+ All Categories
Home > Documents > [email protected] Flowing and stationary adsorption experiment. Chromatographic determination of...

[email protected] Flowing and stationary adsorption experiment. Chromatographic determination of...

Date post: 15-Jan-2016
Category:
Upload: spencer-askins
View: 224 times
Download: 0 times
Share this document with a friend
30
[email protected]. pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna Nowicka Department of Physical Chemistry Faculty of Chemistry UAM, Poznań
Transcript
Page 1: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

[email protected]

Flowing and stationary adsorption experiment.

Chromatographic determination of adsorption isotherm

parameters

Flowing and stationary adsorption experiment.

Chromatographic determination of adsorption isotherm

parameters

Waldemar Nowicki, Grażyna NowickaWaldemar Nowicki, Grażyna Nowicka

Department of Physical Chemistry

Faculty of Chemistry UAM, Poznań

Page 2: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

The overlapping of the electrical fields of colloidal particles causes the shift of the adsorption equilibrium of ionic species and changes their equilibrium concentration in the bulk

Page 3: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Supernatant-sediment separation method

Constant potentialConstant potential

Overestimation

Page 4: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Supernatant-sediment separation method

Constant charge Constant charge

Equilibrium ?

Underestimation

Page 5: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Is there any possibility to retrieve the adsorption isotherm parameters from the chromatographic data?

Does the analytical relationship exist between the adsorption isotherm and the chromatographic outlet profile parametes?

Page 6: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Inverse problem of chromatography (IPC) – calculation of the adsorption isotherm from the profiles of bands.

Frontal analysis (FA) – the determination of the amount adsorbed as a function of the mobile phase concentration

Frontal analysis (FA) – the determination of the amount adsorbed as a function of the mobile phase concentration

ads

0DR*

V

CVVq

Perturbation on a plateau technique (PPT) – the determination of the slope of the isotherm as a function of the mobile phase concentration

Perturbation on a plateau technique (PPT) – the determination of the slope of the isotherm as a function of the mobile phase concentration

0

*

00ret 11

)(

0

tC

q

VtCt

CC

Page 7: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Inverse problem of chromatography (IPC) – calculation of the adsorption isotherm from the profiles of bands.

Frontal analysis by characteristic point (FACP), elution by characteristic point (ECP) – the analysis of the diffuse rear boundary

Frontal analysis by characteristic point (FACP), elution by characteristic point (ECP) – the analysis of the diffuse rear boundary

Inverse numerical procedure (INP) – calculation of the adsorption isotherm from the profiles of overloaded bands by minimizing the differences between overloaded profiles and the profiles calculated by solving the mass balance equation (EDM)

Inverse numerical procedure (INP) – calculation of the adsorption isotherm from the profiles of overloaded bands by minimizing the differences between overloaded profiles and the profiles calculated by solving the mass balance equation (EDM)

Page 8: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

1-sol,isol,i1-sol,isol,i 2nn

dnn 1-sol,isol,i1-sol,isol,i 2

nnd

nn

,,,_,,surf,isol,isurf,isol,i bqtypeisothermNnnfRnn ,,,_,,surf,isol,isurf,isol,i bqtypeisothermNnnfRnn

Flow

Elementalplate

Page 9: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

bCq *

bCbC

qq

1

*

bCbC

1

bC

bC

1

/11 bC

bC

exp1

expbCbC

Henry (linear) isotherm

Langmuir isotherm

Generalized Freundlich isotherm

Langmuir-Freundlich isotherm

Toth isotherm

Frumkin-Fowler-Guggenheim isotherm

Page 10: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Jovanovic isotherm

bC exp1

Extended Jovanovic isotherm

bC exp1

Fowler –Guggenheim/Jovanovic-Freundlich isotherm

expexp1 bC

Page 11: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation of the adsorbate percolation through the columnParameters of the simulation shown on the program interface

Rectangular inlet profile, Langmuir model

Sinusoidal inlet profile, Langmuir model

Sinusoidal inlet profile, Henry model

Sinusoidal inlet profile, FFG model

Page 12: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

t/t0

0.8 1.0 1.2 1.4

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

d=0.8d=0.6d=0.4d=0.2d=0.0

t/t0

0.8 1.0 1.2 1.4

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

d=0.8d=0.6d=0.4d=0.2d=0.0

No adsorption – diffusion only No adsorption – diffusion only Column volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000

Precision 1e-9

Page 13: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.200b=0.100b=0.050b=0.020b=0.010b=0.005

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.200b=0.100b=0.050b=0.020b=0.010b=0.005

Henry isotherm Henry isotherm Column volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000Dispersion parameter 1.0Heterogeneity coefficient 1.0Precision 1e-9

Page 14: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.200b=0.100b=0.050b=0.020b=0.010b=0.005

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.200b=0.100b=0.050b=0.020b=0.010b=0.005

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

Langmuir isotherm Langmuir isotherm Column volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000Dispersion parameter 1.0Heterogeneity coefficient 1.0Precision 1e-9

Page 15: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

c/c0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

c/c0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Generalized Freundlich isotherm Generalized Freundlich isotherm Column volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000

Heterogeneity coefficient 1.0Precision 1e-9

Page 16: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Langmuir-Freundlich isotherm Langmuir-Freundlich isotherm Column volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000

Heterogeneity coefficient 1.0Precision 1e-9

Page 17: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

Thet

a

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1.0 1.2 1.4 1.6 1.8

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

Thet

a

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1.0 1.2 1.4 1.6 1.8

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Toth isotherm Toth isotherm Column volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000

Heterogeneity coefficient 1.0Precision 1e-9

Page 18: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

Thet

a

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1.8 2.0 2.2

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.10, =1.0b=0.10, =0.8b=0.10, =0.6b=0.10, =0.4b=0.10, =0.2b=0.10, =0.0b=0.10, =-0.2b=0.10, =-0.4b=0.10, =-0.6

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

Thet

a

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1.8 2.0 2.2

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.10, =1.0b=0.10, =0.8b=0.10, =0.6b=0.10, =0.4b=0.10, =0.2b=0.10, =0.0b=0.10, =-0.2b=0.10, =-0.4b=0.10, =-0.6

Frumkin –Fowler-Guggenheim isothermFrumkin –Fowler-Guggenheim isothermColumn volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000Adsorption constant 0.02

Precision 1e-9

Page 19: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.200b=0.100b=0.050b=0.020b=0.010b=0.005

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.200b=0.100b=0.050b=0.020b=0.010b=0.005

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

Jovanovic isotherm Jovanovic isotherm Column volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000Dispersion parameter 1.0Heterogeneity coefficient 1.0Precision 1e-9

Page 20: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Simulation results:

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Equilibrium concentration

0.0 0.2 0.4 0.6 0.8 1.0

The

ta

0.0

0.2

0.4

0.6

0.8

1.0

t/t0

1 2 3

c/c 0

0.0

0.2

0.4

0.6

0.8

1.0

b=0.050, =1.0b=0.050, =0.9b=0.050, =0.8b=0.050, =0.7b=0.020, =1.0b=0.020, =0.9b=0.020, =0.8b=0.020, =0.7b=0.020, =0.6

Extended Jovanovic isothermExtended Jovanovic isothermColumn volume 1Column length 10Maximum adsorption amount 10Solution concentration 1.00Input impuls time 100Concentration profile rectangleElution time 3500Theoretical shell number 1000

Heterogeneity coefficient 1.0Precision 1e-9

Page 21: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

The result generalization:

The adsorption isotherm parameters (q, b, , ) are correlated to the outlet profile parameters (the time of retention, the peak asymmetry)

There is the explicit analytical relationship between the retention time and some isotherm parameters

The outlet profile can be approximately described by the two parameter equation

Page 22: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Equation of the uotlet profile (extension of the Henry model):

NtD

tu

xN

ttND

ttu

xNCtxC

2

0

01

00

02

erf2

erf2

,

Retention coefficient from differential mass balans equation:

u

u0 10

CCCVq

Assumption:

0

0T

uu

CC

u 10

CCCVq

Page 23: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Retention coefficients calculated in the different way(Lamgmuir isotherm)

Page 24: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

The dependence 1/(κ-1)=f(C0) for Langmuir isotherm

Page 25: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

The dependence 1/(κ-1)=f(C0) for Toth isotherm

Page 26: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

The dependence 1/(κ-1)=f(C0) for Langmuir-Freundlich isotherm

Page 27: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

The dependence 1/(κ-1)=f(C0) for Frumkin-Fowler-Guggenheim

isotherm (only two parameters can be retrieved)

Page 28: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

00 d

/1erferf

21

zzH

zz

Hz

00 d

/1erferf

21

zzH

zz

Hz

12

1D

D 1

21D

D

,,1 qbfD ,,1 qbfD

Page 29: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

For the small adsorbate concentration

FFG model for α=1 Henry model

FFG model for α=0 Langmuir model

H2

1 1 DCD

H2

2 1 DCD

Page 30: Gwnow@amu.edu.pl Flowing and stationary adsorption experiment. Chromatographic determination of adsorption isotherm parameters Waldemar Nowicki, Grażyna.

Conclusions:

Some two or three parameter isotherms can be retrieved from the chromatograhic data

The correct relationship between the retention coefficient and the adsorbate concentration for any isotherm is found

In the case of the Langmuir isotherm the relationship between initial adsorbate concentration and the time of retention can be written in the rectilinear form (L model)

Isotherms with heterogeneity parameters can be retrieved using the nonlinear least square method from the retension time vs. initial adsorbate concentration dependencies (T model )

The adsorbate-adsorbate interaction parameter can be obtained on the

basis of the elution profile asymmetry analysis (FFG model)


Recommended