+ All Categories
Home > Documents > H2 Mathematics - Trigonometry

H2 Mathematics - Trigonometry

Date post: 07-Apr-2018
Category:
Upload: min-yee
View: 221 times
Download: 2 times
Share this document with a friend
13
Page 1 of 12 P Q O H2 Mathematics – Essentials for Trigonometry 1 Objective This set of materials has been developed for students to acquire just-in-time skills in trigonometry (which is not a formal topic in the syllabus), which may be applied in other areas of H2 Mathematics, e.g. summation of series, differentiation, integration, complex numbers, etc. You should spend at least 3 hours in understanding the concepts & applying them. Reference books:  Pure Mathematics by L Bostok & S Chandler  New Additional Mathematics by Ho Soo Thong & Khor Nyak Hiong 2 Basic concepts 2.1 Trigonometric ratios  adjacent side cos hypothenuse OQ OP θ  = =   opposite side sin hypothenuse PQ OP θ  = =   opposite side tan adjacent side PQ OQ θ  = =  2.2 Signs of trigonometric ratios in the four quadrants 2nd quadrant only sin θ  positive (S) 1st quadrant all 3 ratios positive ( A) 3rd quadrant only tan θ  positive (T) 4th quadrant only cos θ  positive (C) θ   
Transcript

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 1/12

Page 1 of 12

P

QO

H2 Mathematics – Essentials for Trigonometry

1 Objective

This set of materials has been developed for students to acquire just-in-time skills in

trigonometry (which is not a formal topic in the syllabus), which may be applied in other

areas of H2 Mathematics, e.g. summation of series, differentiation, integration, complexnumbers, etc.

You should spend at least 3 hours in understanding the concepts & applying them.

Reference books:

  Pure Mathematics by L Bostok & S Chandler

  New Additional Mathematics by Ho Soo Thong & Khor Nyak Hiong

2 Basic concepts

2.1 Trigonometric ratios

  adjacent sidecos

hypothenuse

OQ

OPθ   = =  

  opposite sidesin

hypothenuse

PQ

OPθ   = =  

  opposite sidetan

adjacent side

PQ

OQθ   = =  

2.2 Signs of trigonometric ratios in the four quadrants

2nd quadrant

only sinθ   positive (S)

1st quadrant

all 3 ratios positive (A)

3rd quadrant

only tanθ   positive (T)

4th quadrant

only cosθ   positive (C)

θ   

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 2/12

Page 2 of 12

2.3 Trigonometric identities

  sintan

cos

θ  θ  

θ  =  

  1cot

tan

θ  θ  

=  

  1sec

cosθ  

θ  =  

  1cosec

sinθ  

θ  =  

Note: denominator in

each identity cannot be

zero.

  Pythagorean identity: 2 2sin cos 1θ θ  + = -- (*) 

  Dividing (*) throughout by 2sin θ   , we obtain2 21 cot cosecθ θ  + =  

  Dividing (*) throughout by2

cos θ   , we obtain2 2tan 1 secθ θ  + =  

2.4 Useful relationships

  Negative angles: ( )cos cosθ θ  − =  

( )sin sinθ θ  − = −  

( )tan tanθ θ  − = −  

  Complementary angles: cos sin2

π  θ θ  

− =

 

sin cos2

π  θ θ  

− =

 

tan cot2

π  

θ θ  

− =

 

cot tan2

π  θ θ  

− =

 

For example,1

sin sin6 6 2

π π   − = − = −

 

Note: π   radians = 180  

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 3/12

Page 3 of 12

2.5 Special angles

θ    0 6

π   

4

π   

3

π   

2

π   

π   3

2

π   

2π   

sinθ    0 1

2

 1

2

  3

2

  1 0 1−   0

cosθ    1 3

1

1

0 1−   0 1

tanθ    0 1

1 3 undefined 0 undefined 0

3 Compound angle identities

For any 2 angles A and B,  A B+ ,  A B− and 2 A B+ are called compound angles.

We can prove that: ( )sin sin cos cos sin  x y x y x y+ = + -- (1) and

( )cos cos cos sin sin  x y x y x y+ = − -- (2) 

If you are interested, you may wish to refer to the geometry proofs of (1) and (2) at:

http://www.acts.tinet.ie/compoundanglesandcalcu_668.html

From (1), we replace  y with  y− to obtain ( )( ) ( )sin sin  x y x y+ − = −  

( ) ( )sin cos cos sin  x y x y= − + −  

sin cos cos sin  x y x y= − -- (3) 

From (2), we use the same approach to obtain ( )( ) ( )cos cos  x y x y+ − = −  

cos cos sin sin  x y x y= + -- (4) 

Consider (1)  ÷  (2): ( )sin cos cos sin

tancos cos sin sin

  x y x y x y

  x y x y

++ =

− 

Dividing each term in the numerator and denominator by cos cos x y ,

( )

sin cos cos sincos cos

tancos cos sin sin

cos cos

  x y x y x y

 x y  x y x y

 x y

+

+ =−

 

tan tan

1 tan tan

 x y

 x y

+=

−-- (5) 

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 4/12

Page 4 of 12

From (5), we replace  y with  y− to obtain ( )( ) ( )tan tan  x y x y+ − = −  

tan tan

1 tan tan

 x y

 x y

−=

+-- (6) 

Worked example 1: Without using a calculator, show that3 1

cos752 2

° −= . Similarly,

find (a) cos15° , (b) tan105° , (c) ( )sin 15°− .

( )cos 75 cos 30 45° ° °= + [ Note: 30

°& 45

°are special angles ]

cos 30 cos 45 sin 30 sin 45° ° ° °

= − [ Applying formula (2) ]

3 1 1 1

2 22 2= × − ×  

3 12 2

−= (shown)  

(a) ( )cos15 cos 45 30° ° °= −  

cos 45 cos 30 sin 45 sin 30° ° ° °

= + [ Applying formula (4) ]

1 3 1 1

2 22 2= × + ×  

3 1

2 2

+=   

(b) ( )tan105 tan 60 45° ° °

= +  

tan 60 tan 45

1 tan 60 tan 45

° °

° °

+=

−[ Applying formula (5) ]

3 1

1 3 1

+=

− × 

3 1

1 3

+=

  

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 5/12

Page 5 of 12

(c) ( ) ( )sin 15 sin 30 45° ° °− = − [ Applying formula (3) ]

sin 30 cos 45 cos 30 sin 45° ° ° °

= −  

1 1 3 1

2 22 2= × − ×  

1 32 2−=   

4 Double angle identities

We make use of (1), (2), (5) in Section 3 to obtain double angle formulae sin 2 x , cos2 x ,

tan 2 x respectively.

From (1), we replace  y with  x to obtain ( )sin sin 2  x x x+ =  

sin cos cos sin  x x x x= +

 2 sin cos x x= -- (7) 

From (2), we use the same approach to obtain ( )cos cos 2  x x x+ =  

cos cos sin sin  x x x x= −  2 2cos sin x x= −  

21 2sin x= −  2

2cos 1 x= − -- (8) 

From (5), we use the same approach to obtain ( )tan tan 2  x x x+ =  

tan tan1 tan tan

 x x x x+=

− 

2

2tan

1 tan

 x

 x=

−-- (9) 

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 6/12

Page 6 of 12

Worked example 2: Without using a calculator, find the values of sin 2 A , cos2 A and

tan 2 A if (a)3

sin5

 A = and A is acute, (b)1

cos2

 A = − and A is obtuse,

(c) cot 2 A = and 90 270 A° °

< < , (d)2

sec3

 A = and 90 0 A° °

− < < .

We will use formulae (7), (8), (9) for each part of this example.

(a)3

sin5

 A = , so4

cos5

 A = and3

tan4

 A = from the diagram

3 4 24sin 2 2sin cos 2

5 5 25  A A A∴ = = × × =   

2 2

2 2 4 3 7cos 2 cos sin

5 5 25  A A A

∴ = − = − =

  

22

3 32

2 tan 244 2tan271 tan 73

1164

 A A

 A

×

∴ = = = =−

  

(b)1

cos2

 A = − , so3

sin2

 A = and tan 3 A = − from the diagram

3 1 3sin 2 2sin cos 2

2 2 2  A A A∴ = = × × − = −   

22

2 2 1 3 1cos 2 cos sin

2 2 2  A A A

∴ = − = − − = −

  

( )22

2 tan 2 3tan 2 3

1 tan 1 3

 A A

 A

× −∴ = = =

−− −

  

 A

3

4

5

2

−1

3 A

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 7/12

Page 7 of 12

(c)1

cot 2 tan2

 A A= ⇒ = . Since tan A is positive, A has to lie in the third quadrant.

So,1

sin5

 A = − and2

cos5

 A = − from the diagram

1 2 4sin 2 2sin cos 255 5

  A A A∴ = = × − × − =   

2 2

2 2 2 1 3cos 2 cos sin

55 5  A A A

∴ = − = − − − =

  

22

12

2 tan 42tan21 tan 31

12

 A A

 A

×

∴ = = =−

  

(d)2 3

sec cos23

 A A= ⇒ = ; since 90 0 A° °

− < < , A is in the fourth quadrant.

So1

sin2

 A = − and1

tan3

 A = −  

(Try drawing the diagram yourself to obtain the ratios)

1 3 3sin 2 2sin cos 2

2 2 2

  A A A∴ = = × − × = −   

2 2

2 2 3 1 1cos 2 cos sin

2 2 2  A A A

∴ = − = − − =

  

22

12

2tan 3tan 2 3

1 tan 11

3

 A A

 A

× −

∴ = = = −−

− −

  

−2

5−1

 A

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 8/12

Page 8 of 12

By replacing  x with2

 xin (7), (8), (9) we can obtain expressions for sin x , cos x , tan x  

respectively. These are half-angle identities.

For example, sin 2 sin 2sin cos

2 2 2

  x x x x

= =

 

Similarly, 2 2 2 2cos cos sin 1 2sin 2cos 12 2 2 2 2

  x x x x x= − = − = −  

and2

2tan2tan

1 tan2

 x

 x x

=

.

By considering ( )sin 2 x x+ and the double angle formula for sine, we can obtain an

expression for sin 3 x in terms of sin x as well as cos3 x in terms of cos x . These aremultiple angle identities.

For example, ( )sin 2 sin 3  x x x+ =  

sin cos 2 cos sin 2  x x x x= +  

( ) ( )2sin 1 2sin cos 2sin cos  x x x x x= − +  

3 2sin 2sin 2sin cos  x x x x= − +  

( )3 2sin 2sin 2sin 1 sin  x x x x= − + −  

33sin 4sin x x= −  

By a similar approach, ( ) 3cos 2 cos3 4cos 3cos  x x x x x+ = = −  

Try to apply the approach and see for yourself.

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 9/12

Page 9 of 12

5 Factor formulae

We make use of (1), (2), (3), (4) in Section 3 to obtain 4 factor formulae (or product-to-

sum identities):

Consider (1)  +  (3):

( ) ( )sin sin sin cos cos sin sin cos cos sin x y x y x y x y x y x y+ + − = + + −  

2 sin cos x y= -- (10) 

Consider (1)  −  (3): ( ) ( )sin sin 2cos sin  x y x y x y+ − − = -- (11) 

Consider (2) + (4):

( ) ( )cos cos cos cos sin sin cos cos sin sin x y x y x y x y x y x y+ + − = − + +  

2 cos cos x y= -- (12) 

Consider (2)  −  (4), ( ) ( )cos cos 2sin sin  x y x y x y+ − − = − -- (13) 

Identities (10), (11), (12), (13) should be used when a given product is to be changed to a

sum or difference.

For example, to express 2cos7 cos 2θ θ   as a sum we use (12) to give

( ) ( )cos 7 2 cos 7 2 cos9 cos5θ θ θ θ θ θ    + + − = + .

Suppose in (10), we let   x y p+ = and   x y q− = . Then

2

 p q x

+= and

2

 p q y

−= .

Substitute these into the identity to obtain sin sin 2sin cos2 2

  p q p q p q

+ −+ = -- (12) 

We use the same approach for (11) to derive sin sin 2cos sin2 2

  p q p q p q

+ −− = -- (13)

Similarly, cos cos 2cos cos2 2

  p q p q p q

+ −+ = -- (14) 

and cos cos 2sin sin2 2

  p q p q p q+ −

− = − -- (15) 

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 10/12

Page 10 of 12

Identities (12), (13), (14), (15) are best used when a sum or difference is to be expressed

as a product. We call these sum-to-product identities.

For example, to express sin 6 sin4θ θ  − as a product we would use (13) to obtain

6 4 6 42cos sin 2cos5 sin

2 2

θ θ θ θ    θ θ  

+ −= .

Worked example 3: Prove thatsin sin

tancos cos 2

  A B A B

 A B

+ +≡

+. If  A, B and C are the angles of 

a triangle, deduce thatsin sin

cotcos cos 2

  A B C  

 A B

+=

+.

sin sinLHS

cos cos

 A B

 A B

+≡

[ Applying formula (12) for the numerator & formula (14) for the denominator ]

2sin cos2 2

2cos cos2 2

 A B A B

 A B A B

+ −

≡+ −

 

tan2

 A B+≡  

Since A, B and C are angles in a triangle,  A B C   π  + + =  

2 2 2

  A B C   π  +⇒ + =  

2

 A B+ ⇒

and

2

C are complementary

tan tan cot2 2 2 2

  A B C C  π  + ∴ = − =

[ Recall the useful relationships in Section 2.4 ]

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 11/12

Page 11 of 12

Worked example 4: Prove cos cos3 cos5 cos 7 4cos 4 sin 2 sinθ θ θ θ θ θ θ    − − + ≡ − .

LHS cos cos3 cos5 cos 7θ θ θ θ    ≡ − − +  

( ) ( )cos7 cos cos5 cos3θ θ θ θ    ≡ + − + [ Applying formula (14) twice ]

7 7 5 3 5 32cos cos 2cos cos

2 2 2 2

θ θ θ θ θ θ θ θ    + − + −≡ −  

2cos 4 cos3 2cos 4 cosθ θ θ θ    ≡ −  

( )2cos 4 cos3 cosθ θ θ  ≡ −  

3 32cos 4 2sin sin

2 2

θ θ θ θ    θ  

+ − ≡ −

[ Applying formula (15) ]

4 cos 4 sin 2 sinθ θ θ  ≡ −  

6 Self-attempt Exercises

Apply compound angle identities to solve Q1 & Q2.

Q1 Without using a calculator, evaluate:

(a) cos80 cos20 sin80 sin20° ° ° °+ , (b) sin 37 cos 7 cos 37 sin 7° ° ° °

− ,

(c) sin165°, (d) tan75

°.

[ Answers: (a)1

2, (b)

1

2, (c) ( )

16 2

4− , (d) 2 3+ ]

Q2 Prove ( )

( )

sintan tan

cos cos

 y  x y x

  x x y+ − ≡

+.

Apply double angle identities to solve Q3 & Q4.

Q3 Given that cos cθ   = and that θ   is acute, express in terms of c,

(a) cos2θ  , (b) sin2θ  , (c) tan 2θ  , (d) sin2

θ  .

[ Answers: (a) 22 1c − , (b) 22 1c c− , (c)2

2

2 1

2 1

c c

c

−, (d)

1

2

c−]

Q4 Provecos sin

sec 2 tan 2cos sin

 A A A A

 A A

++ ≡

−.

8/4/2019 H2 Mathematics - Trigonometry

http://slidepdf.com/reader/full/h2-mathematics-trigonometry 12/12


Recommended