+ All Categories
Home > Documents > H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf ·...

H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf ·...

Date post: 13-May-2018
Category:
Upload: lycong
View: 217 times
Download: 1 times
Share this document with a friend
37
1 H Nuclear Magnetic Resonance x-rays ultraviolet (UV) visible Infrared (IR) microwaves radiowaves High Frequency Low Frequency Middle Frequency Frquency (MHz) Sample Nuclei 1 H, 19 F 31 P, 11 B, 13 C 2 H, 14 N energy frequency wavelength
Transcript
Page 1: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

x-rays ultraviolet(UV) visible Infrared

(IR) microwaves radiowaves

High Frequency Low FrequencyMiddle Frequency

Frquency (MHz)

Sample Nuclei 1H, 19F 31P, 11B, 13C 2H, 14N

energy

frequency

wavelength

Page 2: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Atomic Mass, Number and Spin Quantum Number 1s

2p

2p

Page 3: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Atomic Mass, Number and Spin Quantum Number

nucleus qantum number, I

# of spin states

resonance at 100MHz

natural abundance

1H 1/2 2 100.0 99.98%

2H 1 3 15.5 0.02%

12C 0 0 0 98.9%

13C 1/2 2 25.3 1.1%

19F 1/2 2 94.1 100%

31P 1/2 2 40.5 100%

number of spin states allowed = 2I +1 +

not NMR active

Page 4: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Nuclei in a Magnetic Field

+

+

+

+

+

+

+

+

+

+

++

+

+

B0

AppliedMagneticField

Page 5: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Nuclei in Magnetic Field

+

++

+

+

+

ΔE = hv ΔE = hv

magnetic field (B0)

spin -1/2

spin + 1/2

ΔE = (hγ/2π)B0 = hv h = Planks constant γ = magnetogyric ratio

Page 6: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Nuclei in Magnetic Field

+ E1

E2

+

ΔE = (hγ/2π)B0 = hv

Page 7: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Highest Field NMR (2015)

!

A part of the recently developed 1,020 MHz-NMR system equipped with superconducting magnets (about 5 m high and weighing about 15 tons). This part contains coils made of a high-temperature superconductor. Liquid helium is used for cooling.

http://www.nims.go.jp/eng/news/press/2015/07/201507010.html

Page 8: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Page 9: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Nuclei in Magnetic Field

+ E1

E2

+

spin state populations 60MHz upper: 1,000,000

lower: 1,000,009 300MHz upper: 1,000,000

lower: 1,000,048

relaxation modes: 1. spin lattice-relaxation (T1): through bond thermal energy transfer. Usually between a C-H bond (most impt here)

2. transferal-relaxation (spin-spin relaxation) (T2): through space energy transfer of spin information. Usually H H.

no signal if # spin +1/2 = # spin -1/2 (saturation)! nuclei (to avoid, nuclei must return to ground state between Rf pulses)

Page 10: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical

Page 11: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical

Page 12: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Pulsed FT Spectrometer

4.73 Τ magnet

Page 13: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

1H NMR Pulse Sequence

Page 14: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

• A short (µs), powerful rf pulse (B1) of frequency ν1 is applied along x axis • Tips M0 (bulk magnitization vector) into xy plane for all protons at the same time • The detector is in the xy plane, so the “angle of the pulse” is important • Has implications for 2D NMR and other experiments

1H Nuclear Magnetic Resonance

What Happens During the Pulse?

Page 15: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

• Consider an M0 for three individual net magnetizations (e.g., 3 protons), each with their own Lamor frequency (ω) • The 90º pulse tips all into xy plane, but each proton precesses at its own ω relative to ν1. This can be slower or faster than ν1. • Resulting raw data known as the FID (free induction decay)

1H Nuclear Magnetic Resonance

What Happens During the Pulse?

ω3

ω1

ω2

Page 16: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

The FID

Page 17: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Signal to Noise

!f = frequency n = # scans

How To Increase Sensitivity/Signal

• use larger sample, increase conc. (increase # of spins, N)

• increase # of scans (ns)

• ↑B0 (increases ν)

Page 18: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Sample Preparation

• 5–40 mg typical → only µg needed for 1H NMR

• solvents: typically deuterated to avoid overlap with sample peaks - CCl4, CDCl3, C6D6, acetone-d6, DMSO-d6, CD2Cl2, CD3CN, etc. - CDCl3 has become the “standard” solvent

- single peak observed, - relatively far away from other peaks (δ 7.27 ppm)

- best solvents are those that are volatile and not very hygroscopic - No-D NMR, see: Hoye Org. Lett. 2004, 6, 953.

• standard: varies with nucleus of interest - for 1H and 13C: SiMe4 (TMS) = 0 ppm - solvent peak

Collecting Spectra

Page 19: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Interpretation of 1H NMR Spectra

important features:

chemical shift: describes position of the absorption (aka: peak, resonance) provides information on the chemical environment

integration: indicates how many protons are represented by each signal multiplicity: aka spin-spin splitting

indicates how many protons are on neighboring carbons

H3C SiCH3

CH3

CH3

tetramethylsilane (TMS)

Page 20: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Effect of Field Strength on Signal

Page 21: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift and the Delta Scale (ppm)

Effects of External Magnetic Field (MHz)

Page 22: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift and the Delta Scale (ppm)

At 60 MHz

At 300 MHz

δ =162 Hz60 MHz

= 2.70 ppm

δ =νH (Hz) - νTMS (Hz)ν applied field (MHz)

= shift in Hzfrequency in MHz

= ppm

1H scale: typically 0-10 ppm (some variation)

δ =810 Hz

300 MHz= 2.70 ppm

Page 23: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

General Ranges

upfield (shielded)

downfield (deshielded)

increasing frequency

increasing field strength

Page 24: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Pavia Table 5.4

see also: Appendices 2, 3, and 4

Page 25: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Influences

proton chemical shift is influenced by: • bond polarity • hydbridization of the attached atom • presence of e- donating or e- withdrawing groups

diamagnetic shielding

Page 26: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

electron density about a proton nucleus affects it's chemical shift

downfield upfield

nucleus has↓ e- density

larger effectivemagnetic field

nucleus has↑ e- density

smaller effectivemagnetic field

deshielded shielded

increasing field strength (Hz)

C HO H

requires moreenergy to cause

spin flip

3.5 2.1 2.5 2.1

increasing frequency

Bi Bi Heffective > H0 Heffective < H0

Page 27: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Electronegativity Effects

Compound CH3X CH3F CH3OH CH3Cl CH3Br CH3I CH4 (CH3)4Si

Element X F O Cl Br I H Si

Electronegativity 4.0 3.5 3.1 2.8 2.5 2.1 1.8

Chemical Shift 4.26 3.40 3.05 2.68 2.16 0.23 0.0

Dependance of Chemical Shift of Element Electronegativity

Page 28: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Substituent Effects

Additivity of Effects (Not Exactly)

Molecule CH3Cl CH2Cl2 CHCl3

Chemical Shift 3.05 5.30 7.26

CH3O

CH3 Cl

CH3

δ 3.05

δ 3.24

CH2 ClCH3O

δ 3.51 δ 5.46

Page 29: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

see also: Pavia, Appendix 6 calculation of chemical shifts

Page 30: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Electronegativity Effects

C C HC

CC C H

H

CC C H

H

HHH

3°(methine)

2°(methylene)

1°(methyl) cyclopropane

> > >

2 ppm 1 ppm 0 ppm

shift not due to electronegativity

Hybridization Effects

sp > sp2 > sp3

BUT! H

R> H > C C H

4.5 - 7 ppm 2 - 3 ppm 0 - 2 ppm

Page 31: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Resonance Effects

H

H

H

H

5.28 ppmOCH3

H4.1 ppm

H

H6.4 ppm

OCH3

H

H

H

H

7.8 ppmH

H3C5.8 ppm

OEtO

H

H

H3C

OEtO

Page 32: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Hydrogen Bonding

functional group proton chemical shift

carboxylic acid COOH 10.5-12.0 ppm

phenol ArOH 4-7 ppm

alcohol ROH 0.5-5 ppm

amine RNH2 0.5-5 ppm

amide CONH2 5-8 ppm

enol C=C-OH >15 ppm

R O H O H ORRH

δ+ δ+ δ+

O H

OR

OH

OR

Page 33: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

systems not readily explained by prior discussion

aromatic rings

alkenes

aldehydes terminal alkynes

9.0 – 10.0 ppm 4.5 – 7.0 6.5 – 8.0 1.5 – 3.0

all have π-systems it's all about circulating electrons!

Page 34: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Magnetic Anisotropy

aromatic rings

H

7.3 ppm

circulating π electrons(ring current)

Binduced (Bi)induced magnetic field

B0

induced field reinforces theapplied field(deshielding)

shift influenced by: 1. applied magnetic field 2. valence electrons about H nucleus 3. anisotropy

Page 35: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Magnetic Anisotropy

+

+

( - )( - ) HH

shielded

deshielded

HHH

HHH

HH

H HH

H

H

HHH

H

H

H

H

H deshielded (8.9 ppm)H shielded (-1.8 ppm)

H

H deshielded (7.27 ppm)

HH

H deshielded (ca. 2 ppm)H shielded (-1.0 ppm)

Page 36: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Magnetic Anisotropy

Binduced (Bi)induced magnetic field

circulatingπ electrons

circulatingπ electrons

B0

alkenes and aldehydes

H

R H

O

R9-10 ppm4.5-7 ppm

HH

+

+

( - )( - ) ORH

+

+

( - )( - )

Page 37: H Nuclear Magnetic Resonance - Chemistrychemistry.syr.edu/totah/che575/support/3a1/4-1.HNMR.pdf · 1H Nuclear Magnetic Resonance Atomic Mass, Number and Spin Quantum Number nucleus

1H Nuclear Magnetic Resonance

Chemical Shift

Magnetic Anisotropy 1.5-3 ppm

HR

alkynes

RH ++

( - )

( - )


Recommended