-1)

Page 21: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

The H/FUV ratio & the IMF

Ranges by a factor of 10Strongly correlates with optical surface brightnessMost galaxies below expectations for Salpeter (or Kroupa) IMFFrom FUV data: all galaxies should have multiple O stars (Meurer et al. 2009, ApJ, 695, 765)

21

Page 22: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

A. Low FH/fFUV

HIPASS J0249-02 log (FH/fFUV) = 0.51

log(SFR,H) = -3.28

log(R/R,sun) = 6.87

UGCA44 IB(s)m: log(MHI/Msun) = 8.85 log(LR/LR,sun) = 8.29

22

Page 23: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

B. High FH/fFUV

HIPASS J0419-54 log(FH/fFUV) = 1.33

log(SFR,H) = -1.21

log(R/R,sun) = 8.70

NGC1566 SAB(rs)bc log(MHI/Msun) = 10.19 log(LR/LR,sun) = 11.09

23

Page 24: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010: 24

Page 25: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Effect of Star Formation HistoryModels of effects of bursting and gasping SFHCSFR + Gaussian increase (burst) or decrease (gasp) in SFRMax/min SFR: 2,10, 100FWHM = 10, 100, 1000 Myr

25

Page 26: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Escaping ionizing radiation?Perhaps low H/FUV points are due to escaping ionizing

radiationDirect measurements of escape fraction have only been

attempted in HSB starburstsHowever

LSB galaxies are gas rich Would require naked O stars O stars not seen or rare in CMDs of nearby LSB dwarfs

(e.g. Tolstoy 1996, ApJ, 462, 684; Young et al. 2007, ApJ, 659, 331) But are seen in CMDs of higher SB irregulars

(e.g. Annibali et al. 2008, AJ, 135, 1900)

26

Page 27: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010: 27

Phoenix dI (Young et al. 2007)

NGC4449 (Annibali et al. 2008)

Page 28: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Related resultsBuat et al. (1987, A&A, 185, 33)

use UV + H to suggest possibility of IMF variations in nearby galaxies.

Outer disks H edges not so apparent in UV (Thilker et al 2005, ApJ, 619, L79; Thilker et al. ApJS, 2007, 173, 578; Boissier et al. 2007, ApJS, 173, 524)

Hoversten & Glazebrook (2008, ApJ, 675, 163) use EW(H) versus g-r (SDSS) to infer variable IMF.

Lee et al. (Lee et al. 2009, ApJ,

706, 599) similar results for 11 HUGS

28

Page 29: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Field versus clusterAbout 60% of H is

diffuse(Oey et al. 2007, AJ, 661, 801)

>~80% of UV is diffuse(Meurer et al. 1995, AJ, 110, 2665; Larsen 2004, A&A, 416, 537)

29

Page 30: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Field: deficient in O starsSpectrum dominated by B stars

(Tremonti et al. 2001, ApJ, 555, 322)

Low H/FUV (Hoopes et al. 2001, ApJ 559, 878)

30

Page 31: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Stars don’t form just in clustersTwo modes of star formation

(Meurer et al. 1995, AJ 110, 2665) Bound clusters - prominent Diffuse star formation - dominant

(groups, associations, star clouds)

Lada & Lada (2003) is misleading Based on expansive redefinition of

“cluster” to include unbound objects (groups, associations)

Recent results on Galactic YSOs:(Bresert et al. 2010, MNRAS, arXiv:1009.1150)

Stars form over a wide of densities No clear field vs. cluster distinction 26% of YSOs in dense clusters

31

Page 32: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Our scenario Highest mass stars form in bound clusters (Bonnell et al. 2003, MNRAS,

343, 413; 2004, MNRAS, 349, 735; Bonnell & Bate, 2006, MNRAS, 370, 488)

Bound clusters form in dense mol ISM Hydrostatic pressure determines molecular fraction (McKee &

Ostriker 1977, ApJ, 218, 148; Wolfire et al. 2003, ApJ,, 587, 278; Blitz & Rosolowsky 2006, ApJ, 650, 933)

Pressure also determines how well bound star clusters are when formed (Elmegreen & Efremov 2007, ApJ, 280, 235; Elmegreen 2008, ApJ, 672, 1006)

Stars dominate disk plane potential and set hydrostatic pressure

Hence we have the surface brightness IMF correlation:

* P cluster/field O/B H/FUV

Consistent with cluster fraction versus surface brightness (Meurer et al. 1995, AJ, 110, 2665; Larsen 2004, A&A, 416, 537)

32

Page 33: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010:

Take Home MessagesHMSF useful for tracing galaxy evolution at all redshiftsResults depend on tracer:

H (P…, 24 m) traces the most massive (O) stars, formed in: Tightly bound clusters Starbursts Spiral density waves

UV (FIR, radio) sensitive to lower mass (O + B) stars: formed in: Clusters or field Outer disks

IMF varies within and between galaxies* is a key parameter for setting SF intensity and effective

IMF Probably by setting the hydrostatic P of the ISM

33

Page 34: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:Great Barriers in HMSF 2010: 34

Page 35: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010: 35

Wavelength [Angstroms]

FUV

Ultraviolet Optical

H

Spectrum of starburst galaxy NGC1705 (Meurer et al. 1992, AJ, 103, 60)

Page 36: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

SINGG SFL results

X-axis pseudo HI R

rxy 0.59 0.75 slope 1.66 1.01 y 0.50 0.29 x 0.30 0.29Older populations also important for star formation regulation

(cf Dopita & Ryder 1994, ApJ, 430, 163)

36

Page 37: Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.

Great Barriers in HMSF 2010:

Correlations with tgas ~ 2.3MHI/SFR

X-axis SFR R

rxy -0.75 -0.77 slope -0.77 -0.87 y 0.26 0.28 x 0.33 0.32

37


Recommended