+ All Categories

GSSSS

Date post: 07-Aug-2018
Category:
Upload: george-papazafeiropoulos
View: 213 times
Download: 0 times
Share this document with a friend

of 6

Transcript
  • 8/20/2019 GSSSS

    1/13

    General recurrence form of the Generalized Second-

    Order Accurate GSSSS Algorithm for SDOF system

     Amplification matrix

    Load vector

    Recurrence relation

    © George Papazafeiropoulos, 22-Dec-2013

  • 8/20/2019 GSSSS

    2/13

    General explicit form of the Generalized Second-

    Order Accurate GSSSS Algorithm

    Free parameters: Λ6W1, Λ5W2, Λ3W3, Λ4W1, Λ1W1, Λ2W2, W1, λ1, λ2, λ3, λ4, and λ5.

    © George Papazafeiropoulos, 22-Dec-2013

  • 8/20/2019 GSSSS

    3/13

    Free parameters of integration algorithm

    Free parameters (12) : Λ6W1, Λ5W2, Λ3W3, Λ4W1, Λ1W1, Λ2W2, W1, λ1, λ2, λ3, λ4, and λ5.

    Weighted residual equation :

    Weighted time field:

    where wp are constant coefficients and Γ = (t – tn)/ Δt.

    Definition of Wi :

    © George Papazafeiropoulos, 22-Dec-2013

  • 8/20/2019 GSSSS

    4/13

    Selection of integration parameters for various

    common algorithms

    © George Papazafeiropoulos, 22-Dec-2013

    Central

    DifferenceMethod

     Average

    constant

    acceleration

    method

    Linear

     Acc elerat ionMethod

    Fox-

    Goodwinformula

    Family of

    NewmarkMethods

    ρ∞ (interval)

    w1 -15 -15 -15 -15 -15

    w2 45 45 45 45 45

    w3 -35 -35 -35 -35 -35

    W1Λ1 1 1 1 1 1

    W2Λ2 0 0.25 1/6 1/12 β

    W3Λ3 0 0.25 1/6 1/12 β

    W1Λ4 0.5 0.5 0.5 0.5 γ

    W2Λ5 0.5 0.5 0.5 0.5 γ

    W1Λ6 1 1 1 1 1

    λ1 1 1 1 1 1

    λ2 0.5 0.5 0.5 0.5 0.5

    λ3 0 0.25 1/6 1/12 β

    λ4 1 1 1 1 1

    λ5 0.5 0.5 0.5 0.5 γ

  • 8/20/2019 GSSSS

    5/13

    Selection of integration parameters for various

    U0-V0 algorithms

    © George Papazafeiropoulos, 22-Dec-2013

    U0-V0-Opt U0-V0-CA U0-V0-DA

    ρ∞ (interval) [0 1] [1/3 1] [0 1]

    w1  -15(1-2ρ∞)/(1-4ρ∞) -15*(1-5*ρ∞)/(3-7*ρ∞) -15

    w2  15(3-4ρ∞)/(1-4ρ∞) 15*(1-13*ρ∞)/(3-7*ρ∞) 45

    w3  -35(1-ρ∞)/(1-4ρ∞) 140*ρ∞/(3-7*ρ∞) -35

    W1Λ1  1/(1+ρ∞) (1+3*ρ∞)/2/(1+ρ∞) 1

    W2Λ2  1/2/(1+ρ∞) (1+3*ρ∞)/4/(1+ρ∞)  1/2

    W3Λ3  1/2/(1+ρ∞)^2 (1+3*ρ∞)/4/(1+ρ∞)^2 1/2/(1+ρ∞)

    W1Λ4  1/(1+ρ∞) (1+3*ρ∞)/2/(1+ρ∞) 1

    W2Λ5  1/(1+ρ∞)^2 (1+3*ρ∞)/2/(1+ρ∞)^2 1/(1+ρ∞)

    W1Λ6  (3-ρ∞)/2/(1+ρ∞) 1  (3+ρ∞)/2/(1+ρ∞)

    λ1 1 1 1

    λ2 1/2 1/2 1/2

    λ3  1/2/(1+ρ∞) 1/2/(1+ρ∞) 1/2/(1+ρ∞)

    λ4 1 1 1

    λ5  1/(1+ρ∞); 1/(1+ρ∞) 1/(1+ρ∞)

  • 8/20/2019 GSSSS

    6/13

    Selection of integration parameters for various

    U0-V1 algorithms

    © George Papazafeiropoulos, 22-Dec-2013

    U0-V1-Opt -

    generalized a-method

    (Chung & Hulbert,1993)

    U0-V1-CA - Hilber-

    Hughes-Taylor

    method (Hilber,Hughes & Taylor,

    1977)

    U0-V1-DA -

    Wood–Bossak–Zienki

    ewicz method (Wood,Bossak & Zienkiewicz,

    1980)

    ρ∞ (interval) [0 1] [1/2 1] [0 1]

    w1  -15*(1-2*ρ∞)/(1-4*ρ∞) -15*(1-2*ρ∞)/(2-3*ρ∞) -15

    w2  15*(3-4*ρ∞)/(1-4*ρ∞) 15*(2-5*ρ∞)/(2-3*ρ∞) 45

    w3  -35*(1-ρ∞)/(1-4*ρ∞) -35*(1-3*ρ∞)/2/(2-3*ρ∞) -35

    W1Λ1  1/(1+ρ∞) 2*ρ∞/(1+ρ∞) 1

    W2Λ2  1/2/(1+ρ∞) ρ∞/(1+ρ∞)  1/2

    W3Λ3  1/(1+ρ∞)^3 2*ρ∞/(1+ρ∞)^3 1/(1+ρ∞)^2

    W1Λ4  1/(1+ρ∞) 2*ρ∞/(1+ρ∞) 1W2Λ5  (3-ρ∞)/2/(1+ρ∞)^2 ρ∞*(3-ρ∞)/(1+ρ∞)^2 (3-ρ∞)/2/(1+ρ∞)

    W1Λ6  (2-ρ∞)/(1+ρ∞) 1  2/(1+ρ∞)

    λ1 1 1 1

    λ2  1/2 1/2 1/2

    λ3  1/(1+ρ∞)^2 1/(1+ρ∞)^2 1/(1+ρ∞)^2

    λ4 1 1 1

    λ5  (3-ρ∞)/2/(1+ρ∞) (3-ρ∞)/2/(1+ρ∞) (3-ρ∞)/2/(1+ρ∞)

  • 8/20/2019 GSSSS

    7/13

    Selection of integration parameters for various

    U1-V0 algorithms

    © George Papazafeiropoulos, 22-Dec-2013

    U1-V0-Opt U1-V0-CA U1-V0-DA

    ρ∞ (interval) [0 1] [1/2 1] [0 1]

    w1 -30*(3-8*ρ∞+6*ρ∞^2)/(9-

    22*ρ∞+19*ρ∞^2)

     -60*(2-

    8*ρ∞+7*ρ∞^2)/(11-

    48*ρ∞+41*ρ∞^2)

     -30*(3-4*ρ∞)/(9-11*ρ∞)

    w2

     15*(25-

    74*ρ∞+53*ρ∞^2)/2/(9-

    22*ρ∞+19*ρ∞^2)

     15*(37-

    140*ρ∞+127*ρ∞^2)/2/(1

    1-48*ρ∞+41*ρ∞^2)

     15*(25-37*ρ∞)/2/(9-

    11*ρ∞)

    w3

     -35*(3-

    10*ρ∞+7*ρ∞^2)/(9-

    22*ρ∞+19*ρ∞^2)

     -35*(5-

    18*ρ∞+17*ρ∞^2)/(11-

    48*ρ∞+41*ρ∞^2)

     -35*(3-5*ρ∞)/(9-11*ρ∞)

    W1Λ1   (3-ρ∞)/2/(1+ρ∞) (1+3*ρ∞)/2/(1+ρ∞) (3+ρ∞)/2/(1+ρ∞)

    W2Λ2   1/(1+ρ∞)^2 2*ρ∞/(1+ρ∞)^2 1/(1+ρ∞)

    W3Λ3   1/(1+ρ∞)^3 2*ρ∞/(1+ρ∞)^3 1/(1+ρ∞)^2

    W1Λ4   (3-ρ∞)/2/(1+ρ∞) (1+3*ρ∞)/2/(1+ρ∞) (3+ρ∞)/2/(1+ρ∞)W2Λ5   2/(1+ρ∞)^3 4*ρ∞/(1+ρ∞)^3 2/(1+ρ∞)^2

    W1Λ6   (2-ρ∞)/(1+ρ∞) 1   2/(1+ρ∞)

    λ1 1 1 1

    λ2  1/2 1/2 1/2

    λ3   1/2/(1+ρ∞) 1/2/(1+ρ∞) 1/(1+ρ∞)^2

    λ4 1 1 1

    λ5   1/(1+ρ∞) 1/(1+ρ∞) (3-ρ∞)/2/(1+ρ∞)

  • 8/20/2019 GSSSS

    8/13

    Linear elastic SDOF system without damping

    © George Papazafeiropoulos, 22-Dec-2013

    int   ( )mu F p t  + =Differential equation of motion:

    Force due to stiffness and damping:

    Tangent stiffness:

    Tangent damping:

    intF ku=

    T K k =

    0T 

    C  =

  • 8/20/2019 GSSSS

    9/13

    Linear viscoelastic SDOF system

    © George Papazafeiropoulos, 22-Dec-2013

    int   ( )mu F p t  + =Differential equation of motion:

    Force due to stiffness and damping:

    Tangent stiffness:

    Tangent damping:

    intF ku cu= +  

    T K k =

    T C c=

  • 8/20/2019 GSSSS

    10/13

    Linear elastic SDOF system with constant hysteretic

    damping

    © George Papazafeiropoulos, 22-Dec-2013

    int   ( )mu F p t  + =Differential equation of motion:

    Force due to stiffness and damping:

    Tangent stiffness:

    Tangent damping:

    int

    2k F ku u

    η 

    ω = +  

    T K k =

    2T 

    k C 

      η 

    ω 

    =

  • 8/20/2019 GSSSS

    11/13

    Bilinear elastic SDOF system without damping (1)

    © George Papazafeiropoulos, 22-Dec-2013

    int   ( )mu F p t  + =Differential equation of motion:

    Force due to stiffness and damping:

    ( )

    )

    ( )

    min, ,

    min,

    ,

    ,

    int

    max,

    ,,

    max, ,

    , ,

    , , 0

    , 0,

    , ,

    neg y neg

    neg

     y neg

     y neg

     pos

     y pos y pos

     pos y pos

     f u u

     f u u u

    uF 

     f 

    u u uu

     f u u

      ∈ −∞

      ∈

    =

      ∈   ∈ ∞

  • 8/20/2019 GSSSS

    12/13

    ( ))

    ( )

    ,

    min,

    ,

    ,

    max,

    ,

    ,

    ,

    0, ,

    , , 0

    , 0,

    0, ,

     y neg

    neg

     y neg

     y neg

    T  pos

     y pos

     y pos

     y pos

    u u

     f u u

    u

    K   f u u

    u

    u u

      ∈ −∞

      ∈

    =   ∈   ∈ ∞

    Bilinear elastic SDOF system without damping (2)

    © George Papazafeiropoulos, 22-Dec-2013

    Tangent stiffness:

    Tangent damping: 0T 

    C  =

  • 8/20/2019 GSSSS

    13/13

    Linear elastic SDOF system with coulomb friction

    damping

    © George Papazafeiropoulos, 22-Dec-2013

    int   ( )mu F p t  + =Differential equation of motion:

    Force due to stiffness and damping:

    Tangent stiffness:

    Tangent damping:

    int

    uF F ku

    u= +

    T K k =

    0, 0

    , 0T 

    uC 

    u

      ≠=

    +∞ =