+ All Categories
Home > Documents > Green Plants for Wastewater Treatment: European Approaches ... · European CO-operation in the...

Green Plants for Wastewater Treatment: European Approaches ... · European CO-operation in the...

Date post: 17-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
43
Green Plants for Wastewater Treatment: European Approaches and Trends Jean-Paul SchwitzguØbel Laboratory for Environmental Biotechnology Swiss Federal Institute of Technology (EPFL) CH - 1015 Lausanne, Switzerland
Transcript

Green Plants for Wastewater Treatment:European Approaches and Trends

Jean-Paul SchwitzguébelLaboratory for Environmental BiotechnologySwiss Federal Institute of Technology (EPFL)

CH - 1015 Lausanne, Switzerland

1. What is a COST Action ?

2. Plants and bacteria: who is doing what ?

3. New applications for constructed wetlands

4. The Epuvalisation system

5. Development of a process to treat wastewater from dye and textile industry

Overview

European CO-operation in the field of

Scientific and Technical Research

� A concerted Action is the co-ordination at a European level of national research projects

� COST funding covers the co-ordination expenses of each Action:

- contribution to Meetings and Workshops- support of Short-Term Scientific Missions

1) What is COST ?

EUROPEAN COMMISSIONRESEARCH DG - EUROPEAN RESEARCH AREA : STRUCTURAL ASPECTS

COST

4

22 July 2002

I COST Member States! The fifteen EU MemberStates! EFTA Member States" Iceland" Norway" Switzerland*

! Candidate Countries" Bulgaria" Cyprus " Czech Republic" Estonia" Hungary " Latvia" Lithuania

* Not Associated to FP

COST Countries

II Co-operating State" Israel

" Malta " Poland" Romania" Slovak Republic" Slovenia" Turkey*

! Other Countries" Federal Republic of Yugoslavia* " Croatia * " Former Yugoslav Republic of Macedonia (FYROM)*

COST Characteristics

� Concerted Actions / Networking

� Co-ordination� Pan-European� �Non-competitive�

(pre-normative; environmental and cross-border problems; public utility)

� Financed nationally

� Bottom-up / Flexibility

� �A la carte� participation

� �Integration�� Complementarity� Exploratory � Commission

involvement

COST Structures

Advisory bodies to the CSO

MC = Management Committee

Commission COST

Secretariat

COMMITTEE OF SENIOR OFFICIALS (CSO)

COST National Co-ordinators

Council COST Secretariat

COST Technical

Committees (12)

COST Actions(160-200)

AgricultureBiotechnol. PhysicsTransport Chemistry

WORKING GROUPS (NETWORKS) �� ~6000 research groupsScientific Domain

MC MC MC MC MC MCMC MC MC MC MC MC MC MC MC

COST Action 837

Plant biotechnology for the removal of organic pollutants and toxic metals from

wastewaters and contaminated sites

180 scientists and 120 institutesfrom 24 COST countries

http://lbewww.epfl.ch/COST837

Working Groups

WG1Organic pollutants:

metabolic andenzymatic studies

WG3Optimizing of plants bymetabolic engineering

WG2Toxic metals:screening anduptake studies

WG4Cultivation and

utilizationof plants

2) Plants and bacteria: who is doing what ?

Peter Schroeder and Diana DaubnerInstitute of Soil Ecology, GSFNeuherberg (Germany)

The �green liver� concept

Xenobiotic,Pesticide

Phase I:activation

Phase II:detoxification

Phase III:metabolism/excretion

oxidation, reduction, hydrolysis

conjugation:glutathionesugarsamino acids

cleavage, transport,residue formation

Phragmites in phytoremediation

� Best known species in sewage treatment

� High biomass production� Better success than

without plants...� Black box syndrome:

seems to work...

Presence of detoxification enzymes: Peroxidase

POX activity, young leaves

0.000 5.000 10.000 15.000 20.000 25.000

Portugal1.J

Portugal2.J

Portugal(N).J

Italy.J

Austria.J

CGN1.J

CGN2.J

Danube J

activity [µmol/min]

Presence of detoxification enzymes: Peroxidase

POX activity, old leaves

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500

Portugal1.A

Portugal2.A

Portugal(N).A

Italy.A

Austria.A

CGN1, A

CGN2, A

Danube.A

activity [µmol/min]

Presence of detoxification enzymes: Peroxidase

POX activity, roots

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000

Portugal1.R

Portugal2.R

Portugal(N).R

Italy.R

Austria.R

CGN1, R

CGN2, R

Danube, R

activity [µmol/min]

Glutathione-S-transferase in Phragmites plants

GST activity, old leaves

0 5 10 15 20 25

Portugal1

Portugal2

Portugal(N)

Italy

Austria

CGN1

CGN2

Danube

activity [µmol/min]

FluorodifenCDNB

Glutathione-S-transferase in Phragmites plants

GST activity, roots

0 10 20 30 40 50 60 70

Portugal1

Portugal2

Portugal(N)

Italy

Austria

CGN1

CGN2

Danube

activity [µmol/min]

FluorodifenCDNB

Will the pollutant enter the plant ??

0

2

4

6

8

10

12

-3 -2 -1 0 1 2 3 4 5 6 7log Kow

pka

arylpropionic acids

phenoxyacetic acidsbenzoic acidssulfonylureasimidazolines

triazinones

s-triazinessubst.ureas

dinitroanilines

immobileonly xylemphloe m & xyle m

optimal phloem

from: Hock et al. 1995

Comments

� Phragmites is utilized in many waste water treatment systems

� Support for biofilms, filtering capacity for pollutants, C-source

� Uptake is demonstrated; Detoxification enzymes are present

� Distribution of enzymes depends on plant status and age

� Several xenobiotics are detoxified

� Remediation might be more effective if mechanisms were

known

Susete Martins DiasInstituto Superior TécnicoLisbon (Portugal)

3) New applications for constructed wetlands

Case Studies of Industrial Wastewater Case Studies of Industrial Wastewater Case Studies of Industrial Wastewater Treatment in Constructed WetlandsTreatment in Constructed WetlandsTreatment in Constructed Wetlands

IST/Centre of Biological and Chemical Eng.IST/Centre of Biological and Chemical Eng.PORTUGALPORTUGAL

Industrial Site

Nitric acid Nitric acid PlantPlant

Nitrobenzene Nitrobenzene PlantPlant

AnilineAnilinePlantPlant

H2SO4

H2

Benzene

ANILINEANILINE

NITROBENZENENITROBENZENE

NitratesNB

BenzeneNitrophenolic compounds

Ammoniarecovery

NH3

Effluent contaminants

Up to 150 ppmUp to 1000 ppm

!Nitrobenzene!Aniline!Nitrophenolic compounds

SO4-

Cl-

!Benzene!Nitrates

OrganicInorganic

Constructed Wetland for Wastewater Treatment

Effluent sampling point

Nutrients

Pilot beds

567

10

89

4321

Effluent

Inffluent

Bed 4 Bed 3 Bed 2 Bed 1

Saída

Inlet

Equalizationbasin

Outlet

Industrialdischarge

Construction � October 1994

Feeding system detail

Constructed wetland

Aromatics removal (1999)

1

10

100

1000

9-Feb

31-Mar

20-May

9-Jul

28-Aug

17-Oct

Con

cent

ratio

n (p

pm)

ANLinMNBinANLefMNBef

Nitrate and COD removal

1

10

100

1000

10000

24/May

3/Jun

13/Jun

23/Jun

3/Jul

13/Jul

ppm

NO3 inNO3 outCODinCODout

Comments

" The feasibility of constructed wetlands to treat industrial wastewater is a reality

" Constructed wetlands reaches efficiencies up to 99% to remove nitroaromatics from industrial wastewaters

" Denitrification of industrial wastewater with nitrate concentrations up to 1000 mg/L is being carried out

" The recirculation of the treated wastewater to the cooling tower is possible

4) The Epuvalisation system

Philippe Dumont and Dimitri XanthoulisFUSAGx, Gembloux (Belgium)

Tertiary treatment of domestic wastewater

Parameter Removal

Suspended solids 87%BOD5 83%COD 77%N Kjeldahl 47%NH4 30%PO4 20%Coliforms 99%

5) Development of a process to treat wastewater from dye and textile industry

Sylvie Aubert, Stéphanie Braillard, Stéphanie Jullien, Regula Buser and Jean-Paul Schwitzguébel

LBE, EPFL, Lausanne (Switzerland)

Sulphonated anthraquinones

O

O

1 2 3 4 5 6

7 8

O

O

1

SO3H O

O

2

SO3H

O

O

1

SO 3 H

5

HO 3 S

O

O

1

SO3H

8

HO3S O

O

2

SO3H

HO3S6

AQ AQ-1-S AQ-2-S

AQ-1,5-SS AQ-1,8-SS AQ-2,6-SS

Hydroculture and hydroponic culture of Rheum and Rumex

Hydroculture and hydroponic culture of Rheum and Rumex

Removal of anthraquinone-1-sulphonate (2 mmol, 6 weeks)

Quantity o f AQ1S re maining afte r 6 we e ks

0. 00

200. 00

400. 00

600. 00

800. 00

1000. 00

1200. 00

1400. 00

1600. 00

s p e c i e s o r v a r i e t i e s

q u a n t i t y o f A Q 1 S

[ m i c r o m o l e s ]

R ume x hydr ol a pa tum

c ont r ol

R he um r a ba r ba r um: Va l e nt ine

R he um r a ba r ba r um: Sut ton

De a d r oot

De a d r oot wi th l i ght

c ont r ol

Api um gr a ve ole ns

R ume x a c e tos a

C ont r ol

C ont r ol wi thout l i ght

C ont r ol wi thout oxyge n

Removal of anthraquinone-2-sulphonate (2 mmol, 6 weeks)

Quantity of AQ2S remaining after 6 weeks

0

200

400

600

800

1000

1200

1400

1600

s p e c i e s o r v a r i e t i e s

Q u a n t i t y o f A Q 2 S

[ m i c r o m o l e s ]

R ume x hydr ol a pa tum

c ont r ol

R he um r a ba r ba r um: Va l e nt ine

R he um r a ba r ba r um: Sut ton

De a d r oot

De a d r oot wi th l i ght

c ont r ol

Api um gr a ve ole ns

R ume x a c e tos a

C ont r ol

C ont r ol wi thout l i ght

C ont r ol wi thout oxyge n

Removal of anthraquinone 2,6 disulphonate (2 mmol, 6 weeks)

Quantity of AQ2,6SS remaining after 6 weeks

0

200

400

600

800

1000

1200

1400

1600

s p e c i e s o r v a r i e t i e s

Q u a n t i t y o f A Q 2 , 6 S S

[ m i l i m o l e s ]

R ume x hydr ol a pa tum

c ont r ol

R he um r a ba r ba r um: Va l e nt ine

R he um r a ba r ba r um: Sut ton

De a d r oot

De a d r oot wi th l i ght

c ont r ol

Api um gr a ve ole ns

R ume x a c e tos a

C ont r ol

C ont r ol wi thout l i ght

C ont r ol wi thout oxyge n

Outlook: Green Wastewater Treatment Plants

exutoireSTEP


Recommended