+ All Categories
Home > Documents > Gs Lift Design Oourse

Gs Lift Design Oourse

Date post: 04-Jun-2018
Category:
Upload: raul-dolo-quinones
View: 213 times
Download: 0 times
Share this document with a friend
200
2007 Workshop Clegg & Smith 1 API Gas Lift Design API RP 11V6: Recommended Practice for Design of Continuous Flow Gas Lift Installations ---- Using Injection Pressure Operated Valves By Sid Smith
Transcript
Page 1: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 1/200

2007 Workshop Clegg & Smith 1

API Gas Lift Design

• API RP 11V6: Recommended Practice for Design

of Continuous Flow Gas Lift Installations ---- Using Injection Pressure Operated Valves

• By Sid Smith

Page 2: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 2/200

2007 Workshop Clegg & Smith 2

INTRODUCTIONS

PLEASE TELL US THE FOLLOWING

INFORMATION ABOUT YOURSELF:

Name

Work LocationJob (role)

Number of Years Experience

Gas Lift Background- hands on- previous training

Page 3: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 3/200

2007 Workshop Clegg & Smith 3

Design Outline• Introduction (20)• General Design (20)

• Inflow & Outflow &…….Tubing (45)• Facilities (15)

• Gas Inj. Pressure (15)• Mandrels & Valves (30)• Temperature (15)• Gas Passage (15)

• Design Methods:.Constant Rate (30).Variable Rate (30).Intermittent (15).Equilibrium Curve (45)

• API Example # 1 (45)

• API Example # 2 (45)

• API Example # 3 (45)

• Summary (15)

Page 4: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 4/200

2007 Workshop Clegg & Smith 4

0. Introduction :API RP 11L6

• RP to provide guidelines, proceduresand recommendations. See other APIRP’s. (Also ISO documents)

• 1 Scope: Guidelines for continuousflow using injection pressure valves

• 2 Intent: Maximize production and. Minimize costs

• 3 Definitions• 4 General Design Considerations

Page 5: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 5/200

2007 Workshop Clegg & Smith 5

S.V.

Continuous Intermittent

Page 6: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 6/200

2007 Workshop Clegg & Smith 6

Typical continuous flow gas lift installation

Injection gas into wing valve and then downthe casing-tubing annulus.

Well equipped with tubing, side pocket mandrels,

wireline retrievable gas lift valves and asingle production packer located justabove the producing zone.

Note: Upper gas lift valves closed and

gas enters gas lift valve near bottom.

Page 7: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 7/200

2007 Workshop Clegg & Smith 7

4.1 General

• Complete system!

• Combination of concepts and experience

• Continuous flow gas lift has advantages

and limitations.

Page 8: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 8/200

2007 Workshop Clegg & Smith 8

Continuous GL Strengths

• Flexible lift capacity

• Handles sand OK• Deviated holes OK

• Permits wire line op

• Tubing fully open

• High GLR beneficial

• Low well R&M

• Low surface profile

• Compatible /SSSV’s• Permits sounding

• Easy BHP surveys

• Permits PL surveys

• Dual lift feasible

• Tolerates bad design

Page 9: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 9/200

2007 Workshop Clegg & Smith 9

Continuous GL Weakness• High back pressure imposed

• Needs uninterrupted high pressure gas

• Compressor expenses often high• Heading problem with low rates

• Potential gas freezing & hydrate problem

• Increased friction w/low gravity crude

• Valve interference & high inj. point

• Corrosion, Scale, & paraffin

• Efficient dual lift difficult

• Requires excellent data for good design

Page 10: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 10/200

2007 Workshop Clegg & Smith 10

• Inject gas as deep as feasible

• Conserve injection pressure• Ensure upper valves stay closed

• Be able to work down to bottom• Check for ample gas passage

• Plan for changes in rate

• Avoid heading conditions

• Minimize costs & Maximize rates

GL Design Guidelines

Page 11: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 11/200

2007 Workshop Clegg & Smith 11

Types of Installations• Conventional (Tubing): Inject gas down

annulus & produce up tubing.• Annulus: Inject gas down tubing & produce

up annulus• Special: Slim-hole, Dual, Concentric, etc

• Open installation: No packer or SV• Semi-closed: Packer but no SV

Page 12: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 12/200

2007 Workshop Clegg & Smith 12

IPV UNLOADING

How do we inject gas into a well in the first place?How do we inject gas into a well in the first place?

This process of replacing the completion brine with injection gas is calledunloading and it is done only once after the initial completion and after any wellservicing where the casing to tubing annulus is filled with liquid.

Pressure

   D  e  p   t   h

SBHP

Page 13: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 13/200

2007 Workshop Clegg & Smith 13

IPV UNLOADINGGas is injected into the casing - tubing annulus and the pressure pushes the brinethrough each of the gas lift valves which are wide open. This is a particularly dangeroustime for the valves. If the differential is too high the liquid velocity can be enough to cutthe valve seat. Then, the valve will not be able to close and the design will not work.

Pressure

   D  e  p   t   h

SBHP

Page 14: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 14/200

Page 15: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 15/200

2007 Workshop Clegg & Smith 15

IPV UNLOADINGOnce the brine level is below the top valve, gas will enter thetubing and begin lifting the well. If the tubing pressure is less thanthe SBHP the reservoir will begin to contribute. The firstproduction from the reservoir is normally recovered completionbrine.

Pressure

     D    e    p     t      h

SBHP

Page 16: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 16/200

2007 Workshop Clegg & Smith 16

IPV UNLOADINGWhen the second valve is uncovered, gas will begin to enter

the tubing at the second

valve.

Pressure

     D    e    p     t      h

SBHP

Page 17: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 17/200

2007 Workshop Clegg & Smith 17

IPV UNLOADINGIn the case of IP valves, the injection gas rate into the well at the surface must beregulated to control the gas entry to approximately the design rate of one valve. Sincetwo valves are passing injection gas, the pressure in the casing annulus will fall .

Gas from

casing 500

mcfd

Gas to

casing 500

mcfd

Gas from

casing 500

mcfd

+500

-500

-500

With more gas leaving casing than entering, the injection pressure mustfall.

Page 18: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 18/200

2007 Workshop Clegg & Smith 18

IPV UNLOADING

When the casing pressure falls enough, the top valve will close basedon valve mechanics in a good design.

Pressure

   D  e  p   t   h

SBHP

Page 19: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 19/200

2007 Workshop Clegg & Smith 19

IPV UNLOADING

Since there is still more casing pressure than tubing pressure at thebottom valve and the bottom valve is still open, the injection gas willcontinue to displace the brine in the annulus until the third valve isuncovered.

Pressure

   D  e  p   t   h

SBHP

Page 20: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 20/200

2007 Workshop Clegg & Smith 20

IPV UNLOADINGOnce again with more gas leaving the casing through two valves, thecasing pressure will fall until the second valve closes. Obviously if therewere more valves deeper the unloading process would continue.

Pressure

   D  e  p   t   h

SBHP

What would happen if the third

valve injected too much gas?

Page 21: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 21/200

Page 22: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 22/200

2007 Workshop Clegg & Smith 22

4.2 Well Performance

(Inflow and Outflow)

Well Productivity: A well’s ability to

produce fluids related to a reduction in

bottom hole pressure

Page 23: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 23/200

2007 Workshop Clegg & Smith 23

Inflow:Pseudo-Steady-State-Radial

• Qo = C*k*h*(Pr-Pwf) .

. Bo*µ*[Ln(Re/Rw)-0.75+S+Dq]

• Qo = J *(Pr-Pwf) or J = Qo/(Pr-Pwf)

• Where J = PI = Productivity Index

• Specific PI = J/h

• C= 0.00708 bpd Oilfield Units• 1/C = 141

(After Darcy)

Page 24: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 24/200

2007 Workshop Clegg & Smith 24

Inflow:

Flow into Well from the Reservoir • PI = Productivity Index=J (in bfpd/psi)

• Note: PI for single phase flow• PI=Change in Rate/Change in Pressure

• PI=Rate/(Pr-Pwf) in bfpd/psi• Rate in bfpd =Ql = PI * (Pr-Pwf)

• Drawdown = ∆P=(Pr-Pwf) = Rate/PI

Page 25: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 25/200

2007 Workshop Clegg & Smith 25

PI Problem # 1B• Given: Pr = 2500 psig (172.4 bar)=Pb

• Pwf = 1750 psig (120.7 bar)

• Ql = 1500 BPD (238.5 m^3)

• Find: PI, Qmax, &Ql @ 500 psig (34.5 bar) &

Pwf if Ql = 3000 BPD (476.9 m^3)

Page 26: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 26/200

2007 Workshop Clegg & Smith 26

IPR_VOG: VOGEL OIL WELL IPR

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

PRODUCTION RATE (BPD) OR (M^3/D)

   P   W   F  ;   F   L   O   W   I   N   G

   P   R   E   S   S   U   R   E   (   P   S

   I   A   )   O   R   (   k   P  a   )

NO SKIN WITH SKIN

Pr

Pwf

Qmax

PI = 1500/(2500-1750) = 2 bpd/psi

o

PI Problem # 1B when Pb= 0

Page 27: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 27/200

2007 Workshop Clegg & Smith 27

It is more accurate to describeWell Productivity in terms of:

Multi-phase, radial-flow

This means it handles flow ofboth liquids AND gas,

which changes the curve

This method is called:

Inflow Performance Relationshipor IPR

INFLOW PERFORMANCE RELATIONSHIP

Page 28: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 28/200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

00.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Producing Rate (Q/Qmax) ratio

   I  n   t  a   k  e   P  r  e  s  s  u  r  e   (   P  w   f   /   P  r   )  r  a   t   i  o

Vogel IPRQ=1-0.2*(Pwf/Pr)-0.8*(Pwf/Pr)̂ 2

Initial slope = -1.8

x

Page 29: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 29/200

2007 Workshop Clegg & Smith 29

Inflow: Vogel IPR

• Ql/Qmax=1-0.2(Pwf/Pr)-.8(Pwf/Pr)^2

• Ql/Qmax=1-v*(Pwf/Pr)-(1-v)*(Pwf/Pr)^2

• For multiphase flow

• Need well test rate (Ql), Pr & Pwf 

• Find pressure ratio: Pwf/Pr 

• Find production ratio: Ql/Qmax =(x1)

from graph• Calculate Qmax: Qmax = Ql/(x1)

• Once Qmax known, find other rates

IPR F tk i h Q /Q = [1 P f2 /P 2]n n=1

Page 30: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 30/200

2007 Workshop Clegg & Smith 30

IPR_VOG: VOGEL OIL WELL IPR

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

PRODUCTION RATE (BPD) OR (M^3/D)

   P

   W

   F   ;   F   L    O   W

   I   N    G   P

   R   E    S    S   U   R   E    (   P    S   I   A

    )    O   R

    (   k   P   a    )

NO SKIN WITH SKIN

x

IPR Fetkovich: Qo/Qm = [1- Pwf2 /Pr2]n n=1

Initial Slope = -2.0

Ratio 1/1000

n>.5n< 1

TypicallyN=.8

Page 31: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 31/200

2007 Workshop Clegg & Smith 31

Combination PI & IPR Problem• Given:

• Pr = 2800 psi ; Pb = 1800 psi• Pwf = 2300 psi ; Ql1 = 500 bpd

• Find: Qb, Qa, Qmax &Ql2 @ Pwf = 900 psig

• Solution: Just divide into a• PI + IPR problem

F P > Pb)

Page 32: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 32/200

2007 Workshop Clegg & Smith 32

IPR_VOG: VOGEL OIL WELL IP

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

PRODUCTIONRATE (BPD) OR(M̂3/D)

   P   W   F  ;   F   L   O   W

   I   N   G   P   R   E   S

   S   U   R   E   (   P   S   I   A   )

   O   R

   k   P  a

NOSKIN WITHSKIN

Pr= 2800

Pb=1800

Qmax

Pwf=2300PI = 1.0

Slope = - 1.8

For Pr > Pb)

Qb

Qa

ox

PI + IPR Vogel

Page 33: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 33/200

Now youknow how tofind the

well’s inflow

Use PI for single-phase flow

Use IPR for multi-phase flow

Page 34: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 34/200

2007 Workshop Clegg & Smith 34

Outflow Introduction

• Flow from perforations to storage tanks

• Requires a good vertical flow correlation• Also a horizontal flowline correlation

• Learn to use pressure-depth (gradient)curves

• Draw tbg outflow performance curves

Page 35: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 35/200

2007 Workshop Clegg & Smith 35

Gas Sales

Oil

Pwf

PI or IPR Inflow

Outflow

Pr

Pwh

Psep

Inflow & Outflow Analysis

Flowline:Gradient Curves

Tubing Performance:Gradient Curves

X X

Tank 

STB

Page 36: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 36/200

2007 Workshop Clegg & Smith 36

Outflow: Multiphase Vertical Flow

• Empirical Models

• Gilbert (CA oil wells)-developed 1940 to1950 but published in 1954

• Poettmann & Carpenter (no slip) -1952

• Baxendell & Thomas (high rate extension of P&C)-1961• Duns & Ros (lab data)-1961

• Ros & Gray (improved D&R)-1964

• Hagedorn & Brown (most used--slip?)-1964

• Orkiszewski (Exxon composite)-1967• Beggs & Brill (incline flow)--1973

• MMSM ( Moreland-Mobil-Shell-Method)-1976

• Mechanistic Models $

• Aziz, Grover & Fogarasi-1972• OLGA –Norwegian- 1986

• Ansari. Et al. – 1990

• Choksi, Schmidt & Doty-1996• Brill, et al-ongoing

Shell : Zabaras-1990

Page 37: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 37/200

Flow

Page 38: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 38/200

2007 Workshop Clegg & Smith 38

FlowRegimes

Single Phase Flow

Bubble(y)

Plug or Piston

Slug or Churn

Annular

Mist

Above Bubble Point

Slightly below BP

Bubbles grow

Bubbles connect

and expand

Oil up tubing wallwith gas at higher

velocity up center

Gas with oil droplets

(Surface)

Page 39: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 39/200

2007 Workshop Clegg & Smith 39

Water Cut Effect on Gradient

0 35 65 95 100 Water Cut (%)

γo

0 42 psi/ft

γw

As per ROS with Shell

Gradient

psi/ft

(.46+)

(.38+)

(Lab tests)

Page 40: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 40/200

2007 Workshop Clegg & Smith 40

Outflow: Find Pwf: Case 1

• Given: Tubing ID = 1.995 inchesRate = 800+ bpd

• Cut = 50%+,GOR = 1200, GLR = 600• Pwh=440 psig, Flow Surf. Temp =100 ‘F

• Well Depth = 5100’,• BH Temp = 180 ‘F, Water SG = 1.074

• Oil Gravity = 35 ‘API, Gas SG = 0.65• Static BHP = 2060 psig

• Find Pwf & PI (Find the correct chart)

440 1560

Page 41: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 41/200

2007 Workshop Clegg & Smith 41

440

5100’Gradient =0.42 psi/ft

2800’

7900’

Page 42: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 42/200

2007 Workshop Clegg & Smith 42

Outflow Example• Case 1: Find Pwf = 1560 psig

from 800 BPD graph• Calculate PI = Prod/Drawdown

• PI = 800/(2060-1560) = 1.6 BPD/psi

• Problem B: Find Pwh for a Pwf of 1200psig?

Page 43: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 43/200

2007 Workshop Clegg & Smith 43

0 100 200 300 400 500 600 700 800 900 1000 1100 12

0

1

2

3

   T   h  o  u

  s  a  n   d  s

PRODUCTIOPN RATE (BPD) OR (M̂ 3/D)   P   W   F  ;   F   L   O   W   I   N   G   P   R   E

   S   S   U   R   E   (   P   S   I   A   )   O   R   (   k   P  a   )

IPR TBG-1 TBG-2 TBG-3

OIL WELL INFLOW & OUTFLOW PERFORMANCEA 6000 ft flowing well with GLR = 500 and 10% WOR

Production Rate in BPD

1.995” 2.441” 2.992”

Pwf 

Page 44: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 44/200

2007 Workshop Clegg & Smith 44

Outflow: Summary• Essential to have a good multiphase flow

program or gradient charts

• Use well test data & correlation to find Pwf 

• Calculate PI or IPR for each well

• Construct tbg perf curves• Select most profitable tbg size

• Size flowline (Typically same as tubing)

• Minimize Back-pressure and Maximize Rate

T bi Si G id li

Page 45: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 45/200

2007 Workshop Clegg & Smith 45

Tubing Size Guideline

• In both flowing & gas lift wells, the size oftubing is critical.

•Too large a size results in heading, loadingup, and unstable flow.

• Too small a size results in excessive

friction and loss of production.• For best results, use the following:

1.995” ID-- 200 to 1000 bfpd

2.441” ID-- 500 to 1500 bfpd2.992” ID-- 1000 to 3000 bfpd3.958” ID-- > 3000 bfpd

TUBINGPERFORMANCE(OUTFLOW)CURVES

Typical Tubing Curves

Page 46: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 46/200

2007 Workshop Clegg & Smith 46

.

0 1 2 3 4 5

1

2

3

4

5

Thousands

   T   h  o

  u  s  a  n   d  s

RATE(BFPD)

   P  w   f  :   B   H

   F   l  o  w   i  n  g   T  u   b   i  n  g   P  r  e  s  s  u  r  e   (   P   S

   I   G   )

1.995"

2.441"

2.992"

3.467"

3.958"

TUBING PERFORMANCE (OUTFLOW) CURVESFOR10,000 FT WELL W/ 1000 GLR& 50%CUT

  Typical Tubing Curves

Rate in 1000 BFPD

Pwf 

in1000psi

PI’s

Pwh = 100 psig

Page 47: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 47/200

2007 Workshop Clegg & Smith 47

4.4 Facilities

• John Martinez 

GL S f E i t

Page 48: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 48/200

GL Surface Equipment

 API Manual Chapter 4

 API RP 11V7

Consultant

Testing 

Treating CompressionDehydration

DistributionMetering Miscellaneous

XX

Page 49: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 49/200

2007 Workshop Clegg & Smith 49

A TypicalGas Lift

System

A TypicalGas Lift

System

DehydratorO

Page 50: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 50/200

2007 Workshop Clegg & Smith 50

GL Surface Gas Facilities (49)

• GL is a system type AL; thus, all componentsmust operate efficiently

• Freezing often a problem requiringdehydration, heaters, or methanol injection

• Most important & expensive are the

compressors.• Proper piping & good meters are essential for

accurate gas measurement

• Manifolds to distribute the gas & adequateseparation/treating are also important

• Plus controls--all are some of our favoritethings

Page 51: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 51/200

2007 Workshop Clegg & Smith 51

Simple SystemSimple System

Inflow

Outflow

Stock

tank

sales

GL Compression

Page 52: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 52/200

2007 Workshop Clegg & Smith 52

GL Compression

• Reciprocating & Centrifugal• One --economical but all eggs in one basket

Two - most practical; Three -- allows better

maintenance; >3 -- too expensive

• Need high reliability (>96 %) [< 1

day/month]• Low suction Pressure (< 100 psia)

• Adequate discharge pressure !• Adequate cooling System

• Good maintenance important

Page 53: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 53/200

2007 Workshop Clegg & Smith 53

Piping, Distribution, Metering

• Provide good operating and maintenance

plus minimize investment• Keep back-pressure low!

• Adequate separation & scrubbing• Follow good piping practices

• Provide for pigging and traps• Install gas meters properly (GPSA)

Choke-Regulation Control

Page 54: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 54/200

2007 Workshop Clegg & Smith 54

Choke Regulation Controlfor Gas Lift Well

Meter Run

Pg Pio(0)

4 5 Gas Injection Pressure

Page 55: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 55/200

2007 Workshop Clegg & Smith 55

4.5 Gas Injection Pressure• Has a large effect on efficiency and

operation of continuous flow GL wells

• Too high a pressure results in

needless investment of compressors &lines

• Need enough pressure to inject nearbottom ( 100 ft above perforations) atthe planned rate.

• Request suction pressure < 100 psig

• See paper by J.R. Blann, JPT Aug. 84

Page 56: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 56/200

2007 Workshop Clegg & Smith 56

Depth,(ft)

Pressure (psig)

14001000600

x400 bpdx500 bpd

x600 bpd

x700 bpd

Gas Injection Pressures, psig

Equilibrium Curve

Benefit from Higher Gas Injection Pressure

0

Dw

x 200 bpd

Gas Injection Pressure

Page 57: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 57/200

2007 Workshop Clegg & Smith 57

Gas Injection Pressure

• For the system, select an injection gas pressurethat will permit well gas injection just above the

producing zone.• Install pressure recorder at well and record

pressure for a minimum of 24 hours. The

pressure variation should be less than 100 psi.

• Use average gas injection pressure recorded at

the well for gas lift design. No safety factorshould be necessary.

Page 58: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 58/200

2007 Workshop Clegg & Smith 58

Kick-Off Injection Gas Pressure

• If available, allows deeper lift.

• Normally not practicable in multi-wellinstallations.

Page 59: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 59/200

2007 Workshop Clegg & Smith 59

References/Bibliography• Clegg, JD; S.M. Bucaram; N.W. Hein Jr.:

Recommendations and Comparisons for Selecting

Artificial-Lift Methods,” JPT Dec 93• Neely, Clegg, Wilson, & Capps: “Selection of Artificial

Lift Methods: A Panel Discussion,” SPE 56th Annual

Fall Meeting Oct 81• Redden, Sherman, & Blann: “Optimizing Gas-Lift

Systems,” SPE 5150 , 1974

• Winkler & Smith: Camco Gas LIft Manual 1962

• Brown: “The Technology of Artificial Lift Methods”

• API Recommended Practices 11V8

API

Page 60: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 60/200

2007 Workshop Clegg & Smith 60

API

MandrelSee API 11V1

 And ISO 17078-1

API Mandrel Selection Guideline

Page 61: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 61/200

2007 Workshop Clegg & Smith 61

G Lift M d l

Page 62: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 62/200

2007 Workshop Clegg & Smith 62

Gas Lift Mandrels

• Conventional--Tubing Retrievable• Side-pocket--Wireline Retrievable (Oval or Round)

• Connections same as tubing (avoid crossovers)

• Material normally 4130

• Valve Receptacle 1” or 1.5”

• With Guard and Orienting Sleeve

• Drift to tbg size; Fluid Passage (S)

• Internal test pressure-to tbg rating

• External test pressure to max collapse case• Check clearance; Min spacing 90 ft

• Plastic coating (optional--Drift check after coating)

4 7 G Lift V l

Page 63: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 63/200

2007 Workshop Clegg & Smith 63

4.7 Gas Lift Valves

• Conventional (Tubing Retrievable)

• Wireline Retrievable *

• Valve size : 0.625”, 1.0” & 1.5” *• Closing Force: Gas Charged*, Spring Loaded;

Combination Spring-Gas

• Valve Type: Injection Pressure Operated*;Dummy; ...Production Pressure Operated;Pilot; Orifice; Other 

• Flow Configuration: Type 1*,2, 3, or 4• Service Class: Standard *; SCC

• Reference API Spec 11V1 & ISO 17078-2

Page 64: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 64/200

Page 65: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 65/200

2007 Workshop Clegg & Smith 65

Typical Gas Lift Valves

BK-1

BK

R20

Page 66: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 66/200

2007 Workshop Clegg & Smith 66

Gas Lift Valves Guidelines

Page 67: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 67/200

2007 Workshop Clegg & Smith 67

Gas Lift Valves Guidelines

• Use a 3-ply bellows-- single-element, unbalanced valvew/ a nitrogen charged dome and/or a spring

• Choice between: Injection Pressure* orProduction Pressure (Fluid) Operated.

• Use reverse flow (check) valve in each

• Age valve and shelf test

• Standard Monel Seats or Solid Carbide• Use Orifice Valve w/ check on bottom

• Dummy all unused mandrels

• Consider combination Gas-charged & Spring- loadedfor set pressures > 1500 psi (Field Experience)

• Use screened orifice/nozzle-Venturi on bottom

Page 68: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 68/200

Page 69: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 69/200

2007 Workshop Clegg & Smith 69

IPO G/L VALVE BEHAVIOR

Page 70: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 70/200

2007 Workshop Clegg & Smith 70

In an IPO valve, highpressure nitrogen in thedome exerts pressure on

the inside of the bellows.This causes the bellows toextend down and pushesthe ball on the seat.

In an IPO valve, highpressure nitrogen in thedome exerts pressure onthe inside of the bellows.This causes the bellows toextend down and pushesthe ball on the seat.

Nitrogenpressure

IPO G/L VALVE BEHAVIOR

Page 71: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 71/200

2007 Workshop Clegg & Smith 71

Gas from the casing tries toget into the valve. Thepressure acts on the outsideof the bellows, trying tocompress the bellows.

Gas from the casing tries toget into the valve. Thepressure acts on the outside

of the bellows, trying tocompress the bellows.

Page 72: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 72/200

2007 Workshop Clegg & Smith 72

IPO G/L VALVE BEHAVIOR

Fluid from theproduction tubing triesto force the stem off theseat.

Fluid from theproduction tubing tries

to force the stem off theseat.

Page 73: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 73/200

2007 Workshop Clegg & Smith 73

IPO G/L VALVE BEHAVIOR

When the valve opensgas moves through thevalve and out the nose.

When the valve opensgas moves through thevalve and out the nose.

IPO G/L VALVE BEHAVIOR

Page 74: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 74/200

2007 Workshop Clegg & Smith 74

IPO G/L VALVE BEHAVIOR

The valve is in the closed positionnow.

What it take to get this valve open?

Let’s look first at the forces trying toclose the valve.

The valve is in the closed positionnow.

What it take to get this valve open?

Let’s look first at the forces trying toclose the valve.

AbAb

PbPb

Closing force = Pb* (Ab)

where:

Pb = nitrogen pressure

Ab = area of the bellows

IPO G/L VALVE BEHAVIOR

Page 75: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 75/200

2007 Workshop Clegg & Smith 75

Now the opening forces:Now the opening forces:

Opening force = Ppd (Ap) + Piod(Ab - Ap)

where:

Ppd = tubing pressure

Piod = casing pressure

Ap = port area

Ab = bellows area

ApAp

PpdPpd

PiodPiod

The casing pressure onlyacts on this area when the

valve is closed.

Ap

Ab

IPO G/L VALVE OPENING BEHAVIOR

Page 76: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 76/200

2007 Workshop Clegg & Smith 76

IPO G/L VALVE OPENING BEHAVIOR

The solutionThe solution

The valve begins to come open whenthe opening and closing forces are

equal.

Pb (Ab) = Ppd (Ap) + Piod(Ab - Ap)

For a given Pb we could solve for Piod

the pressure at which the valve shouldopen.

Or for a design case of Piod and Ppd,

we could solve for the correct Pb.

ApAp

PpdPpd

PiodPiod

AbAb

PbPb

Test RackSet Pressure

Page 77: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 77/200

2007 Workshop Clegg & Smith 77

Piod

Ppd

Pb

Unbalanced pressure

charged valve

Ppd=0

Pb

Pvo

Set Pressure

Test Rack Set Pressures, Pvo

Page 78: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 78/200

2007 Workshop Clegg & Smith 78

• Simple Injection Pressure Operated Valve wherewell forces ready to open valve:(1) Pb*Ab = Piod *(Ab-Ap) + Ppd * Ap

• For Test rack conditions where Ppd = 0:(2) Pb *Ab = Pvo * (Ab-Ap)

• Then by substitution:(3) Pvo * (Ab-Ap) = Piod *(Ab-Ap) + Ppd * Ap

• Or: (4) Pvo = Piod + Ppd *Ap/(Ab-Ap) and by

• definition Ap /(Ab-Ap)=Ap/Ab/(1-Ap/Ab) = PPEFCorrect for Shop temperature for bellows charged valve

Pvo = [Ppd*PPEF+Piod]*Ct

TABLE A OILFIELD UNITS)

TYPICAL INJECTION PRESSURE VALVES WITH CHARGED NITROGEN BELLOW

Page 79: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 79/200

2007 Workshop Clegg & Smith 79

RETRIEVABLE GAS LIFT VALVES

VALVE Ab PORT (MONEL) Ap/Ab Ap/Ab

OD BELLOWS SIZE SIZE RATIO (1-Ap/Ab)

(IN) (IN^2) (IN) (1/64") Mfg PPEF

------- ------- ------- ------- (MONEL) (MONEL)

1.5 0.77 0.1875   12 0.0380 0.0395  0.77 0.2500   16 0.0670 0.0718

  0.77 0.3125   20 0.1040 0.1161

  0.77 0.3750   24 0.1480 0.1737

  0.77 0.4375   28 0.2010 0.2516

  0.77 0.5000   32 0.2620 0.3550

1.0 0.31 0.1250   8 0.0430 0.0449

  0.31 0.1875   12 0.0940 0.1038  0.31 0.2500   16 0.1640 0.1962

  0.31 0.2813   18 0.2070 0.2610

  0.31 0.3125   20 0.2550 0.3423

  0.31 0.3750   24 0.3650 0.5748

Test Rack Set Pressure: Example

Page 80: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 80/200

2007 Workshop Clegg & Smith 80

Test Rack Set Pressure: Example

• Given: XXXXX 1-inch BK valve w/ 3/16” portw/monel seat. Find PPEF = 0.1038 (mfg. data)

• Pio=Csg pressure @ valve depth=1060 psig• Ppd =Tbg pressure @ depth = 420 psig

• Tv = Valve Temp @ depth = 121 ‘F• Tshop = 60 ‘F (Valve temp in shop)

• Find from Table 4-1 that Ct = 0.88

• Thus: Pvo = [PPEF*Ppd+Pio]*Ct

• Pvo = [0.1038*420+1060]*0.880= 971 psig

Well Name: Exampl joe   PRESS URE (Pv)   1000 PSIA

TEMPERATURE COR. FACTORS TEMP.in Shop (Ts)   60 'F

(F) (Ct) (F) (Ct) (F) (Ct) (F) (Ct) (F) (Ct) (F) (Ct)

61 0.998 101 0.916 141 0.847 181 0.787 221 0.735 261 0.690

62 0.996 102 0.914 142 0.845 182 0.786 222 0.734 262 0.689

63 0 993 103 0 912 143 0 843 183 0 784 223 0 733 263 0 688

API Gas Lift ManualTable 4 1

Page 81: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 81/200

2007 Workshop Clegg & Smith 81

63 0.993 103 0.912 143 0.843 183 0.784 223 0.733 263 0.688

64 0.991 104 0.910 144 0.842 184 0.783 224 0.732 264 0.687

65 0.989 105 0.909 145 0.840 185 0.781 225 0.730 265 0.686

 

66 0.987 106 0.907 146 0.839 186 0.780 226 0.729 266 0.685

67 0.985 107 0.905 147 0.837 187 0.779 227 0.728 267 0.68368 0.982 108 0.903 148 0.836 188 0.777 228 0.727 268 0.682

69 0.980 109 0.901 149 0.834 189 0.776 229 0.726 269 0.681

70 0.978 110 0.899 150 0.832 190 0.775 230 0.724 270 0.680

 

71 0.976 111 0.898 151 0.831 191 0.773 231 0.723 271 0.679

72 0.974 112 0.896 152 0.829 192 0.772 232 0.722 272 0.678

73 0.972 113 0.894 153 0.828 193 0.771 233 0.721 273 0.677

74 0.970 114 0.892 154 0.826 194 0.769 234 0.720 274 0.676

75 0.968 115 0.890 155 0.825 195 0.768 235 0.719 275 0.675

 76 0.965 116 0.889 156 0.823 196 0.767 236 0.717 276 0.674

77 0.963 117 0.887 157 0.822 197 0.765 237 0.716 277 0.673

78 0.961 118 0.885 158 0.820 198 0.764 238 0.715 278 0.672

79 0.959 119 0.883 159 0.819 199 0.763 239 0.714 279 0.671

80 0.957 120 0.882 160 0.817 200 0.761 240 0.713 280 0.670

 

81 0.955 121 0.880 161 0.816 201 0.760 241 0.712 281 0.669

82 0.953 122 0.878 162 0.814 202 0.759 242 0.711 282 0.668

83 0.951 123 0.876 163 0.813 203 0.758 243 0.710 283 0.667

84 0.949 124 0.875 164 0.811 204 0.756 244 0.708 284 0.66685 0.947 125 0.873 165 0.810 205 0.755 245 0.707 285 0.665

 

86 0.945 126 0.871 166 0.808 206 0.754 246 0.706 286 0.664

87 0.943 127 0.870 167 0.807 207 0.753 247 0.705 287 0.663

88 0.941 128 0.868 168 0.805 208 0.751 248 0.704 288 0.662

89 0.939 129 0.866 169 0.804 209 0.750 249 0.703 289 0.661

90 0.937 130 0.865 170 0.803 210 0.749 250 0.702 290 0.660

 

91 0.935 131 0.863 171 0.801 211 0.747 251 0.701 291 0.659

92 0.933 132 0.861 172 0.800 212 0.746 252 0.700 292 0.65893 0.931 133 0.860 173 0.798 213 0.745 253 0.698 293 0.657

94 0.929 134 0.858 174 0.797 214 0.744 254 0.697 294 0.656

95 0.927 135 0.856 175 0.795 215 0.743 255 0.696 295 0.655

 

96 0.925 136 0.855 176 0.794 216 0.741 256 0.695 296 0.654

97 0.924 137 0.853 177 0.793 217 0.740 257 0.694 297 0.654

98 0.922 138 0.851 178 0.791 218 0.739 258 0.693 298 0.653

99 0.920 139 0.850 179 0.790 219 0.738 259 0.692 299 0.652

100 0.918 140 0.848 180 0.788 220 0.736 260 0.691 300 0.651

(F) (Ct) (F) (Ct) (F) (Ct) (F) (Ct) (F) (Ct) (F) (Ct)

Table 4.1

Temperature Correctionfor

Nitrogen Charged Bellows

1000 psia & 60 ‘F

Table 4-1 Page 40 (Program CT TEMP)

Page 82: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 82/200

2007 Workshop Clegg & Smith 82

Table 4 1 Page 40 (Program CT_TEMP)Temperature Correction Factors for Nitrogen

• Based of 60 F’ and Pbv = 1000 psig

• ‘F Ct• 121 .880

• Where: Ct =1/[1.0+ (Tv(n)-60) x M/Pbv]

• For Pbv<1238 psia :M=3.054xPbv^2/10000000+1.934xPbv/1000-2.26/1000

• For Pbv> 1238 psia :M=1.804xPbv^2/10000000+2.298xPbv/1000-2.67/10

AGL_SET:INJECTIONPRESSUREVALVEDESIG

E l

P 1 ?

Calculate Valve Set Pressures

Page 83: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 83/200

2007 Workshop Clegg & Smith 83

Example

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000

DEPTH(ft) of (meters)

   P   R   E   S

   S   U   R   E

  s   i  o  r   b  a  r

INJ GAS TBG Temp VALVESPACING

420

1060

121o150 o

: Pvo1= ?

121135

145

Gg=.03

Gf=.15

Page 84: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 84/200

2007 Workshop Clegg & Smith 84

4 10 Temperature

Page 85: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 85/200

2007 Workshop Clegg & Smith 85

4.10 Temperature

• Determine Surface Static and

…………...Reservoir Static Temperatures• Calculate Static Gradient

• Measure Flowing Temperature fordifferent rates

• Never use static for design basis

• Design on estimated production rate

Page 86: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 86/200

2007 Workshop Clegg & Smith 86

AGL_TEMP: FLOWING TEMPERATURE PROFILE

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000 9000DEPTH (ft) or (meters)

    T

    E

    M

    P

    E

    R

    A

    T

    U

    R

    E

     (    '    F

    )

   o

    f

    '    C

STATIC TEMP FLO W TEMP

Static

Flowing

Page 87: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 87/200

IsothermalGradient Map

Page 88: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 88/200

2007 Workshop Clegg & Smith 88

Gradient Map

1.2

Kirkpatrick Correlation

Page 89: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 89/200

2007 Workshop Clegg & Smith 89

• Example:Ql =2250 bpd through 3.5” Tbg• Well Depth = 5500’ , BHT = 180 ‘F

• Geothermal Gradient =(180-75)/(5500/100) =1.9 ‘F/100’

• Solution: intersection of 2250/1.5 =1500 bpd & 1.9 GG find flow GG =

1.0 ‘F/100’• Flowing Surf Temperature =

180 - 1.0*5500/100 = 125 ‘F

Fig. 6-9 Kirkpatrick

Fig 6-9 KirkpatrickChart to be used directly for 2.5” tubing

Page 90: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 90/200

2007 Workshop Clegg & Smith 90

Chart to be used directly for 2.5 tubing For 2” tubing, multiply rate by 2For 3” tubing, divide by 1.5

1.9

Temp Computer Program Solution

Page 91: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 91/200

2007 Workshop Clegg & Smith 91

Temp Computer Program Solution

• “Predicting Temperature Profiles in aFlowing Well,” by Sagar, Doty &Schmidt

• Also for gas lift wells

• For multi-phase flow: Regressionanalysis--- many assumptions

• Check against real field data

VERSION 8.0db

Flowing Temperature

ExampleWell Name

 

2003**PREDICTING TEMPERATURE PROFILES**14-Aug-06

Page 92: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 92/200

2007 Workshop Clegg & Smith 92

(OILFIELD = E; METRIC = M)E or MEUnit Selection15

mcfd0Qi:Gas Lift Inj. Rate14

'F125Twh =Flowingft*0Di: Depth of Gas Inj.*13

-0.0043SGM2:CORRECTIONft5,500Dw: Total Well Depth12

-0.0043SGM1:CORRECTIONin7.000CSG: Casing OD11

1.00E-04A2: COEf.in3.500OD: Tubing OD10

1.21E-04A1: COEF.air=10.700SGi: SG Gas (Air = 1)9

#N/AU2:HEAT t.c.sp.gr.1.060SGw: SG. Water 8

121.22U1:HEAT t.c.'API40.0API: Oil Weight7

lbm/sec8.23Wt2:MASS FLOWmcfd750Qg:Form. Gas Rate6

lbm/sec8.23Wt1:MASS FLOWbwpd250Qw:Water Rate5

sp.gr.0.825SGo: OIL wt.bopd2000Qo:Oil Rate4

't2.306f:DIM.TIME'F180Tf:Temp of Formation3

BTU/lbm0.542Cpl:SPEC. HEAT'F75Ts: Temp.Surf.Static2

'F/100'1.909Tg:TEMP GRADpsi100Pwh: Wellhead Pressure1

--CALCULATIONS----INPUT DATA---

p

Temperature data

Page 93: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 93/200

2007 Workshop Clegg & Smith 93

Temperature data

• API Gas Lift Manual & API RP11V6• C.V. Kirkpatrick “The Power of Gas”

• K.E. Brown “The Technology of ArtificialLift Methods,” Volume 2a

• Sagar, Doty & Schmidt, “FlowingTemperature Profiles in a Flowing Well”

• Winkler & Eads, “ Algorithm for more accurately

predicting nitrogen-charged gas lift valve operationsat high pressures and temperatures”

4 12 Gas Passage

Page 94: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 94/200

2007 Workshop Clegg & Smith 94

4.12 Gas Passage

• Use the minimum size port (choke) thatwill pass the desired rate of gas!

• Check Valve Port size for amount of gaspassage that is possible

• Use Thornhill-Craver Equation/Chart• Make Gas Gravity & Temp Correction

• Predict on high side

• Use next higher standard port/orifice

Upstream:i d

Page 95: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 95/200

2007 Workshop Clegg & Smith 95

Piod

SGg=

Tv =

Pb

port

Ppd

square-edgeorifice

Thornhill-Craver Chart: Example

Page 96: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 96/200

2007 Workshop Clegg & Smith 96

• Find corrected gas throughput (Qgi)• Given: Upstream Pressure (Piod)=1000 psig

• Downstream Pressure (Ppd)= 790 psig

• Orifice Size (Valve Port) = 12/64”

• Temperature of valve = 160 ‘F

• Gas SG = 0.75• Find from chart : Qgi = 660 MCFD

• From Correction Chart find: Cc = 1.17• Actual Qgi = 660/1.17 = 564 MCFD

Choke Chart

660

Page 97: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 97/200

2007 Workshop Clegg & Smith 97

Page 98: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 98/200

2007 Workshop Clegg & Smith 98Cc=

x

Orifice/Choke Problems

Page 99: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 99/200

2007 Workshop Clegg & Smith 99

• Orifice/Choke Problem # 1

• Upstream Pressure = 1250 psig

• Downstream Pressure = 1150 psig• Valve Port Size = 8/64 inch

• GG = 0.7 & Temp @ Depth = 180 ‘F• How much gas can be Injected?

• What size orifice for Injection GAS Volumeof 850 MCFD?

Page 100: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 100/200

Page 101: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 101/200

2007 Workshop Clegg & Smith 101

Typical VPC Gas-Lift Valve Performance PlotFig. 1

Camco BK with

12/64ths VPCPvoT= 964 Pcf=920 Temp=150

Camco BK with16/64ths VPCPvoT= 964 Pcf=920 Temp=150

Camco BK with20/64ths VPCPvoT= 964 Pcf=920 Temp=150

   F   l  o  w  r  a   t  e  -   (   M  s  c   f   /   d   )

Downstream Pressure - (psig)

0

500

1000

1500

0 200 400 600 800 1000

(after Decker & Dunham)

Page 102: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 102/200

2007 Workshop Clegg & Smith 102

Comparison of Gas-Lift Valve Performance Based on VPC ModelVs. Performance Based on Thornhill-Craver Model

Fig. 2

Camco BK with12/64ths VPCPvoT= 964 Pcf=920 Temp=150

Camco BK with12/64thsThornhillPvoT= 964 Pcf=920 Temp=150

   F   l  o  w  r  a   t  e  -   (   M  s  c   f   /   d   )

Downstream Pressure - (psig)

0

200

400

600

800

0 200 400 600 800 1000 API

Pvo(n) = Test rack opening

pressure for nth valve

Pcf = Injection gas pressure

Nozzle-Venturiif l

Page 103: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 103/200

2007 Workshop Clegg & Smith 103

Gas Lift Valve

Page 104: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 104/200

2007 Workshop Clegg & Smith 104

GasInjectionRate

Production Pressure

Pressures Acting on anPressures Acting on an

Page 105: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 105/200

2007 Workshop Clegg & Smith 105

Production Pressure

P ~ Tubing

Pressure

The pressure down-

stream of ball is nearly

equal to the tubing

(production) pressure.

Injection Pressure > P

> Tubing pressure

Injection Pressure. This

 pressure is greater than

the pressure downstream

of the ball.

Large pressure

drop, large

suction force on

 ball, small gap

 between ball

and seat

The gas injection rate

through the valve is reducedas the valve throttles closed.

essu es ct g o ag

Unchoked ValveUnchoked Valve

Pressures Acting on aPressures Acting on a

Page 106: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 106/200

2007 Workshop Clegg & Smith 106

P ~ Tubing

Pressure

P ~ Tubing

Pressure

The pressure down-stream of

the ball is held higher by the

choke.

Injection Pressure

Small pressure

drop, small

suction force on

 ball, more gap

 between ball

and seat

Large

 pressure

drop

The gas injection rate

through the valve is higher

because the valve ball is

held off of the seat by the

higher pressure beneath

the ball.

Choke

gg

Choked ValveChoked Valve

Comparison Between Choked

Page 107: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 107/200

2007 Workshop Clegg & Smith 107

Plot of Injection Rate vs. Pressure

Unloading Gas-Lift Valve with Choke vs. Valve with no ChokeUsing Gas-Lift Valve/Choke Model

Macco R-1D3/16" port10/64" chokePc = 1200 psiPt = 325 psi

Note that choked valve remainsopen over entire range andactually transmits much more gas.It "snaps" closed when closingpressure is reached.

Choked

Unchoked

and Unchoked Valves(After Dunham, Decker, & Waring)

Page 108: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 108/200

Graphical Solution--Gas Lift Spacing

Page 109: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 109/200

2007 Workshop Clegg & Smith 109

Gas Lift Spacing.........................

• Need to space mandrel/valves to permit working to thelowest possible depth

•  You will learn to space using different techniques--depending on type valve

• Find the location of the first valve

• Injection Pressure Operated Valves

• (1) Constant Rate Design*

• (2) Variable Rate Design• (3) Intermittent Design: Other Designs

1st Mandrel/Valve...................................

Page 110: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 110/200

2007 Workshop Clegg & Smith 110

• Depth of 1st Valve is the same for most designs• Strictly a U-tube case where the outlet and inlet

pressures are nearly balanced

• Outlet Po. = Pwh+Depth(1)*[Liquid Grad (Gs)]Inlet Pi. = Pg + Gg * Depth(1) -Psf 

• Example: Pwh = 100 psig,Gs= .465 psi/ft, Pg = 1000 psig,

• Gg = .03 psi/ft, Psf = 20 psi or about 50’(min)

• 100+D(1)*.465=1000+.03*D(1)-20

• D(1) = [1000-100-20]/[.465-.03] = 2023 ft

.

Injection Gas GradientForTs=75'F&Tf=175'F

API GL ManualPage 44 Fig. 4.7

Page 111: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 111/200

500 600 700 800 900 1000 1100 1200 1300 1400 150

00.01

0.02

0.030.04

0.05

0.060.07

0.08

0.090.1

Pg, Surface Gas Injection Pressure, psig

   G  a  s   G  r  a   d   i  e  n   t ,  p  s

   i   /   f   t SGg 0.6

SGg 0.7

SGg 0.8

SGg 0.9

For Ts= 75 F & Tf = 175 F

x

Pgd=Pg x e(0.1875xGxD/(TaxZ)

AGL_SPAC: GAS LIFT SPACING

26002800

Page 112: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 112/200

2007 Workshop Clegg & Smith 112

0200400600800

10001200140016001800200022002400

2600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH (ft) or (meters)

   P   R   E    S    S   U

   R   E

    (   p   s   i    )

GAS INJ TBG SPACING

Gs = 0.465

Gg = 0.03Pio

Pwh

Gf = 0.1

Page 113: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 113/200

Tgs Twh

Psep

Page 114: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 114/200

2007 Workshop Clegg & Smith 114

SGiTgs Twh

InjectionPressureValve

 Worksheet

Constant Rate Design:for Injection Pressure Operated Valve with good well data

Page 115: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 115/200

2007 Workshop Clegg & Smith 115

j p g

• Draw Gas Injection Pressure Line (Pgd) & Grad.• Find location of 1st Valve

• Select desired rate

• Select two points (Dw1 & Dw2) from gradientcurve for desired rate. Plot gradient curve for

desired rate on graph paper.• Use unloading gradient to find intersection with

Pgd. Move back up-hole to achieve necessary PD.

• This is depth of 2nd Valve.

• Repeat until Dw is reached or min space

Constant Rate Design Problem• Pg = 1200 psig; SGg = 65; Gg = 0 033 psi/ft

Page 116: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 116/200

2007 Workshop Clegg & Smith 116

• Pg = 1200 psig; SGg = .65; Gg = 0.033 psi/ft

• Gs = 0.465 psi/ft; Pwh = 100 psig; Psep = 50 psi;Dw=8000’• Max rate = 600 bpd; Cut 50 %; 35 API;

• Tgs = 75 ‘F; Twh = 100 ‘F; Tf = 180 ‘F (650 psi @ 4000’)

• Tbg = 1.995” ID; GLR = 1000; (1300 psi @ 8000’ )

• Min Space = 500’; PD = 20 psi

• Solution: Use program or gradient curves to find pressures @depth for desired rate. Draw Ppd(1)…Ppd(n)

• Find 1st Valve @ about 2600’ w/ Ppd(1) = 445 psig• Extend .465 psi/ft gradient to Pgd. Move back up-hole until

a 20 psi PD results. D(2) = about 4450’

• Continue until 500’ min spacing reached.• Find operating valve

AGL_SPAC: GASLIFT SPACIN

1500

1464Constant Rate Design

Page 117: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 117/200

2007 Workshop Clegg & Smith 117

0

500

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH(ft) or (meters)

   P   R   E   S   S   U   R

   E

  s   i

GASINJ TBG SPACING

1200

x

x

Page 118: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 118/200

A. Mandrel Spacing: Constant Rate

for injection pressure valves

Page 119: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 119/200

2007 Workshop Clegg & Smith 119

for injection pressure valves

• Given: Pwh=Psep =100 psig; Pg = 1400 psig

• Gs = 0.465 psi/ft; Twh = 120 F’; Tf=200 ‘F• SGi = 0.7; Dw= 10000’; Dmin = 500’

• PD = 25 psi; Tubing = 3.5” OD• Max rate = 2000 bpd @ max depth

• Total Rgl = 1000 CF/B• Space mandrels & find max injection depth

Page 120: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 120/200

P d( )C t t R t P bl AWELLNAME

Page 121: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 121/200

2007 Workshop Clegg & Smith 121

00.000200#N/A0.0184010000Dw

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A12

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A11

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A10

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A9

16261184#N/A13070.75020016121225182899508

16321210#N/A13200.75419616261250172095007

1634123557313310.76019216371275160390006

16371259118913420.76518816471300149085005

16371283152013520.77118416561325137479734

16101301180613510.78317616421350116469653

15501313189413350.8031631600137585353312

14551323183413020.8351441526140047229801

--120140014001000

----------------------------------------------------------------(INPUT)

psipsimscfdpsi-'Fpsipsipsift

@ depthSurf closeINJ GAST-RTEMP@ VALVEV openSURFTBG PRESDEPTHNO.V closePvc(n)QgiPvo(n)CTTvPiod(n)Pio(n)Ppd(n)D(n)

Pvcd(n)Constant Rate Problem ANAME:

S.O.DD

Variable Gradient Designfor limited data

Page 122: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 122/200

2007 Workshop Clegg & Smith 122

for limited data• Draw Gas Injection Pressure Line (Pgd)

• Draw Upper Design Line (UDL) {Pgd-Pwh}

• Find location of 1st valve @ D(1). (Same approach)• Calculate Pseudo Tbg Pressure@ surface:

Ps = Pwh + 0.2 *(Pg-Pwh)

• Find Ppd(n) at total depth or total injection depth:Note: (Ppd(n) < Pgd-200 psi)

• Connect these two points: Lower Design Line (LDL)

• Find intersection of LDL @ D(1): Extend usingunloading gradient to intersection w/ Pig (UDL). Nopressure adjustment necessary. Locate D(2)

• Continue spacing until Dw reached or Min Space

Variable Rate Design Problem• Pg = 1200 psig; SGg = .65; Gg = 0.033 psi/ft

Page 123: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 123/200

2007 Workshop Clegg & Smith 123

Pg 1200 psig; SGg .65; Gg 0.033 psi/ft

• Gs = 0.465 psi/ft; Pwh = 100 psig; Psep = 50 psi;Dw=8000’• Rate = 200-600 bpd; Cut 50 %; 35 ‘API

• Tgs = 75 ‘F; Twh = 100 ‘F; Tf = 180 ‘F

• Tbg = 1.995” ID; GLR = 1000;

• Min Space = 500’

• Calculate Pseudo Tbg Pressure@ surface:Ps = Pwh + 0.2 *(Pg-Pwh)= 100 + 0.2 (1200-100) = 320 psig

• Find Ppd(n) at total depth or total injection depth:• Ppd(n) = 1200 + .033x8000 -200 =1264 psig @ 8000’ [max]

• Connect these two points: Lower Design Line (LDL)

• Find D(1) {Same approach as before}• Find intersection of LDL...Ppd(1) @ D(1): Extend using unloading

gradient to intersection w/ Pig (UDL). Locate D(2), D(3)….D(n)

• Continue spacing until Dw reached or Min Space

AGL_SPAC: GAS LIFT SPACING

1500 Bellows Injection Pressure Operated Valves

Page 124: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 124/200

0

500

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH (ft) or (meters)

   P   R   E    S    S   U

   R   E

    (   p   s   i    )

GAS INJ TBG SPACING

Variable RateInjection Pressure Valves

320

1264

AGL_SPAC: GAS LIFT SPACING

1500 Spring Production Pressure Operated Valves

Page 125: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 125/200

0

500

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH (ft) or (meters)

   P   R   E    S    S   U   R   E

    (   p   s   i    )

GAS INJ TBG SPACING

Variable RateProducing Pressure (Fluid) Valves

Intermittent Design

Page 126: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 126/200

2007 Workshop Clegg & Smith 126

• Draw Gas Injection Pressure Line, Pgd:UDL• Find location of 1st Valve.

• Select design rate -Use small ported unloading valves

• Find Int. Spacing Factor (Fs):API GLM - Page 106, Fig 8-4

• Pdp(n) =Fs*Dw+Pwh; Connect Pwh & Pdp(n): LDL

• From intersection of LDL & D(1) extend unloadinggradient (Sg) to UDL. Move back up-hole until the PD isreached. This is location of D(2). Find D(3)...

• Continue same procedure until Dw reached.• Select large ported or pilot operating valve

Page 127: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 127/200

Intermittent Gas LiftSpacing Factors

Fig. 8.4

Intermittent Gas Lift

Page 128: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 128/200

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Rate in BPD

   S  p  a

  c   i  n  g   F  a  c   t  o  r   (   S   F   )   i  n

  p  s   i   /   f   t

1.61"ID

1.995"ID2.441"ID

2.992"ID

p g

o

oo

AGL_SPAC: GAS LIFT SPACING

Intermittent Lift Spacing 

Page 129: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 129/200

2007 Workshop Clegg & Smith 129

0100200300400

500600700800900

100011001200130014001500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

DEPTH (ft) or (meters)

   P

   R   E   S   S   U   R   E    (   p   s   i   )

GAS INJ TBG SPACING

Spacing Factor = .1

1192

100 +8000x.1

Mandrel Spacing Summary

Page 130: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 130/200

2007 Workshop Clegg & Smith 130

Mandrel Spacing Summary•  You have learned methods for

spacing valves:• (2)Constant Rate for Injection Pressure Valves;

(3) Variable Gradient for Inj. & Prod. Pressure Valves;(4) Intermittent design for Inj. Pressure Valves.

• Good spacing is essential for goodoperation & being able to work down

to the lowest possible valve

• Plan ahead for changing conditions.

B. Mandrel Spacing: Variable

Gradient for injection pressure operated Valves

Page 131: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 131/200

2007 Workshop Clegg & Smith 131

Gradient for injection pressure operated Valves

Given: Psep = 100 psig; Pg = 1400 psig

Gs = 0.465 psi/ft; Twh = 100 ‘F; Tf=160 ‘FSGi = 0.65; Dw= 7000’; Dmin = 500’

PD = 25 psi; Tubing = 3.5” ODRate ? = 1500+ bpd from 7000’+

Total Rgl = 750 CF/BCalculate Pseudo Tubing Pressure

Space mandrels & find max injection depth

C. Mandrel Spacing: Intermittent Gas Liftfor injection pressure valves

Page 132: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 132/200

2007 Workshop Clegg & Smith 132

. for injection pressure valves

Given: Psep= 50 psig; Pwh = 50 psig; Pg = 800 psig

Gs = 0.465 psi/ft; Tgs=75’F;Twh =100‘F; Tf=150‘F

SGi = 0.70; Dw= 7,000’ ; Gg = 0.024 psi/ft

PD = 25 psi; Tubing = 2.875” OD

Rate = 200 bpd from 7,000’

Use intermittent lift spacing factors for LDL (.055)

Space mandrels

Equilibrium Curve• Definition: A curve that connects the intersection of the

Page 133: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 133/200

2007 Workshop Clegg & Smith 133

Definition: A curve that connects the intersection of the

natural flowing gradients with the gas lift producinggradients.

• Draw graph of Pressure Vs Depths. Plot upper flowing

gradient curves for selected rates for GL conditions.

• Find from PI or IPR various Pwf’s for different rates

at total depth.• Draw the lower gradient curves and find the

intersection with the appropriate upper gradient curve

• Maximum production rate will be about 200 psi less

than the gas injection pressure.

GasLiftManual

Page 134: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 134/200

2007 Workshop Clegg & Smith 134

Gf 0.42 psi/ft

120 ‘F

Manual

Upper Gradient Curves (Trace)

Page 135: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 135/200

2007 Workshop Clegg & Smith 135

PrPwf

o

E.C.

pp ( )

Lower Gradient Curves

(0.42 psi/ft above BP)200

200 bpd200 bpd

Page 136: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 136/200

2007 Workshop Clegg & Smith 136

E.C.

After Jack Blann

Equilibrium Curve Problem

Page 137: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 137/200

2007 Workshop Clegg & Smith 137

• Find the rate and the lift depth for the followingplanned gas lift well:

• Well Depth = 10,000’; Tubing size = 3.5” OD

• Gas Injection Pressure = 1400 psig; Pwh = 100 psig

• Temp @ Surface = 75 F’; BH Temp = 200 F’

• Pr= 3000 psig; Pb = 500 psig• PI = 2.0

• Lower flowing gradient = 0.42 psi/ft (if Pwf > Pb)

• Planned GLR = 1000 during gas lift

GAS LIFT GRADIENT CURVES

FOR 2.992" ID TUBING & 1000 GLR2500

Page 138: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 138/200

2007 Workshop Clegg & Smith 138

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000

DEPTH (FEET)

   F   L   O   W   I   N   G

   T   B   G

   P   R

   E   S   S   U   R   E

   (   P   S   I   G   )

AGL_DSN: EQUILIBRIUM PROGRAM

3000

Page 139: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 139/200

2007 Workshop Clegg & Smith 139

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH (ft) or (meters)

   P   R   E   S   S   U   R   E   (  p  s   i   )  o  r   (   b  a  r   )

NEEDED INJ PRESSURE GASINJ PRESSURE INJ GAS-SF

5. Continuous Flow Problems

Page 140: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 140/200

2007 Workshop Clegg & Smith 140

 API RP 11V6• 5.1 Example Problem No. 1

• 5.2 Example Problem No. 2• 5.3 Example Problem No. 3

5. API RP 11V6: Injection PressureOperated Valves:Example Problem No. 1:

Page 141: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 141/200

2007 Workshop Clegg & Smith 141

Typical Well with Good Data• Pwh = 100 psig

• Pg = 1250-1200 psig

• Ts = 78 ‘F

• Twh = 108 ‘F

• Tf = 178 ‘F• Gs = 0.465 psi/ft

• Dw = 8000 ft.

• Pgd at Dw = 1440 psig• Water Cut 50%

• Pr = PB* = 2125 psig

• Rgo = 700 & Rgl = 350

• Psp = 75 psig

• Sgi = 0.6 (.65)

• Pl1 = 400 psig @ 2500’

• Pl2 = 880 psig @ 6000’• PD = 25 psig

• Dmin = 250’

• Tbg. = 2.441” ID• Valve = 1” w/3/16” port

• Rate = 200 BPD @ 1941 psig

IPR_VOG: VOGEL OIL WELL IPR

2500

API RP 11V6: Example # 1

Page 142: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 142/200

2007 Workshop Clegg & Smith 142

0

500

1000

1500

2000

0 200 400 600 800 1000 1200 1400

PRODUCTION RATE (BPD) OR (M^3/D)

   P   W   F  ;   F   L   O   W   I   N   G   P   R   E   S   S   U   R   E   (   P   S   I   A   )   O   R   (   k   P  a   )

NO SKIN WITH SKIN

p

PI = 1000/1000 =1.0

1941 psig

1125 psi

Pr=2125 psig

Qmax = 1325

or NOpsipsiftpsi/ftftpsibfpd

OKPgdPRES.DEPTHGFALEVELPwf RATE

RemarksCSGTBGINJ.FLUID

Page 143: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 143/200

2007 Workshop Clegg & Smith 143

14428000

#N/A#N/A#N/A#N/A0.1455730953100010

#N/A#N/A#N/A#N/A0.139534311169009

OK1431110876340.132499712618008

OK141298070150.126468113947007

OK139586864550.119438815176006

OK138076959450.113411516325005

OK136668154770.106385717404004

OK135360250450.100361218433003

OK134053246450.093337919412002

OK132947042730.087315520351001

120010000.080000

---------------------------------------------------------

AGL_DSN: EQUILIBRIUM PROGRAM

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH (ft) or (meters)

   P   R   E   S   S   U   R   E   (  p  s

   i   )  o  r

   (   b  a  r   )

NEEDED INJ PRESSURE GAS INJ PRESSURE INJ GAS-SF

Optimum Injection Gas

Page 144: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 144/200

2007 Workshop Clegg & Smith 144

• Use the available injection gas to make themost oil production and greatest profit

• Split the gas between wells to achieve suchresults

• However; installation of additionalcompressors to achieve max rate seldom

 justified! {Parkinson’s Gas Law}• Experience: Maximum profit @ about 50% of

max injection to achieve max rate

2500P   S   I   G

Gas Lift PerformanceFor 2.992"Tbg & 2000 BPD

Page 145: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 145/200

2007 Workshop Clegg & Smith 145

.

0 1 2 3 4 5

500

1000

1500

2000

2500

Thousands

Total Gas (Formation+Injection) in MCFD

   P   t

  :   T  u   b   i  n  g   P  r  e  s  s  u  r  e   @

    5   0   0   0   f   t   i  n

   

Excessive GasOpti-mum

Gas@ 5000’

Max Rate

Excessive Gas

InsufficientGas

MMCFD

Typical

 AGL_GRAD: GAS LIFT GRADIENT CURVESEXAMPLE FOR 1000 BPD UP 2.875" OD TUBING

Page 146: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 146/200

2007 Workshop Clegg & Smith 146

0 1 2 3 4 5 6 7 8

0

500

1000

1500

2000

2500

Thousands

DEPTH (ft) or (meters)

   P   R   E   S   S   U   R   E   (  p  s

   i   )  o  r   (   b  a  r   )

GLR=250(44.5) 500(89) 750(134)

1000(178) 1250(223) 1500(267)

0

1000

BOPDTYPICAL CASE

Page 147: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 147/200

2007 Workshop Clegg & Smith 147

Gas Injection Rate in MCFD

Max Oil Rate

Max OCI

Max Profit

Page 148: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 148/200

5.1.6 Injection Gas Required @ Depth

Page 149: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 149/200

2007 Workshop Clegg & Smith 149

• For a production rate of 800 BFPD

For a Rgl of : (Correction Factor @ 178 ‘F & Gg of .65 = 1.11)

1500: (1500x800 – 350x800)/1000 = 920 x1.11= 1021 MCFD

1200: (1200x800 - 350x800)/1000 = 680 x1.11= 755 MCFD

1000: (1000x800 – 350x800)/1000 = 520 x1.11=577 MCFD

800: (800x800 – 350x800)/1000 = 360 x1.11=400 MCFD

AGL_TEMP: FLOWING TEMPERATURE PROFILE

3005.1.7 Temperature

Page 150: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 150/200

2007 Workshop Clegg & Smith 150

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000

0

DEPTH (ft) or (meters)

   T   E   M   P   E   R

   A   T   U   R   E    '   F

   o    f   '    C

STATIC TEMP FLOW TEMP

Tf=178 ‘F

Ts = 78 ‘F

Twh= 108 ‘F

.

Injection Gas GradientFor Ts= 75 'F & Tf = 175 'F

API GL ManualPage 44 Fig. 4.7

5.1.8 Gas Gradient

Page 151: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 151/200

500 600 700 800 900 1000 1100 1200 1300 1400 150

0

0.01

0.02

0.030.04

0.05

0.060.07

0.08

0.090.1

Pg, Surface Gas Injection Pressure, psig

   G  a  s   G

  r  a   d   i  e  n   t ,  p  s   i   /   f   t SGg 0.6

SGg 0.7

SGg 0.8

SGg 0.9

Pgd=Pg x e(0.1875xGxD/(TaxZ)

oo

5.1.10 Valve Setting Depths

Page 152: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 152/200

2007 Workshop Clegg & Smith 152

• First Valve Setting Depth

• Tubing pressure = casing pressure – Psf 

• Max unloading flowing pressure = .gas injection pressure- Psf 

• Pwh + gs x D(1) = Pg + gg x D(1) – Psf 

• 100+0.465 x D(1)= 1200+ .03xD(1) -20

• (.465-.03)xD(1) = 1200-100-20=1080

• D(1) = 1080/.435 = 2483 ft• Adjusted D(1) = 2475 ft (close as you can read chart)

0.465

Page 153: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 153/200

2007 Workshop Clegg & Smith 153

0.42

2325x

o

o

.

5.1.12 Subsequent Valve Setting Depths

Page 154: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 154/200

2007 Workshop Clegg & Smith 154

• Ppd(n)+gsxDbv=(pg-nxPD)+ ggx(D(n)+Dbv-Psf

• For valve(2)

• 400+.465xDbv=(Pg-25)+.03x(2483+Dvb)-20

• Dbv =1907 ft

• D(2) = 2483+1907 = 4390 ft about 4375 ft

• D(3) = 5797 about 5800 ft (as close as can read chart)

• D(4) = 6783 about 6775 ft

• D(5) = 7434 about 7425 ft• D(6) = 7820 Adjustment to 7690 ft (half-way between D(5) & D(7)

• D(7) = 8000+  Adjustment to 7940 ft (30 ft above packer)

Page 155: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 155/200

2007 Workshop Clegg & Smith 155

Page 156: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 156/200

5.1.14 Valve Selection

Page 157: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 157/200

2007 Workshop Clegg & Smith 157

• In this case, one-inch, unbalanced,

nitrogen-charged bellows valves without a

spring was selected. (A common practice

in some areas.)

Piod

Ppd

Pb

Port Size = ?

PPEF = ?

755 Thornhill-Craver Equation

Page 158: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 158/200

2007 Workshop Clegg & Smith 158

I” Inj. Pressure w/ 12/64” port

Page 159: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 159/200

2007 Workshop Clegg & Smith 159

2475’ 130 .104 400 42 1275 1317 .869 1144

WELL NAME: API RP 11V6: Example # 1

Summary: Table 2 – Test Rack Pressure Calculation--Modified

Page 160: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 160/200

2007 Workshop Clegg & Smith 160

D(n) Ppd(n) Pio(n) Piod(n) Tv CT Pvo(n) QgiNO. DEPTH TBG PRES SURF V open @ VALVE TEMP T-R INJ GAS

  ft psi psi psi 'F - psi mscfd

(INPUT) ------- ------- ------- ------- ------- ------- -------  0 100 1200 1200 108 - -

1 2475 397 1200 1273 130 0.863 1134 931

2 4375 648 1175 1302 146 0.835 1143 9403 5800 851 1150 1315 159 0.815 1145 919

4 6775 996 1125 1315 167 0.803 1138 832

5 7425 1095 1100 1304 173 0.795 1126 709

6 7690 1137 1075 1282 175 0.792 1108 604

7 7940 1176 1050 1258 177 0.789 1089 46514/64” SO

5.1.16 Summary for Example Problem No. 1

Page 161: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 161/200

2007 Workshop Clegg & Smith 161

• Predicted rate of about 800 BFPD

• Lift from Screened Orifice near bottom

• Gas injection rate of about 680(755) MCFD

• Flowing surface temperature of about 108 “F

• Anticipated operating surface gas injection of 1075 psig

• After installation, production tests should be run to optimize

production and injection gas rates.

.

Page 162: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 162/200

2007 Workshop Clegg & Smith 162

• .

*•*max=7100x.465=

3300 psig

160

**Pi from 0.1 to 1.0 bpd/psi

Min PI = 0.1

Av. PI = 0.4Max PI = 1.0

Note: 2 3/8 inch tbg

Page 163: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 163/200

2007 Workshop Clegg & Smith 163

API Example 2: Assume PI = 0.1 bpd/psi

Page 164: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 164/200

2007 Workshop Clegg & Smith 164

#N/A#N/A#N/A#N/A0.10052477782504

OK102858854050.094400513002003

OK99041538010.088281418001502

OK95326522540.082162423001001

9008000.070000

---------------------------------------------------------

or NOpsipsiftpsi/ftftpsibfpd

OKPgdPRES.DEPTHGFALEVELPwf RATE

RemarksCSGTBGINJ.FLUID

7000 700 1060

RemarksCSGTBGINJ.FLUID

API Example 2: Assume PI = 200/500=0.4 bpd/psi & Pr = 3300 psi

Page 165: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 165/200

2007 Workshop Clegg & Smith 165

NO1064123269370.166400513008007

NO103595556840.154341015507006

OK100872545400.142281418006005

OK98353434900.130221920505004

OK96037825230.118162423004003

OK93925316310.106102925503002

OK9191568040.09443328002001

9008000.070000

---------------------------------------------------------

or NOpsipsiftpsi/ftftpsibfpd

OKPgdPRES.DEPTHGFALEVELPwf RATE

or NOpsipsiftpsi/ftftpsibfpd

OKPgdPRES.DEPTHGFALEVELPwf RATE

RemarksCSGTBGINJ.FLUIDAPI Example 2: PI = 1 bpd/psi

Page 166: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 166/200

2007 Workshop Clegg & Smith 166

10687100

NO1011107946700.21421002100120010

OK99487939540.2021862220011009

OK97970933130.1901624230010008

OK96556727360.178138624009007

OK95244722130.166114825008006

OK94134717370.15491026007005

OK93126513020.14267127006004

OK9211979030.13043328005003

OK9131435360.11819529004002

OK9051011970.106030003001

9008000.070000

---------------------------------------------------------

AGL_SPAC: GAS LIFT SPACING

1500

API Example 2: Variable Gradient Design

Page 167: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 167/200

2007 Workshop Clegg & Smith 167

0

500

1000

0 1000 2000 3000 4000 5000 6000 7000DEPTH (ft) or (meters)

   P   R   E

    S    S   U   R   E

    (   p   s

   i    )   o   r    (   b   a   r    )

GAS INJ TBG SPACING

Pg= 900 psi

1060

860

Pwh’= 160+.2x(900-160)=308 psi

Page 168: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 168/200

2007 Workshop Clegg & Smith 168

Pwh= .2x(900-160)+160

Min. Spacing = 200 ft

1060860

WELL

Page 169: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 169/200

2007 Workshop Clegg & Smith 169

853687#N/A7110.8021738537208667000

8547113587220.81316585774078060478727344297390.8151638767607625847

8897564897550.8181618947807425610

9037785437710.8221599108007135281

9147995897860.8271559238206764846

9228206287990.8341519348406304290

9268416548110.8421459408605743599

9268616658210.8531389438805072757

9218806688300.8671309409004321753

--1159009003080

----------------------------------------------------------------(INPUT)

psipsimscfdpsi-'Fpsipsipsift

@ depthSurf closeINJ GAST-RTEMP@ VALVEV openSURFTBG PRESDEPTH

V closePvc(n)QgiPvo(n)CTTvPiod(n)Pio(n)Ppd(n)D(n)

Pvcd(n)Example #2NAME:

DummyDummy

¼” s. orifice

Page 170: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 170/200

 A.Summary: Problem # 2

Page 171: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 171/200

2007 Workshop Clegg & Smith 171

• The design results are for Injection PressureOperated Valves.

• This spacing is too wide for ProductionPressure Operated (PPO) Valves.

• For PPO Valves, the top of the design line

should be based on 30 or 40% of thedifference between Pio1 and Pwh.

• The resulting closer spacing permits the

uppermost PPO Valves to close as unloadingprogresses deeper in the well.

B.Summary: Problem # 2

Page 172: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 172/200

2007 Workshop Clegg & Smith 172

• Original mandrel spacing for new wellsmust be carefully thought out.

• When little or no well productivity infois available, mandrel spacing should be

closer, mainly in the upper part of thestring.

• Mandrel spacing must be sufficient tolast for the lifetime of the completion.

C.Summary: Problem # 2

Page 173: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 173/200

2007 Workshop Clegg & Smith 173

• Flexible design from 250 to 1100 BFPD

• Minimum of 10 mandrels• “Valve” to lift from near total depth

• Drop injection pressure 20 psi on eachlower valve to deter multi-point injection

• Use ¼-inch screened orifice on bottom

API RP 11V6: 5.3 Example No. 3 - Fixed MandrelUsing Injection Pressure Operated Valves

P P 3350 i G 0 465 i/f

Page 174: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 174/200

2007 Workshop Clegg & Smith 174

• Pr = Pws = 3350 psig• Pb = 1500; (Standing)

• Test Rate = 200 BFPD

• Pwh = 120 psig• API Oil = 35o; GOR = 400

• Cut = 50 %:Water

SG=1.074• Tbg = 1.995” ID

• Dw=8000’TVD/9936’MD

• Pwf = 2550 psig (Fig 21)

• Ts = 74 ‘F

• Tf = 180 ‘F

• Gs = 0.465 psi/ft• Pg = 1150 to 1250 psig

• Sgi = 0.7

• Mandrel = Oval Side Pocket• Min Spacing = 500’

• PD= 20 psig

• GL Valve = 1” w/ 3/16” port• Casing = &’ OD

• Directional Well

• Gg = 0.032• Twh = Measured: 100 ‘F

• Use all known information

5.3.2 Well Data

P P (D th SFL) P h

Page 175: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 175/200

2007 Workshop Clegg & Smith 175

• Pr = Pws = gsx(Depth-SFL) + Pwh• Pws = 0.465 x (8000 – 900*) + 50 = 3350 psig

…..from sonic fluid level measurement

• Pwf = 2550 psig from Fig. 21

• Pb = Bubble Point Using Standing’s = 1500 psia

• Gg

= 0.032 psi/ft Fig. 5

• Temp. gradient = 100x(180-100)/8000= 1 ‘F/100’

API RP 11V6Example # 3

2550 psig

Page 176: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 176/200

2007 Workshop Clegg & Smith 176

GOR 400

Bubble Point

Page 177: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 177/200

2007 Workshop Clegg & Smith 177

GOR = 400SGg = 0.85Oil Gr. = 35Ff = 180

BP = 1500 psia

IPR_VOG: VOGEL OIL WELL IPR

3500

4000

R   (   k   P  a   )

5.3 API Example Problem No. 3

Pws = 3350 psig

Page 178: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 178/200

2007 Workshop Clegg & Smith 178

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

PRODUCTION RATE (BPD) OR (M^3/D)

   P   W   F  ;   F   L   O

   W   I   N   G   P   R   E   S   S   U

   R   E   (   P   S   I   A   )   O   R

NO SKIN WITH SKIN

Pwf = 2550 psig

PI = 200/(3350-2550) = .25 bpd/psi

Qmax = 670 bpd

BP

or NOpsipsiftpsi/ftftpsibfpd

OKPgdPRES.DEPTHGFALEVELPwf RATE

RemarksCSGTBGINJ.FLUID

API 11V6 Example # 3: Equilibrium Curve Data

Page 179: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 179/200

2007 Workshop Clegg & Smith 179

15018000

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A10

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A9

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A8

#N/A#N/A#N/A#N/A#N/A#N/A#N/A#N/A7

#N/A#N/A#N/A#N/A0.14260768086006

OK1477107873700.130480313435005

OK141579657280.118383317504004

OK135956942360.106288121503003

OK130738828530.094192925502002

OK125924915680.08297629501001

120012000.070000

---------------------------------------------------------

Maximum Production Rate 0f 500+ bfpd from 7370 ft

AGL_DSN: EQUILIBRIUM PROGRAM

3500

Page 180: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 180/200

2007 Workshop Clegg & Smith 180

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH (ft) or (meters)

   P   R   E    S    S   U   R   E

    (   p   s

   i    )   o   r    (   b   a   r    )

NEEDED INJ PRESSURE GAS INJ PRESSURE INJ GAS-SF

200 BPD500 BPD

Well Data: Mandrel Spacing:Well straight to 1500’ then Directional

N Dt / D

Page 181: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 181/200

2007 Workshop Clegg & Smith 181

• No. Dtv / Dm• 0 0’ 0’

• 1 2350’ 2450’

• 2 3460’ 3921’• 3 4345’ 5094’

• 4 5000’ 5962’

• 5 5500’ 6624’• 6 6000’ 7287’

• 7 6500’ 7949’

• 8 7000’ 8612’• 9 7500’ 9274’

• 10 7900’ 9804’

41+ degree angle from

2450’ to total depth

Dtv TD Dm

o 1500’

*

Page 182: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 182/200

2007 Workshop Clegg & Smith 182

* Fluid rate---50% cut

Gas Passage Chart

Page 183: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 183/200

2007 Workshop Clegg & Smith 183

Page 184: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 184/200

2007 Workshop Clegg & Smith 184

PPEF = 0.104

API RP 11V6 Example # 3

ORIGINAL

SPACING

Page 185: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 185/200

2007 Workshop Clegg & Smith 185

SPACINGDESIGN

AGL_SPAC: GAS LIFT SPACING2000

API RP 11V6: Example # 3- Ideal spacing 

Requires pulling tubing to re-space

Page 186: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 186/200

2007 Workshop Clegg & Smith 186

0

500

1000

1500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000DEPTH (ft) or (meters)

   P   R   E    S    S   U   R

   E

    (   p   s   i    )

GAS INJ TBG SPACING

500 bfpd

Requires pulling tubing to re-space

AGL_SET:INJECTION PRESSURE VALVE DESIGN

Example2000

Valve installed in each mandrel

Page 187: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 187/200

2007 Workshop Clegg & Smith 187

0

500

1000

1500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DEPTH (ft) of (meters)

   P   R   E   S   S   U   R   E   (  p

  s   i   )  o  r   (   b  a  r   )

INJ GAS TBG Temp VALVE SPACING

API RP 11V6 Example Problem No. 3

Page 188: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 188/200

2007 Workshop Clegg & Smith 188

Qgi

MCFD

Page 189: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 189/200

2007 Workshop Clegg & Smith 189

MCFD

Page 190: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 190/200

WELL NAME: API RP 11V6: Fixed Mandrels-Example # 3

D(n) Ppd(n) Pio(n) Piod(n) Tv CT Pvo(n) Qgi

NO DEPTH TBG PRES SURF V open @ VALVE TEMP T R INJ GAS

API RP 11V6 Example # 3:Table 7 - Mandrel/Valve Summary

Page 191: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 191/200

2007 Workshop Clegg & Smith 191

4345 D5500 D

D

NO. DEPTH TBG PRES SURF V open @ VALVE TEMP T-R INJ GAS

  ft psi psi psi 'F - psi mscfd

(INPUT) ------- ------- ------- ------- ------- ------- -------

  0 120 1200 1200 100 - -

1 2350 406 1200 1275 124 0.873 1150 917

2 3460 562 1180 1288 135 0.854 1151 918

3 5000 800 1160 1315 150 0.829 1159 918

4 6000 968 1140 1323 160 0.813 1158 848

5 6500 1056 1120 1315 165 0.806 1148 761

6 7000 1147 1100 1307 170 0.799 1139 626

7 7500 1240 1080 1298 175 0.792 1129 393

8 7900 1317 1060 1286 179 0.786 1118 #N/A

1/4” SODummy

4345 D5500 D

D

Summary Example Problem No. 3

Page 192: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 192/200

2007 Workshop Clegg & Smith 192

• Calculated a PI = 0.25 bfpd

• Used Equilibrium Curve to predict a rate of 500+ bfpd

from about 7500 ft.• Spaced valves using TVD

• Recommended valves @ 2350, 3460, 5000, 6000,6500 & 7000 ft with dummies @ 4345, 5500 & 7900 ftplus a 14/64 inch screened orifice @ 7500 ft to pass500 MCFD

Summary for Design

• The better the data the more specific the design

Page 193: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 193/200

2007 Workshop Clegg & Smith 193

• The better the data, the more specific the design.• The poorer the data, the more flexible the design.

• If feasible, design to lift from near bottom.• Carefully select the tubing size.

• For better valve performance, use 1 ½-inch valves.

Select the smallest port that will pass the requiredinjection gas.

• For most wells, use a screened orifice as the bottom

injection “valve.”

Impact of Significant Variables

• INJECTION PRESSURE: The higher the injection gas pressure, theid th d l i d th d th i lift d th

Page 194: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 194/200

2007 Workshop Clegg & Smith 194

INJECTION PRESSURE: The higher the injection gas pressure, thewider the mandrel spacing and the deeper the maximum lift depthcan be.

• FLOWING WELLHEAD TUBINE PRESSURE: The higher the

pressure, the lower the maximum producing rate and the higherthe injection gas requirement will be.

• TUBING SIZE: Larger tubing sizes permit higher producing ratesand wider mandrel spacing.

• UNLOADING GRADIENTS: Higher gradients mean closer mandrelspacing and shallower maximum lift depths.

• INJECTION GAS GRAVITY: Higher gas gravity means wider

mandrel spacing and higher test rack opening pressures for gaslift valves.

• CLOSER MANDREL SPACING: Permits near optimum gas liftperformance and unloading the well with less injection gas

volume.

DESIGN PRINCIPLES

Page 195: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 195/200

2007 Workshop Clegg & Smith 195

• CLOSER MANDREL SPACING IS

PREFERRED.

• HIGHER PRODUCTIVITY WELLS

REQUIRE CLOSER MANDREL SPACING

NEAR TOP OF WELL.• MANDREL SPACING SHOULD BE

BASED ON WELL LIFE CYCLEESPECIALLY OFFSHORE.

GOOD GAS-LIFT PRACTICES

• Streamlined Wellhead

Page 196: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 196/200

2007 Workshop Clegg & Smith 196

• Streamlined Wellhead

• Flowline Size• Separator Pressure

• Well Conditioningf/Unloading

• Unloading Precautions

UNLOADING PRECAUTIONS

• Don’t Cut Out the Valves!

Page 197: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 197/200

2007 Workshop Clegg & Smith 197

• Don t Cut Out the Valves!• Buildup Injection Pressure Slowly

• 5 psi/min. to 400 psi• 10 psi/min. Until Gas Production

• Then increase Gas Injection Rateto the Desired Value

Preferences

SINGLE COMPLETIONS PREFERRED OVERDUALS

Page 198: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 198/200

2007 Workshop Clegg & Smith 198……………….GasLift Workshop - Smith & Clegg 2/3/2006 Page 82

DUALS.

LARGER OD (1.5”) GAS LIFT VALVES PERMITSMALLER INJECTION PRESSURE DROPS FORCONTINUOUS FLOW IN SMALLER PORT SIZES.

MANDRELS W/ORIENTING SLEEVES BETTERFOR HIGHLY DEVIATED WELLS.

RuleOfThumb: FLOWLINE SIZE SHOULD BE ONESTANDARD SIZE LARGER THAN TUBING SIZE.

STREAMLINING WELLHEADS REDUCESFLOWING WELLHEAD BACKPRESSURE &INJECTION GAS REQUIREMENT.

Summary

Page 199: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 199/200

2007 Workshop Clegg & Smith 199

•  You have learned to do a complete gas liftdesign using an equilibrium curve to determine

the max rate, various graphical methods forspacing, and how to calculate the test rackpressures for injection pressure operatedvalves.

•  You how know more than most people about

gas lift---hopefully!

This is to certify that

Page 200: Gs Lift Design Oourse

8/13/2019 Gs Lift Design Oourse

http://slidepdf.com/reader/full/gs-lift-design-oourse 200/200

 ________________ 

Completed the

API Gas-Lift

Design Course

  id mith


Recommended