+ All Categories
Home > Documents > HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three...

HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three...

Date post: 14-Jun-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
35
Remote Measurements & Research Company 214 Euclid Av. Seattle WA 98122 [email protected] TR1904 v3 April 13, 2019 — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer, PIR, Unshaded SPN radiometer, VN300 INS/GPS in weatherproof box, and GPS antenna A. Note the middle VN300 box is open and shows the small VN300 IMU. The mounting plate is fabricated from Type 5052 aluminum and hard anodized. Abstract The ShipRad is designed to provide a precision measure of down- welling shortwave radiation, both diffuse and total irradiance, from a slowly moving platform such as a ship or buoy. The instrument combines a collection of commercial radiometers with a GPS based inertial navigation system (INS), all mounted onto a single plate (photo above). An electronic box with power control and data logger accompanies each sensor plate. The data logger, Campbell CR1000, accepts the
Transcript
Page 1: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

Remote Measurements & Research Company214 Euclid Av.Seattle WA [email protected]

TR1904 v3 April 13, 2019

— HANDBOOK —ShipRad, Shipboard Radiation Package

Version 3

Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPNradiometer, PIR, Unshaded SPN radiometer, VN300 INS/GPS in weatherproof box,and GPS antenna A. Note the middle VN300 box is open and shows the small VN300IMU. The mounting plate is fabricated from Type 5052 aluminum and hard anodized.

Abstract The ShipRad is designed to provide a precision measure of down-welling shortwave radiation, both diffuse and total irradiance, from a slowlymoving platform such as a ship or buoy. The instrument combines a collectionof commercial radiometers with a GPS based inertial navigation system (INS),all mounted onto a single plate (photo above). An electronic box with powercontrol and data logger accompanies each sensor plate. The data logger,Campbell CR1000, accepts the

Page 2: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 2

Contents

Handbook Notes 3

Acronyms and Abbreviations 4

1 Product Information 51.1 Instrument Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 Mentor Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 Vendor/Developer Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Other Technical Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 System 62.1 System sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Sensor plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Data acquisition electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 Serial Numbers, April 13, 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Connections 10

4 CR1000 data logger 11

5 Operation 125.1 Connecting it together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125.2 CF memory card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Appendices 13

A Wiring 14

B Cables 18

C Radiometer Plate 24

D StrutTech Railing Mount 25

E LANL Railing Mount 26

F CR1000 program 27

Index 35

Page 3: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 3

Notes on this Manual

A collection of manuals, handbooks, and other manufacturer information for the different components of theShipRad system are maintained at rmrco.com/proj/shiprad.

Handbooks for the VN300, SPN, PIR, and CR1000 datalogger We assume the user is familiar with thesecomponents so that this handbook can be brief and concentrate on operation of the ShipRad itself.

“toc” appears along the right margin throughout this handbook. These jump to the table of contents. All entriesin the table of contents are links to that section. Also, all references to figures and sections are links. By usingthe links one can move rapidly through the handbook. (toc)

(toc)

Page 4: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 4

Acronyms and Abbreviations

CAT5 A standard ethernet cable with four twisted pairs of wires.

CR1000 The datalogger made by Campbell Scientific.

DAQ Data Acquisition system, generic term.

DIN A DIN rail is a metal rail of a standard type widely used for mounting circuit breakersand industrial control equipment inside equipment racks.

Ethernet Ethernet is a family of computer networking technologies commonly used in localarea networks (LANs)

FIDO Field Instrument Deployments & Operations

GPS Global positioning system. Also the name for the hardware/software module usingthe GPS receiver.

FRSR Fast-Rotating Shadowband Radiometer (FRSR).

IMU Inertial measurement units (IMU) is a synonym for INS.

INS An inertial navigation system (INS) is a navigation aid that uses a computer, mo-tion sensors (accelerometers) and rotation sensors (gyroscopes) to continuouslycalculate via dead reckoning the position, orientation, and velocity (direction andspeed of movement) of a moving object without the need for external references.

Irradiance The sum of radiation falling on a point from all directions in a hemisphere.

LANL Los Alamos National Laboratory

Longwave Radiation in the wave lengths 40–50 µm.

Loggernet A family of programs for writing and executing programs in Campbell data loggers.

MARCUS ARM project in the Southern Ocean, scheduled for 2017–2018

PIR The Precision Infrared Radiometer, Pyrgeometer measures the global downwellinglongwave irradiance in the waveband 4–50 µm

Radiance Radiation falling on a point from a specific spherical angle.

RJ25 A special 6-pin termination used with the A2 encoder.

RJ45 Standard 8-pin termination for the Cat5 cable.

Shortwave Visible light approximately in the wave bands 300–3000 nm.

SPN The Sunshine Pyranometer uses an array of seven, miniature thermopile sensorsand a computer-generated shading pattern to measure the direct and diffuse com-ponents of incident solar radiation.

SPNu An unshaded version of the SPN

VN300 The GPS enhanced INS made by VectorNav, Inc.

(toc)

Page 5: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 5

1 Product Information

1.1 Instrument Title

Shipboard Radiometer System (ShipRad)

The ShipRad is designed to provide a precision measure of downwelling shortwave radiation, both diffuse andtotal irradiance, from a slowly moving platform such as a ship or buoy. The instrument combines a collection ofcommercial radiometers with a GPS based inertial navigation system (INS), all mounted onto a single plate.

The basic sampling rate is 1 Hz. Raw samples are collected by the Campbell CR1000. Final estimates arecomputed in post-processing analysis.

1.2 Mentor Contact Information

For questions and information on ShipRad and its applications.

Michael ReynoldsRemote Measurements & Research Co.214 Euclid Ave.Seattle WA [email protected]

For information on the data analysis contact

Dr. Laura RiihimakiNOAA ESRL GMD/CIRES325 Broadway Street, Boulder, CO [email protected] cel: 303-497-xxxx

1.3 Vendor/Developer Contact Information

Remote Measurements & Research Co.214 Euclid Ave.Seattle WA [email protected]

1.4 Other Technical Contacts

Ray [email protected] circuits

(toc)

Page 6: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 6

2 System

2.1 System sketch

Figure 1: ShipRad system sketch. Two primary components are the sensor plate and the data acquisition box (DAQ).The radiation sensors are mounted firmly to the plate. Once the system is calibrated they cannot be moved withoutcompromising data accuracy. The DAQ contains power control and the data logger, a Campbell CR1000.

(toc)

Page 7: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 7

2.2 Sensor plate

Figure 2: Sensor plates. Three plates mounted on a board for testing. From left to right are GPS antenna B, theshaded SPN, the PIR, the unshaded SPN, the VN300 IMU, and GPS antenna A. On the center plate the VN300 box isopen so the IMU is visible.

Three identical sensor plates were built. Each plate was made from aluminum folded into a strong cross-section and hard anodized (See Fig. 6). When deployed one plate will be placed on the port side and one onthe starboard side. A third system will be available as a spare in the event of failure.

The three systems will be calibrated for tilt and solar angle and once that “characterization” is complete it isimportant that no sensor of INS component be moved. Hence the third system.

(toc)

Page 8: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 8

2.3 Data acquisition electronics

Figure 3: Data Acquisition system (DAQ).

The Data Acquisition system (DAQ) is a weathertight enclosure with the CR1000 data. All sensors on the plateand a T/RH sensor & aspirator combination plug into the box for power and data recording. A network interfaceallows data collection by the AMF data system.

In the event the AMF data collection fails a 2 GB compact flash (CF) card can collect up to 91 days of data.

(toc)

Page 9: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 9

2.4 Serial Numbers, April 13, 2019

SR1 S/N Calibspn A1555spnu A1567pir 33061F3 4.00vn300 96t/rh M1510141aspirator n/amoxa TAEJE1000886cr1000 2456NL116 3585SR2spn A349spnu A1565pir 30056F3 3.55vn300 95t/rh M1510142aspirator n/amoxa TAEJE1000866cr1000 26932NL116 3588SR3spn A925spnu A1566pir 33060F3 3.89vn300 97t/rh M1510140aspirator n/amoxa TAEJE1000849cr1000 2455NL116 3583

(toc)

Page 10: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 10

3 Connections

Each sensor on the plate, the T/RH and aspirator connect to the DAQ with Bulgin Buccaneer Series 400 IP68connectors. A connector catalog is included with the documents with this handbook.

The cables to the DAQ are 1.5 m long. They were made short purposely because the VN300 INS serial outputis high (115200 bps) and also because ships are electrically noisy and short cables minimize radio frequencyinterference.

NOTE: We have found the Bulgin 400 connectors to be weak and prone to failure. When plugging in theseconnectors be sure to line up the keyway and avoid twisting the backshell as much as possible.

(toc)

Page 11: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 11

4 CR1000 data logger

Figure 4: CR1000 panel.

(toc)

Page 12: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 12

5 Operation

This section provides a general guideline for connecting the system and beginning operation.

5.1 Connecting it together

• Mount the plate in its frame or test fixture. Do not connect cables until last.

• Mount DAQ and T/RH/Aspirator in a firm spot. Be sure the AC switch is off.

• Finally connect sensor cables. Be gentle and careful.

• Connect the AC power.

5.2 CF memory card

• Remove the CF card and reformat. This will remove all the data.

• Plug the CF card into the datalogger.

5.3 Initialization

• Turn on the AC switch. The data logger will reformat the CF card for data collection. This can take an houror so.

(toc)

Page 13: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 13

APPENDICES

(toc)

Page 14: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 14

A Wiring

Page 15: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

INSTRUMENT INSTRUMENT CONN FUNCTION BULGIN PINS WIRE COLOR CR1000

1- SPN (analogue) 8Pole SPN1/w-05 PX0410/12P+12S1- SPN (analogue) 1 Total 1 White 11- SPN (analogue) 2 Diffuse 2 Brown 21- SPN (analogue) 3 SigGND 3 Green GND1- SPN (analogue) 4 Sun 4 Yellow n/c1- SPN (analogue) 5 DL-Gnd 5 Grey Power Gnd1- SPN (analogue) 6 DL-Power 6 Pink Power +12V1- SPN (analogue) 7 Htr- 7 Blue External -V1- SPN (analogue) 8 Htr+ 8 Red External +V1- SPN (analogue) Shield Shield 9 Purple Case Gnd1- SPN (analogue) n/c n/c 10 n/c n/c1- SPN (analogue) n/c n/c 11 n/c n/c1- SPN (analogue) n/c n/c 12 n/c n/c

2- SPN (serial) SPN1-RS-10 PX0410/06P+06S2- SPN (serial) 1 Gnd 1 Brown Power Out Gnd2- SPN (serial) 2 Power in 2 White Power Out 12V2- SPN (serial) 3 RX in 3 Blue C52- SPN (serial) 4 SDI-12 4 Black nc2- SPN (serial) 5 TX out 5 Grey C62- SPN (serial) 6 n/c 6 n/c n/c

3- PIR PT06W-12-10S PX0410/08P+08S3- PIR H Case 1 Black Case gnd3- PIR A PIR- 2 White 3/L3- PIR C PIR+ 3 Red 3/H3- PIR D TCase+ 4 Green 73- PIR E TCase- 5 Blue gnd3- PIR F TDome+ 6 Brown 83- PIR G TDome- 7 Yellow gnd3- PIR n/c n/c 8 n/c n/c

Harwin M80-5001042 PX0410/10P+10S4- VecNav 300 1 VCC 1 red 12V4- VecNav 300 2 TX1 2 wht com1/rx4- VecNav 300 3 RX1 3 ylw com1/tx4- VecNav 300 4 SYNC_OUT 4 n/c n/c4- VecNav 300 5 GND 5 blk com1/gnd4- VecNav 300 6 RESTORE 6 n/c n/c4- VecNav 300 7 SYNC_IN 7 n/c n/c4- VecNav 300 8 TX2_TTL 8 n/c n/c4- VecNav 300 9 RX2_TTL 9 n/c n/c4- VecNav 300 10 GPS_PPS 10 n/c n/c

5- T/RH PX0410/10P+10S5- T/RH 1 V out 1 1 White 105- T/RH 2 RS485-B 2 Brown n/c5- T/RH 3 A Ground 3 Green Agnd5- T/RH 4 V out 2 4 Yellow 95- T/RH 5 - 5 n/c n/c5- T/RH 6 RS485-A 6 Pink n/c5- T/RH 7 V cc 7 Blue Pwr 12V continuous5- T/RH 8 GND 8 Red Pwr GND !! Note red is ground5- T/RH Shield Shield 9 Black

6- Aspirator PX0410/04P+04S6- Aspirator 1 Tach 1 Green 11

�1

Page 16: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

6- Aspirator 2 Pos 14-27 VDC 2 Red External -V6- Aspirator 3 Neg 3 Black External +V

7- SPNu (analogue) 8Pole SPN1/w-05 PX0410/12P+12S7- SPNu (analogue) 1 Total 1 White 37- SPNu (analogue) 2 Diffuse 2 Brown 47- SPNu (analogue) 3 SigGND 3 Green gnd7- SPNu (analogue) 4 Sun 4 Yellow n.c.

7- SPNu (analogue) 5 DL-Gnd 5 GreyPower Out

Gnd7- SPNu (analogue) 6 DL-Power 6 Orange Power Out 12V 7- SPNu (analogue) 7 Htr- 7 Blue External -V7- SPNu (analogue) 8 Htr+ 8 Red External +V7- SPNu (analogue) Shield Shield 9 Screen Case gnd7- SPNu (analogue) n/c n/c 10 n/c n/c7- SPNu (analogue) n/c n/c 11 n/c n/c7- SPNu (analogue) n/c n/c 12 n/c n/c

8- SPNu (serial) SPN1-RS-10 PX0410/06P+06S8- SPNu (serial) 1 Gnd 1 Brown Power Out Gnd8- SPNu (serial) 2 Power in 2 White Power Out 12V8- SPNu (serial) 3 RX in 3 Blue C58- SPNu (serial) 4 SDI-12 4 Black nc8- SPNu (serial) 5 TX out 5 Grey C68- SPNu (serial) 6 n/c 6 n/c n/c

�2

Page 17: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 17

(toc)

Page 18: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 18

B Cables

Figure 5: Summary of connectors.

Page 19: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

External

1

#1 Cable_SPN

Cable_SPN_Analog 24.2.6PATHWAY SPN to Bulgin (DAQ Exterior) Bulgin bulkhead to dataloggerCONNECTORS 8-pole M12 waterproof connector using cable type SPN1/w-05 Bulgin PX0410/12P/6065 PX0412/12S

1 Total Total output, 1mV = 1 W.m-2 White 1 1 White 1

2 Diffuse Diffuse output, 1mV = 1 W.m-2 Brown 2 2 Brown 2

3 SigGND Signal ground (connected to DL-Gnd internally) Green 3 3 Green gnd

4 Sun Contact closure on sunshine Yellow 4 4 Yellow n.c.

5 DL-Gnd Datalogger power ground Grey 5 5 Grey Power OutGnd

6 DL-Power Datalogger power supply 4 - 15V 2mA Pink 6 6 Orange Power Out

12V 7 Htr- Heater ground Blue 7 7 Blue External -V

8 Htr+ Heater power supply, 12V 1.5A max Red 8 8 Red External +V

Shield Cable screen and SPN1 body Purple 9 9 Purple Case gnd

10 1011 1112 12

#2 Cable_SPN_Serial 24.2.8

PATHWAY SPN to Bulgin (DAQ Exterior) Bulgin bulkhead to dataloggerCONNECTORS SPN1-RS-10 (use w/ PC or Serial Device) Bulgin PX0410/06P/6065 PX0412/06S

1 Gnd Ground Brown 1 1 Brown Power Out Gnd2 Power in Power from PC DTR line White 2 2 White Power Out 12V3 RX in RS232 RX in to SPN1 Blue 3 3 Blue C54 SDI-12 Not used Black 4 4 Black nc5 TX out RS232 TX out of SPN1 Grey 5 5 Grey C66 6 6

#3 Cable_PIR 24.2.4

PATHWAY PIR to Bulgin Plug (DAQ Exterior) Bulgin bulkhead to datalogger

PIR PLUG DAQ PLUG DAQ RECEP

CONNECTORS PT06W-12-10S PX0410/08P/6065 PX0410/08S CR1000

Page 20: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

External

2

H Case Shield (note: H to 1) Black 1 1 Black Case gnd

A PIR- PIR- White 2 2 White 3/L

C PIR+ PIR+ Red 3 3 Red 3/H

D TCase+ TCase+ Green 4 4 Green 7

E TCase- TCase- Blue 5 5 Blue gnd

F TDome+ TDome+ Brown 6 6 Brown 8

G TDome- TDome- Yellow 7 7 Yellow gnd

8 8 -

10K 0.01% VX1 to 7

10K 0.01% VX1 to 8

#4 Cable_Nav 24.20.?

PATHWAY Internal VN300 to Bulgin Plug (DAQ Exterior) External VN to DAQ Bulgin bulkhead to datalogger

CONNECTORS 24.02.01 Harwin M80-5001042

HARWINM80-4861005

Bulgin PX0410/10P/6065Plug

PX0412/10SReceptacle CN1000

1 VCC 3.3V to +17V red 1 1 red 12V

2 TX1RS-232 voltage levels data output from the sensor. (Serial UART #1).

wht 2 2 wht com1/rx

3 RX1RS-232 voltage levels data input from the sensor. (Serial UART #1).

orn 3 3 ylw com1/tx

4 SYNC_OUT

Output signal used for synchronization purposes. Software configurable to pulse when ADC, IMU, or attitude measurements available.

tbd 4 n.c n.c

5 GND Ground blk 5 5 blk com1/gnd

6 RESTORE

If high at reset, the device will restore to factory default state. Internally held low with10k resistor.

tbd 6 n.c n.c n.c

7 SYNC_IN

Input signal for synchronization purposes. Software configurable to either synchronize the measurements or the output with an external device.

TBD 7 n.c n.c n.c

8 TX2_TTLSerial UART #2 data output from the device at TTL voltage level (3V).

TBD 8 n.c n.c n.c

Page 21: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

External

3

9 RX2_TTLSerial UART #2 data into the device at TTL voltage level (3V).

TBD 9 n.c n.c n.c

10 GPS_PPS

GPS pulse per second output. This pin is a TTL voltage level (3V) output directly connected to the PPS (pulse per second) pin on GPS receiver A.

TBD 10 n.c n.c n.c

#5 Cable_T/RH 24.2.14

PATHWAY T/RH to DAQ (external) Bulgin bulkhead to dataloggerCONNECTORS Bulgin PX0410/10P/6065 PX0412/10S

1 V out 1 Temp, 0-1V, -40 to 60, T = v*100 - 40 White 1 1 White 10

2 RS485-B Brown 2 2 Brown3 A Ground Green 3 3 Green Agnd

4 V out 2 Humidity. 0-1 vRH = v * 100 Yellow 4 4 Yellow 9

5 - - Grey 5 56 RS485-A Pink 6 6 Pink7 V cc Blue 7 7 Blue Pwr 12V continuous8 GND Red 8 8 Red Pwr GND !! Note red is ground

SHIELD Black 9 9 Black

#6 Cable_ASP 24.2.16

PATHWAY Aspirator to DAQ (external) Bulgin bulkhead to dataloggerCONNECTORS Bulgin PX0410/04P/6065 PX0412/04S

1 Tach Green 1 1 Green 112 Pos 14-27 VDC Red 2 2 red External -V3 Neg Black 3 3 blk External +V

#7 Cable_SPNU_analog 24.2.10

SPN to Bulgin (DAQ Exterior) Bulgin bulkhead to dataloggerCONNECTORS SPN1/w-05 (use w/ Datalogger) Bulgin PX0410/12P/6065 PX0412/12S

1 Total Total output, 1mV = 1 W.m-2 White 1 1 White 3

2 Diffuse Diffuse output, 1mV = 1 W.m-2 Brown 2 2 Brown 4

3 SigGND Signal ground (connected to DL-Gnd internally) Green 3 3 Green gnd

Page 22: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

External

4

4 Sun Contact closure on sunshine Yellow 4 4 Yellow n.c.

5 DL-Gnd Datalogger power ground Grey 5 5 Grey Power OutGnd

6 DL-Power Datalogger power supply 4 - 15V 2mA Pink 6 6 Orange Power Out 12V

7 Htr- Heater ground Blue 7 7 Blue External -V

8 Htr+ Heater power supply, 12V 1.5A max Red 8 8 Red External +V

Shield Cable screen and SPN1 body Screen 9 9 Screen Case gnd

10 1011 1112 12

#8 Cable_SPNU_serial 24.2.12

PATHWAY SPN to Bulgin (DAQ Exterior) Bulgin bulkhead to dataloggerCONNECTORS SPN1-RS-10 (use w/ PC or Serial Device) Bulgin PX0410/06P/6065 PX0412/06S

1 Gnd Ground Brown 1 1 Brown Power Out Gnd2 Power in Power from PC DTR line White 2 2 White Power Out 12V3 RX in RS232 RX in to SPN1 Blue 3 3 Blue C74 SDI-12 Not used Black 4 4 Black nc5 TX out RS232 TX out of SPN1 Grey 5 5 Grey C86 6 6

Page 23: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 23

(toc)

Page 24: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 24

C Radiometer Plate

47.24

1.00TYP X3

1.75 TYP X2

.38 TYPX 15

R.50 TYP

1.280TYP

.150THRU X 8

.219 THRU X6on 4.25 BCD

6.00

1.75 TYP .189 THRU X2

R.50 3.00 TYP

X2

.15 THRU X3on 4,75 BCD

2.05

4.45

.125

13.34

Part Name: Shiprad_plate_layout_v3 unfolded

Notes:Material is: 6061 AL1.Qty Needed: 1 /Assembly2.Surface finish:3.

DRAWING VIEW REVISIONS :

ENGINEER: XXX DATE: XX/05 ZONE: XXA.DESCRIPTION:

D

C

B

A

B

C

D

678

8 7 6 5 4 3 2 1

5 4 3 2 1

A

1

Meyer Manufacturing

OF

CHECKED

UNLESS OTHERWISE SPECIFIED

.X 0.05.XX 0.02

.XXX 0.005

1

PROJECT

CAD FILEShiprad_plate_layout_v3

Ship radiometer Plate

9/5/2016

DRAWN

RAM

TOLERANCES ARE:DATE

THIRD ANGLE PROJECTION

NO MODIFICATION OF SPECIFIEDDIMENSIONS OR MATERIALS IS ALLOWED UNLESS APPROVED BY NOAA ENGINEERS.

BREAK SHARP EDGES 0.005 MINMACHINED FILLETS 0.015 MAX

SURFACE FINISH 125

DO NOT SCALE DRAWING

ANGLES 1FRACTIONS 1/16DECIMALS PLOT DATE

XXX XXXDATE9/5/16

SHEET

SHEET NAMESheet1

DIMENSIONS ARE IN INCHES

Figure 6: ShipRad plate. The radiometer plate is fabricated from an aluminum plate; punched and bent to shape, thenhard anodized.

(toc)

Page 25: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 25

D StrutTech Railing Mount

Figure 7: ShipRad fiberglass frame. A special fiberglass frame was developed for this project.

(toc)

Page 26: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 26

E LANL Railing Mount

//

Figure 8: ShipRad frame.

(toc)

Page 27: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 27

F CR1000 program

’190326 Written by noaa engineeer Jim Wendell. All dated comments by rmr

’NOAA/ESRL/GMD

’ShipRad

’date vers notes

’20170127 100 initial release

’20170210 101 add N-S and E-W velocities to 1-sec data

’ also removed analog SPN1 data from 1-sec data

’20170214 102 add double buffering of slow-sync data

’20170214 103 add analog data back to the data stream

’20170214 104 get SPN1 data sequentially, request when nav msg received

’20170215 104.1 installed RS232 adapter for nav

’20170216 104.2 change nav baudrate from 115200 to 19200

’20170225 104.3 add nav initialization to insure that unpolled data is turned on

’20170227 104.4 corrected thermistor reference resistors

’20170301 104.5 add flag(1) = send nav soft reset command

’ flag(2) = send nav init commands

’ flag(3) = init new VN300 to 19.2K baud, with 1Hz INS LLA output

’20170306 104.6 add nav reset times (4 available)

’ update status version data to include sub-version info

’20170502 105.0 add nav GPS status

’********** WIRING **********

’analog channels

’ SE1 - SPN1A total

’ SE2 - SPN1A diffuse

’ SE3 - SPN1B total

’ SE4 - SPN1B diffuse

’ DI3 - PIRtp

’ SE7 - PIR case thermistor

’ SE8 - PIR dome thermistor

’ DI4 -

’ DI5 -

’ DI6 -

’ DI7 -

’ DI8 -

’digital channels

’ Com1 (C1.tx, C2.rx) - navigation

’ C3 -

’ C4 -

’ Com3 (C5.tx, C6.rx) - SPN1_A

’ Com4 (C7.tx, C8.rx) - SPN1_B

’pulse channels

’ P1 - T/U fan tach

’ P2 -

’excitation channels

’ Vx1 - PIR case and dome thermistors

’ Vx2 -

’ Vx3 -

Page 28: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 28

’********** CONSTANTS **********

Const StationName = "ShipRad_104"

Const PgmVers = 105.0

Const SCAN_INT = 1000 ’data scan interval (msec)

Const DATA_INT = 1000 ’data output interval (msec)

Const STATUS_INT = 60 ’status data output interval (sec)

Const INT_METHOD = _60Hz ’integration time/method for analog measurements

’SPN1

Const SPN1_BAUD = 9600 ’baudrate for communicating with SPN1

Const SPN1_BUFFER = 1024

Const SPN1A_PORT = COM3

Const SPN1B_PORT = COM4

Const SPN1_RX_SIZE = 100 ’number of chars in buffer

Const SPN1_DATA_CMD = "S" ’command to get data (2 data requests)

Const SPN1_INIT_DATA_CMD = "R" ’command to get 1st data (2 data requests)

Const CR = 13

Const SPN1_PROMPT = 187 ’SPN1 prompt

Const SPN1_TIMEOUT = 80 ’serial response timeout (10mS units)

Const SPN1_MAX_N_RESPONSE = 3 ’max numbers returned when parsing data

Const SPN1_FIELD_SIZE = 20

Const SPN1_SERIAL_FMT = 19 ’format when using RS232 level shifters

’Navigation

’Vector Nav 300

Const NAV_NEWBAUD = 115200

Const NAV_BAUD = 19200

Const NAV_BUFFER = 2048

Const NAV_PORT = COM1

Const NAV_RX_SIZE = 350

Const NAV_FIELDS = 16

Const NAV_FIELD_SIZE = 20

Const NAV_SOM = &h2456 ’start of all nav messages = "$V"

Const NAV_INS_MSG = "NINS" ’start of INS message = "$VNINS,...", "$V" is removed from start of message by SerialInRecord command

Const NAV_RDREG_MSG = "NRRG" ’start of GPS status message = "$VNRRG,...", "$V" is removed from start of message by SerialInRecord command

Const NAV_GPSSTATUS_MSG = 86 ’nav register for GPS status

Const NAV_TIMEOUT = 80 ’serial response timeout (10mS units)

Const CRLF = &h0D0A ’end of message CRLF

Const NAV_SERIAL_FMT = 19

Const NAV_RESET_FLAG = 1 ’flag(1) used to send reset command to VN-300

Const NAV_INIT_FLAG = 2 ’flag(2) used to send init commands to VN-300, 19.2K baud

Const NAV_NEWINIT_FLAG = 3 ’flag(3) used to send init commands to VN-300, starting at 115.2K baud and switching to 19.2K baud

Const NAV_RESET_CNT = 4 ’max number if nav reset times allocated

’PIR thermistor reference resistors

Const CASE_RREF = 10.0 ’PIR case thermistor reference resistor (Kohm)

Const DOME_RREF = 10.0 ’PIR dome thermistor reference resistor (Kohm)

’T/U sensor cals

’HMP155 - 1.0V outputs

Const TU_Ucal = 0.1

Const TU_Uoffset = 0.0

Const TU_Tcal = 0.1

Const TU_Toffset = -40.0

’fan constants

Const FAN_MULT = 30 ’convert fan frequency (Hz) to RPM

Page 29: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 29

Const FAN_PORT = 1 ’using P1 for fan speed measurement

Const FAN_RAVG = 5000 ’fan speed running average (msec)

’semaphores for multitasking

Const NAV_LOCK = 1

Const SPN1A_LOCK = 2

Const SPN1B_LOCK = 3

’********** VARIABLES **********

Public Flag(4) ’define 4 flags

Public i As Long

Public x As Float

Public PIR_tp As Float, PIR_Rcase As Float, PIR_Rdome As Float

Public Fspd As Float

Public Vbat As Float

Public Tpanel As Float

Public Tair As Float, Uair As Float

Public rTime(9)

Alias rTime(1) = Year

Alias rTime(2) = Month

Alias rTime(3) = DOM ’day of month

Alias rTime(4) = Hour

Alias rTime(5) = Minute

Alias rTime(6) = Second

Alias rTime(7) = uSecond ’uSec (need to div by 1000 to get mSec)

Alias rTime(8) = WeekDay

Alias rTime(9) = DOY ’day of year

Public _Month As Long, _Day As Long, _mSec As Long ’buffered clock data

’SPN1 data

Public spn1a_rx As String * SPN1_RX_SIZE ’response from SPN1A

Public spn1a_msg As String * SPN1_RX_SIZE ’buffered response from SPN1A

Public spn1b_rx As String * SPN1_RX_SIZE ’response from SPN1B

Public spn1b_msg As String * SPN1_RX_SIZE ’buffered response from SPN1B

Public SPN1A_total As Float, SPN1A_diffuse As Float

Public SPN1A_analog(2) As Float

Alias SPN1A_analog(1) = SPN1A_analog_total

Alias SPN1A_analog(2) = SPN1A_analog_diffuse

Public SPN1B_total As Float, SPN1B_diffuse As Float

Public SPN1B_analog(2) As Float

Alias SPN1B_analog(1) = SPN1B_analog_total

Alias SPN1B_analog(2) = SPN1B_analog_diffuse

Public fa(SPN1_MAX_N_RESPONSE) As String * SPN1_FIELD_SIZE

Public fb(SPN1_MAX_N_RESPONSE) As String * SPN1_FIELD_SIZE

Public spn1a_time As Float, spn1b_time As Float, scanTime As Float

’nav data

Public nav_reset_time(NAV_RESET_CNT) As Long ’time of day (in minutes, 0-1439) to perform reset

Public nav_rx As String * NAV_RX_SIZE ’response from NAV

Public nav_msg As String * NAV_RX_SIZE ’buffered response from NAV

Public nav_msglen As Long

Public nav_text(NAV_FIELDS) As String * NAV_FIELD_SIZE

Public nav_data(NAV_FIELDS) As Float

Alias nav_data(1) = nav_msg_header ’VNRRG message: INS solution - LLA

Alias nav_data(2) = gps_time ’GPS time of week (sec)

Alias nav_data(3) = gps_week ’GPS week

Alias nav_data(4) = nav_status ’status flags for INS filter, hex fmt

Page 30: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 30

Alias nav_data(5) = yaw ’relative to true North (deg)

Alias nav_data(6) = pitch ’relative to horizon (deg)

Alias nav_data(7) = roll ’relative to horizon (deg)

Alias nav_data(8) = lat ’geodetic latitude (deg)

Alias nav_data(9) = lon ’geodetic longitude (deg)

Alias nav_data(10) = alt ’height above ellipsoid (WGS84)

Alias nav_data(11) = NSvel ’North-South velocity (m/s) (N+)

Alias nav_data(12) = EWvel ’East-West velocity (m/s) (E+)

Alias nav_data(13) = UDvel ’Up-Down velocity (m/s) (Down+)

Alias nav_data(14) = AttUncert ’attitude uncertainty (deg)

Alias nav_data(15) = PosUncert ’position uncertainty (m)

Alias nav_data(16) = VelUncert ’velocity uncertainty (m/s)

’ 190326 The vn300 has an error character that is 16 bits

’nav_status (INS status):

’Name Bit_Offset Format Description

’Mode 0 2bits IndicatesthecurrentmodeoftheINSfilter.

’ 0=NOTtracking.INSFilterIsawaitinginitialization.

’ 1=Aligning.INSFilterIsdynamicallyaligningORaligningToGPSCompasssolution.

’ 2=INSFilterIstrackingANDoperatingwithinspecifications.

’GpsFix 2 1bit IndicateswhethertheGPShasaproperfix.

’Error 3 4bits Sensormeasurementerrorcode.Seetablebelow.

’ 0=Noerrorsdetected.

’Reserved 7 1bit ReservedForinternaluse.MaytogglestateduringruntimeANDshouldbeignored.

’GpsHeadingIns 8 1bit IndicatesIftheINSIscurrentlyusingtheGPScompassheadingsolution.

’GpsCompass 9 1bit IndicatesIftheGPScompassIsoperationalANDreportingaheadingsolution.

’Reserved 10 8bits ReservedForinternaluse.ThesebitswilltogglestateANDshouldbeignored.

’Error bitfield:

’Name Bit_Offset Format Description

’Reserved 0 1bit ReservedForfutureuseANDNOTcurrentlyused.

’IMUError 1 1bit HighIfIMUcommunicationerrorIsdetected.

’Mag/PresError 2 1bit HighIfMagnetometerORPressuresensorerrorIsdetected.

’GPSError 3 1bit HighIfGPScommunicationerrorIsdetected.

’data from GPS status message, reg 86

Public nav_GPSa_nSat_PVT As Long, nav_GPSa_nSat_RTK As Long, nav_GPSa_CN0 As Long

Public nav_GPSb_nSat_PVT As Long, nav_GPSb_nSat_RTK As Long, nav_GPSb_CN0 As Long

Public nav_GPSab_nSat_PVT As Long, nav_GPSab_nSat_RTK As Long

’********** UNITS **********

Units Fspd = RPM

Units PIR_tp = mV

Units PIR_Rcase = KOhm

Units PIR_Rdome = KOhm

Units SPN1A_total = W/M-2

Units SPN1A_diffuse = W/M-2

Units SPN1B_total = W/M-2

Units SPN1B_diffuse = W/M-2

Units Vbat = V

Units Tpanel = degC

Units Tair = degC

Units Uair = %

’********** DATA STORAGE **********

Page 31: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 31

DataTable (myData,TRUE,-1)

CardOut(0,-1)

DataInterval(0,DATA_INT,mSec,1)

Sample(1,_Month,uint2)

Sample(1,_Day,uint2)

Sample(1,_mSec,uint2)

Sample(1,gps_time,IEEE4)

Sample(1,scanTime,IEEE4)

Sample(1,spn1a_time,IEEE4)

Sample(1,SPN1A_total,IEEE4)

Sample(1,SPN1A_diffuse,IEEE4)

Sample(1,SPN1A_analog_total,IEEE4)

Sample(1,SPN1A_analog_diffuse,IEEE4)

Sample(1,spn1b_time,IEEE4)

Sample(1,SPN1B_total,IEEE4)

Sample(1,SPN1B_diffuse,IEEE4)

Sample(1,SPN1B_analog_total,IEEE4)

Sample(1,SPN1B_analog_diffuse,IEEE4)

Sample(1,PIR_tp,IEEE4)

Sample(1,PIR_Rcase,IEEE4)

Sample(1,PIR_Rdome,IEEE4)

Sample(1,Tair,IEEE4)

Sample(1,Uair,IEEE4)

Sample(1,nav_status,IEEE4)

Sample(1,yaw,IEEE4)

Sample(1,pitch,IEEE4)

Sample(1,roll,IEEE4)

Sample(1,lat,IEEE4)

Sample(1,lon,IEEE4)

Sample(1,alt,IEEE4)

Sample(1,NSvel,IEEE4)

Sample(1,EWvel,IEEE4)

EndTable

DataTable (myStatus,TRUE,-1)

CardOut(0,-1)

DataInterval(0,STATUS_INT,Sec,1)

Sample(1,PgmVers,FP2)

Average(1,Vbat,FP2,FALSE)

Average(1,Tpanel,FP2,FALSE)

Average(1,Fspd,UINT2,FALSE)

Sample(1,AttUncert,IEEE4)

Sample(1,PosUncert,IEEE4)

Sample(1,nav_GPSa_nSat_PVT,UINT2)

Sample(1,nav_GPSa_nSat_RTK,UINT2)

Sample(1,nav_GPSa_CN0,UINT2)

Sample(1,nav_GPSb_nSat_PVT,UINT2)

Sample(1,nav_GPSb_nSat_RTK,UINT2)

Sample(1,nav_GPSb_CN0,UINT2)

Sample(1,nav_GPSab_nSat_PVT,UINT2)

Sample(1,nav_GPSab_nSat_RTK,UINT2)

SerialOut(NAV_PORT, "$VNRRG,86*XX"+CHR(13)+CHR(10), "", 0, 0) ’request nav GPS status

EndTable

’********** MAIN PROGRAM **********

PipeLineMode

Page 32: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 32

BeginProg

SetSetting("DeleteCardFilesonMismatch", -1) ’remove card data not generated by this logger & program

SerialOpen(NAV_PORT,NAV_BAUD,NAV_SERIAL_FMT,0,NAV_RX_SIZE) ’configure serial ports

SerialOpen(SPN1A_PORT,SPN1_BAUD,SPN1_SERIAL_FMT,0,SPN1_BUFFER)

SerialOpen(SPN1B_PORT,SPN1_BAUD,SPN1_SERIAL_FMT,0,SPN1_BUFFER)

SerialOut(NAV_PORT, CHR(13)+CHR(10), "", 0, 0)

SerialOut(NAV_PORT, "$VNRRG,86*XX"+CHR(13)+CHR(10), "", 0, 0) ’request nav GPS status

SerialOut(NAV_PORT, "$VNASY,1*XX"+CHR(13)+CHR(10), "", 0, 0) ’resume unpolled INS data

SerialOut(SPN1A_PORT, SPN1_INIT_DATA_CMD, "", 0, 0) ’request data

SerialOut(SPN1B_PORT, SPN1_INIT_DATA_CMD, "", 0, 0)

SerialFlush(NAV_PORT)

’init nav reset times

nav_reset_time(1) = 720 ’12:00 (05:00 local time in Boulder)

nav_reset_time(2) = -1 ’not used

nav_reset_time(3) = -1 ’not used

nav_reset_time(4) = -1 ’not used

Timer(1,mSec,3) ’init timer

Scan (SCAN_INT,mSec,0,0)

SemaphoreGet(NAV_LOCK)

scanTime = Timer(1,mSec,4) ’read timer

’measure SPN1A & SPN1B analog signals

VoltSe(SPN1A_analog(),2,mV2500,1,0,0,INT_METHOD,1.0,0)

VoltSe(SPN1B_analog(),2,mV2500,3,0,0,INT_METHOD,1.0,0)

’measure PIR

VoltDiff (PIR_tp,1,mV2_5,3,TRUE,0,INT_METHOD,1.0,0) ’measure PIR thermopile

BrHalf(x,1,mV250,7,Vx1,1,250,true,0,INT_METHOD,1.0,0.0) ’measure case thermistor voltage

PIR_Rcase = CASE_RREF * x / (1-x) ’calc case thermistor resistance (KOhms)

BrHalf(x,1,mV250,8,Vx1,1,250,true,0,INT_METHOD,1.0,0.0) ’measure dome thermistor voltage

PIR_Rdome = DOME_RREF * x / (1-x) ’calc dome thermistor resistance (KOhms)

’measure T/U

VoltSe(Tair,1,mV2500,10,0,0,INT_METHOD,TU_Tcal,TU_Toffset)

VoltSe(Uair,1,mV2500,9,0,0,INT_METHOD,TU_Ucal,TU_Uoffset)

’status info

PanelTemp(Tpanel,250)

Battery(Vbat)

PulseCount(Fspd,1,FAN_PORT,0,FAN_RAVG,FAN_MULT,0.0) ’fan speed (rpm), rpm = 60/n where n=2 for 4-pole motor

SemaphoreGet(SPN1A_LOCK)

SemaphoreGet(SPN1B_LOCK)

’SPN1A serial

If Len(spn1a_msg) > 0 Then ’process if response not null

SplitStr(fa, spn1a_msg, "", SPN1_MAX_N_RESPONSE, 0) ’parse numeric values

SPN1A_total = fa(1)

SPN1A_diffuse = fa(2)

spn1a_msg = ""

EndIf

’SPN1B serial

If Len(spn1b_msg) > 0 Then ’process if response not null

SplitStr(fb, spn1b_msg, "", SPN1_MAX_N_RESPONSE, 0) ’parse numeric values

SPN1B_total = fb(1)

SPN1B_diffuse = fb(2)

spn1b_msg = ""

EndIf

SemaphoreRelease(SPN1A_LOCK)

SemaphoreRelease(SPN1B_LOCK)

’nav

If Len(nav_msg) > 0 Then

Page 33: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 33

’message split when received

’convert text fields to numbers

gps_time = nav_text(2) ’GPS time of week (sec)

gps_week = nav_text(3) ’GPS week

nav_status = "&h"+nav_text(4) ’status flags for INS filter, hex fmt

yaw = nav_text(5) ’relative to true North (deg)

pitch = nav_text(6) ’relative to horizon (deg)

roll = nav_text(7) ’relative to horizon (deg)

lat = nav_text(8) ’geodetic latitude (deg)

lon = nav_text(9) ’geodetic longitude (deg)

alt = nav_text(10) ’height above ellipsoid (WGS84)

NSvel = nav_text(11) ’North-South velocity (m/s) (N+)

EWvel = nav_text(12) ’East-West velocity (m/s) (E+)

UDvel = nav_text(13) ’Up-Down velocity (m/s) (Down+)

AttUncert = nav_text(14) ’attitude uncertainty (deg)

PosUncert = nav_text(15) ’position uncertainty (m)

VelUncert = nav_text(16) ’velocity uncertainty (m/s)

nav_msg = ""

EndIf

’buffer required clock data

_Month = Month

_Day = DOM

_mSec = uSecond / 1000

SemaphoreRelease(NAV_LOCK)

’check if time to reset nav

For i=1 To NAV_RESET_CNT ’check all reset times

If (nav_reset_time(i) >= 0) OR (nav_reset_time(i) <= 1439) Then ’valid reset time specified

If TimeIntoInterval(nav_reset_time(i),1440,min) Then ’check if time to reset

Flag(NAV_RESET_FLAG) = true ’request nav reset

EndIf

Else ’no reset time specified

nav_reset_time(i) = -1 ’save as "not used" value

EndIf

Next

’save data

CallTable myData

CallTable myStatus

NextScan

’read SPN1a data

SlowSequence

Do

SerialIn(spn1a_rx, SPN1A_PORT, SPN1_TIMEOUT, CR, SPN1_RX_SIZE) ’read response

If Len(spn1a_rx) > 0 Then ’process if response not null

SemaphoreGet(SPN1A_LOCK)

spn1a_time = Timer(1,mSec,4)

spn1a_msg = spn1a_rx

SemaphoreRelease(SPN1A_LOCK)

EndIf

Loop

EndSequence

’read SPN1b data

SlowSequence

Do

SerialIn(spn1b_rx, SPN1B_PORT, SPN1_TIMEOUT, CR, SPN1_RX_SIZE) ’read response

If Len(spn1b_rx) > 0 Then ’process if response not null

Page 34: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 34

SemaphoreGet(SPN1B_LOCK)

spn1b_time = Timer(1,mSec,4)

spn1b_msg = spn1b_rx

SemaphoreRelease(SPN1B_LOCK)

EndIf

Loop

EndSequence

’read nav data

SlowSequence

Do

SerialInRecord(NAV_PORT,nav_rx,NAV_SOM,0,CRLF,nav_msglen,01)

If nav_msglen > 0 Then

SemaphoreGet(NAV_LOCK)

nav_msg = nav_rx

RealTime(rTime) ’capture time

Timer(1,mSec,2) ’reset and start timer

SplitStr(nav_text(),nav_msg,",",NAV_FIELDS,5) ’split text message

If StrComp(nav_text(1),NAV_INS_MSG) = 0 Then ’INS message received

SerialOut(SPN1A_PORT, SPN1_DATA_CMD, "", 0, 0) ’request SPN1A data

SerialOut(SPN1B_PORT, SPN1_DATA_CMD, "", 0, 0) ’request SPN1B data

EndIf

If StrComp(nav_text(1),NAV_RDREG_MSG) = 0 Then ’register data message

If (nav_text(2) = NAV_GPSSTATUS_MSG) Then ’GPS status message

nav_GPSa_nSat_PVT = nav_text(3) ’save GPSa status

nav_GPSa_nSat_RTK = nav_text(4)

nav_GPSa_CN0 = nav_text(5)

nav_GPSb_nSat_PVT = nav_text(6) ’save GPSb status

nav_GPSb_nSat_RTK = nav_text(7)

nav_GPSb_CN0 = nav_text(8)

nav_GPSab_nSat_PVT = nav_text(9) ’save common GPS status

nav_GPSab_nSat_RTK = nav_text(10)

nav_msg = "" ’clear non-INS message

EndIf

EndIf

SemaphoreRelease(NAV_LOCK)

EndIf

Loop

EndSequence

’process flags

SlowSequence

Do

’soft reset nav

If Flag(NAV_RESET_FLAG) = true Then ’nav reset requested

SemaphoreGet(NAV_LOCK)

SerialOut(NAV_PORT, "$VNRST*4D" + CHR(13) + CHR(10), "", 0, 0) ’send reset message

SerialFlush(NAV_PORT)

Flag(NAV_RESET_FLAG) = false ’message sent, reset flag

SemaphoreRelease(NAV_LOCK)

EndIf

’init nav (19.2K baud)

If Flag(NAV_INIT_FLAG) = true Then ’nav init requested

SemaphoreGet(NAV_LOCK)

SerialOut(NAV_PORT, CHR(13)+CHR(10), "", 0, 0)

SerialOut(NAV_PORT, "$VNWRG,57,-0.187,0,0*XX"+CHR(13)+CHR(10), "", 0, 0) ’GPS antenna A relative position to nav unit

SerialOut(NAV_PORT, "$VNWRG,67,3,0,1,0*XX"+CHR(13)+CHR(10), "", 0, 0) ’INS basic config

Page 35: HANDBOOK — - RMR CO · — HANDBOOK — ShipRad, Shipboard Radiation Package Version 3 Three ShipRad sensor plates ready for testing. From left, GPS antenna B, Shaded SPN radiometer,

April 13, 2019 ShipRad Handbook v3 35

SerialOut(NAV_PORT, "$VNWRG,93,1.032,0,0,0.0032,0.0032,0.0032*XX"+CHR(13)+CHR(10), "", 0, 0) ’GPS compass baseline

SerialOut(NAV_PORT, "$VNASY,1*XX"+CHR(13)+CHR(10), "", 0, 0) ’unpolled data enabled

SerialOut(NAV_PORT, "$VNWNV*57" + CHR(13) + CHR(10), "", 0, 0) ’write to NV memory

SerialOut(NAV_PORT, "$VNRST*4D" + CHR(13) + CHR(10), "", 0, 0) ’reset

SerialFlush(NAV_PORT)

Flag(NAV_INIT_FLAG) = false ’message sent, reset flag

SemaphoreRelease(NAV_LOCK)

EndIf

’init nav (115.2K baud, switching to 19.2K baud)

If Flag(NAV_NEWINIT_FLAG) = true Then ’nav init requested

SemaphoreGet(NAV_LOCK)

SerialClose(NAV_PORT)

SerialOpen(NAV_PORT,NAV_NEWBAUD,NAV_SERIAL_FMT,0,NAV_RX_SIZE) ’configure serial port, 115.2K baud

SerialOut(NAV_PORT, CHR(13)+CHR(10), "", 0, 0)

SerialOut(NAV_PORT, "$VNASY,0*XX"+CHR(13)+CHR(10), "", 0, 0) ’stop unpolled data

SerialOut(NAV_PORT, "$VNWRG,5,19200*XX"+CHR(13)+CHR(10), "", 0, 0) ’new baudrate

SerialClose(NAV_PORT)

SerialOpen(NAV_PORT,NAV_BAUD,NAV_SERIAL_FMT,0,NAV_RX_SIZE) ’configure serial port, 19.2K baud

SerialOut(NAV_PORT, "$VNWRG,7,1*XX"+CHR(13)+CHR(10), "", 0, 0) ’1 Hz data rate

SerialOut(NAV_PORT, "$VNWRG,6,22*XX"+CHR(13)+CHR(10), "", 0, 0) ’send INS LLA message, unpolled

SerialOut(NAV_PORT, "$VNASY,1*XX"+CHR(13)+CHR(10), "", 0, 0) ’unpolled data enabled

SerialOut(NAV_PORT, "$VNWNV*57" + CHR(13) + CHR(10), "", 0, 0) ’write to NV memory

SerialOut(NAV_PORT, "$VNRST*4D" + CHR(13) + CHR(10), "", 0, 0) ’reset

SerialFlush(NAV_PORT)

Flag(NAV_NEWINIT_FLAG) = false ’message sent, reset flag

SemaphoreRelease(NAV_LOCK)

EndIf

Loop

EndSequence

EndProg


Recommended