+ All Categories
Home > Documents > Handbook of Numerical Calculations in Engineering

Handbook of Numerical Calculations in Engineering

Date post: 01-Jun-2018
Category:
Upload: frank-consuegra
View: 242 times
Download: 0 times
Share this document with a friend

of 206

Transcript
  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    1/206

    I

    O

    H

    M

    G

    W

    -H

    L

    R

    N

    B

    O

    I

    N

    H

    A

    e

    m

    m

    e

    M

    S

    A

    H

    F

    O

    M

    C

    E

    N

    B

    C

    a

    M

    A

    H

    C

    e

    T

    M

    S

    A

    S

    A

    F

    O

    A

    T

    U

    D

    G

    D

    C

    H

    c

    k

    H

    O

    C

    M

    C

    E

    N

    N

    N

    C

    C

    O

    D

    A

    S

    H

    O

    C

    M

    S

    F

    n

    y

    S

    A

    H

    F

    O

    E

    C

    E

    N

    N

    F

    n

    a

    C

    s

    a

    n

    E

    C

    E

    N

    N

    H

    G

    o

    d

    G

    o

    d

    S

    U

    E

    N

    N

    N

    H

    G

    e

    k

    E

    N

    N

    N

    F

    O

    M

    A

    ¡

    a

    s

    S

    H

    A

    V

    B

    O

    H

    J

    G

    U

    S

    Q

    T

    Y

    C

    M

    d

    N

    A

    E

    N

    N

    N

    H

    M

    S

    A

    H

    F

    O

    C

    V

    L

    E

    N

    N

    P

    G

    n

    P

    S

    C

    M

    C

    N

    N

    H

    R

    n

    w

    H

    n

    a

    G

    c

    H

    O

    H

    A

    F

    U

    M

    E

    S

    R

    n

    w

    H

    n

    a

    G

    c

    H

    O

    H

    A

    T

    A

    C

    O

    R

    a

    e

    R

    c

    S

    A

    H

    O

    P

    A

    E

    N

    N

    N

    S

    d

    m

    M

    a

    H

    c

    k

    H

    O

    E

    C

    P

    O

    W

    C

    O

    S

    g

    e

    M

    s

    k

    -

    S

    A

    H

    O

    M

    N

    D

    G

    T

    n

    E

    N

    N

    N

    M

    H

    M

    C

    H

    T

    n

    H

    O

    S

    U

    A

    M

    C

    M

    C

    E

    N

    O

    D

    A

    C

    S

    E

    O

    A

    O

    S

    E

    A

    T

    O

    E

    N

    C

    O

    D

    A

    O

    E

    C

    A

    C

    M

    P

    U

    E

    N

    O

    D

    A

    O

    E

    N

    E

    O

    A

    O

    E

    N

    N

    E

    O

    A

    O

    P

    H

    C

    D

    C

    O

    E

    D

    C

    O

    O

    S

    C

    E

    N

    F

    C

    A

    T

    C

    T

    M

    S

    D

    C

    O

    O

    M

    E

    C

    A

    D

    G

    E

    N

    N

    D

    C

    O

    O

    C

    M

    PU

    F

    m

    n

    o

    m

    o

    i

    b

    m

    o

    h

    M

    a

    w

    m

    r

    a

    U

    t

    a

    Í

    S

    2

    M

    I

    W

    m

    i

    h

    U

    U

    a

    e

    h

    o

    h

    t

    o

    m

    r

    r

    m

    n

    r

    A

    rO

    M

    o

    J

    U

    *

    &

    H

    N

    D

    O

    O

    N

    UM

    C

    C

    C

    U

    A

    O

    I

    N

    E

    N

    G

    N

    N

    G

    D

    N

    T

    O

    T

    H

    O

    M

    S

    C

    O

    M

    P

    U

    E

    M

    O

    N

    U

    M

    E

    C

    E

    M

    P

    E

    T

    A

    E

    O

    F

    O

    M

    U

    A

    T

    A

    E

    O

    F

    U

    O

    Ja

    J

    T

    n

    P

    D

    P

    o

    e

    o

    o

    E

    n

    n

    A

    z

    o

    S

    a

    e

    U

    v

    y

    M

    G

    aw

    H

    P

    s

    h

    n

    C

    m

    n

    N

    w

    Y

    k

    S

    L

    S

    F

    A

    a

    B

    á

    H

    m

    g

    L

    M

    d

    M

    c

    M

    i

    á

    M

    o

    N

    w

    D

    h

    P

    m

    P

    s

    S

    A

    o

    S

    n

    *

    S

    T

    T

    o

    o

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    2/206

    i

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    3/206

    Abou t

    th e

    Author

    Jan J. Turna, Ph.D., is

    Profcssor

    of

    Enginccring

    at

    Arizona

    State

    university. He has extensive expcriencc as an enginccring consultan

    and has solved many problems on frame, piale , and space structures.

    some of w hi ch h av e b ec om e landmarks of t h e Ameri can Southwes t .

    Dr. Tuma is ihc

    author of numerous

    research papcrs

    an d

    scveral

    volumes in McGraw-HiH's Schatim Outline Series.

    Among

    his

    many

    other

    WOfks are the

    Engineering

    Mathematics Handbook,

    Technolog\

    Mathematics Handbook, Handbook of

    Physical Calculations,

    and the

    Handbook

    of Struclural and Mechanical Matrices, all publ is he d by

    McGraw-Hi l l .

    P

    Con t e n t s

    Preface ix

    1 .

    Numerical Calculat ions

    1

    2 . Numerical Constants 9

    3 . Numerical Differences 45

    4.

    Numerical Integráis 67

    5. Series and Products

    of

    Constants 85

    6.

    Algebraic

    and Transcendental Equations «119

    7. Matrix Equations

    143

    8. Eigenvalue Equations 157

    9 .

    Series of Functions

    169

    10.

    Special Functions

    «195

    11. Orthogonal Polynomials 215

    12. Least-squaresApproximations 237

    13.

    Fourier Approximations

    249

    14.

    Laplace Transforms

    267

    15.

    Ordinary Differential Equations 283

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    4/206

    v

    1

    P

    a

    D

    e

    e

    a

    E

    o

    2

    A

    n

    x

    A

    N

    m

    c

    T

    b

    e

    3

    A

    n

    x

    B

    G

    o

    a

    y

    S

    m

    s

    3

    A

    n

    x

    C

    R

    e

    e

    n

    a

    n

    B

    b

    o

    a

    p

    3

    I

    n

    4

    C

    e

    n

    P

    e

    a

    T

    s

    h

    c

    s

    n

    u

    m

    a

    s

    u

    m

    y

    h

    m

    o

    o

    s

    o

    n

    m

    c

    c

    c

    a

    o

    c

    c

    i

    n

    t

    h

    p

    e

    a

    o

    m

    c

    o

    m

    n

    a

    m

    n

    a

    m

    m

    e

    p

    o

    a

    m

    n

    e

    n

    n

    a

    e

    c

    I

    w

    p

    e

    e

    t

    o

    v

    a

    e

    o

    u

    o

    e

    n

    e

    d

    d

    k

    o

    r

    e

    n

    e

    b

    f

    o

    e

    n

    a

    c

    c

    s

    a

    c

    s

    s

    S

    n

    t

    h

    p

    c

    o

    h

    s

    E

    n

    n

    M

    h

    m

    c

    H

    w

    c

    n

    w

    a

    i

    n

    i

    s

    t

    h

    d

    e

    o

    h

    s

    a

    h

    h

    r

    c

    v

    a

    a

    g

    n

    m

    o

    r

    c

    s

    o

    u

    c

    m

    h

    s

    m

    h

    m

    e

    h

    b

    m

    o

    u

    m

    d

    n

    c

    u

    v

    y

    w

    h

    n

    m

    c

    m

    h

    a

    t

    o

    s

    u

    m

    z

    t

    h

    m

    h

    n

    h

    e

    c

    c

    o

    m

    w

    c

    w

    o

    o

    u

    b

    m

    T

    u

    c

    o

    h

    u

    c

    o

    n

    m

    c

    c

    c

    a

    o

    d

    s

    a

    o

    c

    T

    s

    o

    w

    e

    u

    t

    h

    s

    o

    N

    m

    c

    c

    c

    a

    o

    a

    h

    ñ

    m

    n

    c

    e

    c

    an

    y

    n

    m

    c

    c

    m

    c

    a

    y

    t

    h

    c

    o

    o

    e

    h

    m

    t

    o

    m

    e

    o

    m

    a

    I

    n

    y

    a

    o

    p

    a

    n

    h

    s

    h

    b

    m

    e

    h

    h

    m

    e

    a

    w

    d

    e

    e

    p

    p

    e

    a

    o

    s

    n

    (

    1

    G

    m

    n

    a

    o

    s

    u

    c

    t

    h

    c

    c

    c

    o

    n

    (

    2

    P

    c

    u

    a

    c

    e

    e

    i

    n

    s

    y

    m

    c

    f

    o

    m

    a

    s

    v

    n

    a

    m

    c

    o

    n

    m

    c

    m

    s

    (

    3

    N

    m

    c

    e

    m

    e

    p

    o

    d

    n

    t

    h

    i

    u

    a

    o

    o

    h

    a

    y

    c

    b

    g

    o

    v

    n

    o

    w

    s

    o

    c

    c

    a

    o

    T

    s

    o

    r

    e

    e

    d

    v

    o

    o

    m

    n

    w

    f

    o

    m

    a

    a

    g

    m

    o

    w

    c

    n

    h

    c

    a

    uc

    o

    h

    m

    a

    y

    c

    u

    s

    e

    o

    o

    c

    m

    c

    w

    c

    w

    d

    po

    d

    h

    n

    d

    u

    a

    n

    b

    w

    d

    n

    e

    e

    n

    c

    h

    o

    o

    h

    T

    c

    u

    s

    o

    h

    s

    T

    w

    c

    s

    p

    a

    o

    o

    v

    y

    ae

    1

    a

    y

    c

    e

    a

    o

    7

    m

    c

    o

    m

    c

    m

    s

    a

    o

    4

    n

    m

    c

    c

    m

    c

    k

    n

    a

    u

    m

    o

    c

    o

    e

    s

    z

    i

    h

    w

    a

    o

    w

    d

    k

    o

    h

    n

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    5/206

    The subjcct

    material

    is divided into

    sixteen chapters

    covering the

    following:

    (a)

    Evaluation of numerical constants

    (b)

    Approximations of elementary and advanced functions

    (c) Numericaldiflerentiationand integration

    (d)

    Solutions of algebraic and transcendental equations

    (e) Solutions of systcms of equations

    (/ ) Applications of Fouricrseries and Laplacc transforms

    (g) Solutions ofordinaryand partial difTcrcntial equations

    Finally, ten-digit tablcs of numerical valúesof the most important functions,

    which cannot be displayed by hand-hcld calculators, are asscmblcd in the

    Appcndixcs.

    The

    form

    of presentation has thesame special fcatures as the mathemati-

    cal

    handbook mentioned

    beforc.

    (1) Each page is a table,

    dcsignated bya tille and

    section

    number.

    (2)

    Lefl and righl

    pages presen related or similar material, and important

    modcls are placed in blocksallowing a rapid location of the dcsired

    in fo rmation .

    (3)

    Numerical

    examples are

    located

    below the respective

    formulas,

    providing a

    direct i llus tra tion of the application on the same page or on the

    oppositc page.

    Although every cflbrt wasmadeto avoiderrors; it would be presumptuous

    to assume that nonc had cscapcd dctcction in a work ot this scopc. The

    author carncstly solicits commcnts and recommendations for improvements

    an d futurc addi l ions .

    In

    closing,

    gratitudc is expressed to Mrs. Ailccnc Sparling

    who

    typed

    the

    final draft of the manuscript and to my wife Hana. for her paticnce,

    understanding and cncouragcmcnt during tlic preparationof this book.

    Tempe, Arizona

    Ja n

    J.

    Turna

    Proface

    * — -1

    1

    NUMERICAL

    CALCULATIONS

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    6/206

     — 1

    2 1 .01 CLASSIFICATION OF METHODS

    Numerica l Calcula t ions

    (a)

    Methods

    Of calculation fall into two major

    cateogries,

    designated as

    analytical

    methods and

    numerical methods.

    Analytical methods use algebraicand transcendental functions in the solution

    of

    problems, whereas the numerical methodsusearithmelic operations only.

    (b)

    Numerical

    methods whichform the majorpartof this bookare classifíed as:

    (1) Approximations

    of

    constants

    (6) Operations with seríesand producís

    (2) Approximations of functions

    (7) Solutions of algebraic equations

    (3) Approximations of derivatives

    (8) Solutions of transcendental equations

    (4) Approximations of integráis

    (9) Solutions

    of

    systems

    of

    equations

    (5) Summations of series and producís

    (10) Solutions of diflerential equations

    Two frequently usedabbreviations areCA = computer application andTF = Ulescopic form.

    1.02 APPROXIMATIONS OF CONSTANTS

    (a)Three types Of constants oceur in the solution of enginccring and applicd science problems.

    They are the fundamental physical constants, the basic numericalconstants, and the derived

    numer ica l cons tan ts .

    (b) Fundamental physicalconstants are produets of natural laws. andas such theirvalúes canonly

    beobtained by measurcments. A completelist of thcseconstantsis given in Appendix B, and in

    the back endpapcrs.

    (c) BasiC numerical constants are

    special

    numbers given by their definitions and frequently

    oceurring in numerical calcuations. They can be evaluated to a dcsired degrecof aecuracy as

    shown in sections indicated below. They are:

    (1)

    Slirling's numbers

    SrY\

    9\»

    (2.11)

    (5) Natural logarithm of 2 (2.20)

    (2) Archimcdes constantn (2.17)

    (6) Fibonacci numbers F, (2.21)

    (3) Eulcr'sconstant ¿(2.18)

    (7) Bcrnoulli numbers

    B,,B,

    (2.22)

    (4) Euler'sconstant y (2.19)

    (8) Eulcr numbers

    E,, E,

    (2.24)

    (d)

    Derived

    numerical

    constants are

    special

    numbers

    obtained

    as

    particular valúes

    of

    certain

    functions and

    again

    oceurring frequently in

    numerical calculations.

    They canalsobe calculated to

    a

    dcsired degrec

    of

    aecuracy

    asshown in sections indicated

    below.

    They are:

    (1)

    Gamma functions ofintegerargument (factorials) T(n+ I) = n

    (2.09), (2.28)

    (2) Double factorials (2n)ü,(2n + I)ü (2.30)

    (3) Binomial

    coefficients

    í j (2.10)

    (4) Riemann zeta functions ofinteger argument Z(n), Z(n)

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    7/206

    4 1.05 APPROXIMATIONS OF INTEGRALS

    Numerical Calculat ions

    (a)

    Algebraic polynomials are the only

    functions

    which can be intcgrated in given limits in a direct

    and closed form.Integráisof allother functions must beevaluatedby somcapproximations.They

    ar e

    c l a ss i f ied a s :

    (1)

    Closed-form

    integráis evaluated by functional approximations (1.03)

    (2) Numerical

    quadratures in

    tcrms

    of

    diflcrcncc polynomials (4.05)

    to

    (4.09)

    (3) Numericalquadratures in tcrmsofasymptotic series (4.10)

    (4)

    Numerical

    quadraturesin tcrmsoforthogonalpolynomials (4.11) to (4.16)

    (5) Integration by powcrseries expansión (11.01)

    (6) Integration by trigonometricexpansión (13.14)

    (7) Goursat's formulas (4.17)

    (8) Filon's formulas (4.18)

    (9) Multiplc-integral reduction formulas (14.03)

    (b) Closed-form

    integráis

    expressed in terms ofelementan' transcendental functions orin tcrms of

    combinations of algebraic and elcmenlary transcendental functions are

    listed

    in standard integral

    tablcs

    (Refs. 1.01, 1.20, 4.02, 4.03, 4.06) and as

    such must

    be evaluatcd by the approximations

    given in (1.03).

    (c) Numerical

    quadrature formulas (4.05) to (4.09)

    use either

    valúes ofthe

    integrand

    at equidistant

    spacing or

    use

    the

    diíferencc

    interpolation polynomial as the substitute function. Their powcr is

    their

    simplicily. The trapezoidal rule and Simpson's rule are the most commonly uscd

    methods

    in

    t h i s c l as s .

    (d)

    Euler-MacLaurin

    formula

    adds correction

    tcrms

    ofasymptotic

    series

    tothe

    trapezoidal

    ruleand

    provides the numerical analysis with one of the most important

    rclationships,

    which is

    uscd

    invcrselyin the summation of series (4.10).

    (e) Gauss' Integration formulas, known

    as

    Gauss-Chebyshev,

    Gauss-Legendre, Radau and

    Lobatto formulas, use orthogonal polynomials as the basis for the cvaluation (4.11) to (4.16).

    They gained receñí popularity

    in

    connection with the

    finitc-element

    methods.

    (f) Power series expansión ofthe

    integrand allows

    the

    cvaluation

    of integráis of functions

    which

    cannot be evaluatcd in terms of elementary functions. The advantage of this method is i ts

    application inthe cvaluation ofmúltiple integráis anditssimplicity in

    handling

    in general.

    (g)

    Trigonometric

    series

    expansión

    ofthe

    integrand

    oífers the

    same

    advantages

    asthe

    powcr series

    method. In addition the trigonometric expansión of the integrand gives a

    symbolic

    expression

    for

    the integral cvaluation.

    (h)

    Goursat's

    formulas

    allow the

    evaluation

    of

    product

    functions by a finitc series and are

    particularly uscful in producís ofalgebraic and elementan- transcendental functions.

    (I)

    Filon's formulas

    ofler

    the approximatc evaluation

    o(

    definite integráis

    oíf(x)costx

    and

    f(x)

    sin

    tx,

    where / isa constant.

    (j) Multiple-integral reductionformulas reducethe múltiple integral to a singleintegral by mcans of

    the

    convolution theorem (14.03).

    «• i Mi

    Numerical Calculations

    (a)

    Series

    and

    producís are fmite or infinite, and they are classified as:

    (1) Series and produets ofconstants(Chap. 5)

    (2) Series

    and produets of

    functions

    (Chap. 9)

    mm m

    «•*)

    mm

    1.06 SERIES AND PRODUCTS 5

    (b) Sums

    ofseries

    and produets

    ofconstants are calculated by:

    (1) Fundamental theorem ofsum calculus

    (5.03)

    (2)

    Diíferencc

    series formula

    (5.04)

    (3) Powcrseriesformula (5.04)

    (4) Euler-MacLaurin

    formula (5.05)

    (5) General and special transformations (5.06),

    (5.07)

    (c)

    Sums

    of series of

    special

    constants

    are

    available

    for:

    (1) Arithmeticand geometricseries(5.08)

    (2) Arithmogeomctric series(5.09),(5.10)

    (3) Seriesof

    powcrs

    of integers (5.11). (5.12)

    (4) Harmonic series of integers (5.13). (5.14)

    (5) Series of

    powcrs

    of reciprocal integers (5.15),

    (5.16)

    (6) Seriesoffactorial polynomials(5.17),(5.18)

    (7) Series of binomial coefficients (2.15). (2.16), (5.17), (5.18)

    (8)

    Series

    ofpowcrs of numbers

    (5.19).

    (5.20)

    (9) Harmonicseriesofdecimalnumbers

    (5.21)

    (10) Seriesofpowcrsof reciprocalnumbers (5.22)

    (d)

    Sums

    ofseries ofproduets ofspecialconstants are available for:

    (1) Series of produets of numbers (5.25). (5.26)

    (2)

    Series

    of produets of fractions (5.27). (5.28)

    (e)

    Series Of functions are the power series and the transcendental

    series.

    The most important

    series

    in this group are:

    (1) Algebraic powcr series(Chaps.9,

    10)

    (2) Finite-diflcrence powcrseries (Chap. 9)

    (3) Fourier series (Chap. 13)

    (f) Algébrale power

    series

    areeither the result ofcvaluation ofa function in

    tcrms

    of

    (1) Taylor's seriesexpansión (9.03)

    (2) MacLaurin's series expansión (9.03)

    or

    they

    are

    the

    solutions ofdiflerential equations dcsignated by

    special

    ñames such as

    Bcssel

    functions

    (10.07) to (10.17), Legendre functions (11.10),

    Chcbyshev

    functions (11.14),

    Laguerre

    functions (11.16), Hcrmite functions(11.17),and many more.

    (g)

    Finite-difference power

    series

    (9.03) may also be

    used

    for the cvaluation

    of

    functions, but

    their

    applications

    yield only a

    particular valué

    ofthe function at a point.

    (h) Fourier

    series

    are used for the same

    purpose as

    the algebraic

    powcr

    series. They

    can

    be used

    in

    the continuous range and

    also

    over equally spaced valúes in that range. They are

    particularly

    useful

    in the

    solution

    of partial diflerential equations (13.01), (13.17).

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    8/206

    6

    1.07 OPERATIONS WITH SERIES

    AND PRODUCTS

    i l

    Numerica l Calcula tions

    (a)

    Nesting

    Of power series for the purpose of summation isthe most commonly uscd operation, in

    which

    the

    given series

    is

    rcplaccd

    by a

    nested product

    (Rcf.

    1.20,

    p.

    102)

    as

    É (±i)V

    =

    4 . onl y

    special

    cases can

    be solved in closed

    form.

    In

    general, the

    higher-order

    algebraic equations c an b e

    solved

    only by approximations.

    (b) General Closed-form

    SOlutionS

    are

    available for the

    following algebraic

    equations:

    1.08

    SOLUTIONS OF EQUATIONS

    7

    (1) Quadratic equations (6.02a)

    (2)

    Binomial equations

    (6.02¿)

    (3)

    Trinomial

    equations (6.02/)

    (4) Cubicequations

    (6.03a)

    (5) Quarticequations

    (6.04a)

    (C)

    Special Closed-form

    SOlutionS are

    available

    for

    the

    following

    algebraic equations:

    (1) Symmetrical equations of

    fifth

    degree

    (6.06a*)

    (2)

    Antisymmetrical

    equations

    offifth degrec (6.060

    (d)

    General

    methods

    used in the approximatc solution of algébrale and transcendental equations

    are

    based ontheconcept of

    iteration

    and

    intcrpolation.

    (6) Iteration methods are

    applicable

    in solutions

    of

    equations

    of all

    types, and the

    most

    important

    methods

    i n t hi s

    group

    are:

    (1) Bisection method

    (6.08)

    (2) Sccantmethod (6.09)

    (3) Tangcntmethod

    (6.10)

    (4)

    General

    iteration method

    (6.11),

    (6.12)

    (f)

    Polynomial

    methods

    of practical

    ¡mporunce

    uscd

    in the

    scarch oí

    real

    and

    complex roots

    of

    algebraic equations of higher degrec arer

    ;l) Newton-Raphson's method (6.16)

    (2)

    Bairstow's

    method

    (6.17)

    Methods dcveloped in the era

    of

    hand calculations, such as Horner's method, GraeÜVs method,

    Bcrnoulli's

    method,

    and Lagucrrc's method, are oriimitcd valué in

    computer apphcations

    and are

    not covered i n t hi s

    book.

    1.09 SOLUTIONS 0FSYSTEMS 0FEQUATIONS

    (a) Systems

    Of linear algebraic equations

    are classified as nonhomogencous

    and

    homogeneous.

    Methods

    of

    solution

    of

    nonhomogencous equations fall

    intotwo

    categones:

    (1) Direct

    methods, producing an exact

    solution

    by

    using

    a finite

    number

    of

    arithmctic

    operations

    (2) Iterative

    methods, producing an

    approximatc

    solution of

    dcsired aecuracy by y.cld.ng a

    sequence

    solutions

    which converges

    to

    the

    exact solution

    as

    the

    number

    of

    itcrations

    tends to infinity

    (b)

    Direct methods

    introduced

    in this book are:

    (1)

    Cramer's rule

    method

    (7.03)

    (2)

    Matrix inversión

    method

    (7.04).

    (7.05)

    (3) Gauss

    elimination

    method

    (7.06)

    (4) Succcssive transformation

    method (7.07)

    (C) Iterativo

    methods introduced

    in

    this book are:

    (1)

    Gauss-Seidcl

    iteration method (7.13)

    (5) Cholesky method

    (7.09)

    (6) Square-root

    method

    (7.11)

    (7) Inversión

    by partitioning

    (7.12)

    (2) Carryover method (7.14)

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    9/206

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    10/206

    1

    2

    P

    O

    N

    B

    C

    N

    m

    c

    C

    a

    s

    (

    a

    P

    o

    o

    a

    o

    n

    a

    o

    1

    4

    a

    )

    (

    4

    a

    1

    +

    a

    )

    s

    d

    n

    b

    h

    m

    o

    a

    o

    a

    a

    n

    e

    o

    «

    <

    °

    f

    +

    =

    +

    +

    +

    1

    +

    =

    i

    w

    <

    £

    <

    °

    o

    a

    a

    n

    n

    e

    p

    o

    n

    =

    °

    f

    ]

    1

    +

    )

    =

    1

    a

    )

    +

    4

    a

    )

    1

    +

    =

    «

    i

    w

    í

    S

    »

    G

    a

    e

    m

    a

    J

    c

    h

    t

    e

    m

    d

    n

    h

    a

    w

    o

    m

    o

    h

    o

    (

    b

    E

    m

    e

    Ó

    1

    4

    k

    =

    3

    4

    1

    4

    n

    ¡

    1

    +

    2

    -

    2

    =

    3

    5

    2

    -

    i

    *

    Ó

    1

    +

    n

    =

    1

    +

    n

    4

    2

    n

    4

    3

    n

    +

    n

    t

    1

    f

    0

    F

    T

    )

    =

    Z

    ¿

    Z

    Z

     

    =

     

    2

    2

    3

    4

    n

    -

    r

    T

    H

    d

    >

    )

    z

    -

    =

    (

    c

    M

    o

    c

    e

    n

    n

    o

    s

    a

    r

    p

    v

    y

    f

    1

    +

    =

    1

    +

    )

    4

    a

    4

    a

    1

    +

    )

    i

    Ó

    1

    +

    =

    +

    )

    -

    a

    +

    +

    m

    i

    w

    3

    =

    *

    +

    a

    =

    (

    1

     

    +

    (

    d

    L

    h

    m

    c

    ó

    E

    o

    o

    n

    m

    b

    e

    i

    n

    o

    e

    b

    a

    n

    t

    h

    l

    o

    h

    m

    h

    o

    l

    n

    Ó

    (

    1

    4

    a

    =

    n

    [

    4

    a

    )

    +

    n

    [

    1

    +

    4

    l

    n

    1

    +

    +

    l

    n

    1

    4

    a

    a

    t

    h

    o

    c

    o

    h

    s

    e

    a

    h

    o

    e

    o

    h

    p

    v

    p

    o

    (

    e

    T

    c

    p

    o

    s

    u

    n

    h

    m

    c

    a

    y

    s

    a

    n

    =

    n

    a

    o

    a

    2

    0

    n

    =

    d

    e

    a

    o

    a

    2

    3

    I

    I

    =

    b

    n

    m

    a

    c

    c

    e

    2

    1

    '

    a

    h

    e

    o

    4

    a

    =

    +

    a

    (

    +

    a

    a

    (

    u

    ^

    «

    o

    ^

    »

    a

    4

    a

    +

    fs

    4

    i

    n

    r

    o

    i

    n

    (1

    0

    T

    N

    m

    c

    C

    a

    s

    2

    P

    O

    N

    C

    1

    (

    a

    C

    g

    n

    p

    o

    U

    s

    a

    in

    n

    e

    p

    o

    h

    a

    o

    h

    h

    m

    U

    h

    n

    m

    o

    a

    o

    a

    o

    n

    n

    y

    «

    -

    »

    h

    s

    i

    f

    +

    =

    a

    T

    a

    U

    -

    U

    i

    e

    s

    s

    h

    p

    o

    s

    a

    d

    t

    ob

    g

    a

    \

    U

    =

    «

    (

    b

    E

    a

    m

    e

    I

    n

    n

    e

    p

    o

    1

    2

    *

    n

    d

    b

    =

    k

    s

    c

    o

    g

    n

    s

    n

    U

    (

    C

    D

    v

    g

    n

    p

    o

    U

    s

    a

    i

    n

    n

    e

    p

    o

    h

    n

    e

    a

    e

    w

    h

    b

    a

    h

    n

    m

    o

    a

    o

    i

    n

    (

    d

    E

    m

    e

    n

    1

    A

    =

    3

    4

    =

    i

    (

    e

    A

    O

    U

    e

    y

    o

    g

    n

    p

    o

    U

    s

    a

    i

    n

    n

    e

    p

    o

    w

    c

    a

    o

    u

    e

    t

    e

    m

    f

    o

    m

    a

    o

    g

    n

    s

    e

    f

    +

    )

    =

     

    i

    (

    E

    m

    e

    I

    n

    n

    e

    p

    o

    /

    L

    V

    +

    )

    i

    s

    a

    o

    u

    e

    y

    g

    sn

    /

    +

    L

    V

    +

    4

    ¡

    a

    o

    g

    n

    p

    o

    U

    =

    (

    g

    C

    o

    y

    o

    g

    n

    p

    o

    U

    s

    a

    i

    n

    n

    e

    p

    o

    w

    c

    h

    i

    s

    n

    a

    o

    u

    e

    y

    o

    g

    n

    (

    h

    E

    m

    e

    I

    n

    n

    e

    p

    o

    n

    O

    ¿

    =

    H

    K

    H

    =

    i

    s

    o

    y

    g

    s

    n

    H

    >

    r

    r

    D

    +

    X

    +

    K

    +

    (

    )

    T

    1

    0

    c

    o

    g

    é

    i

    n

    d

    i

    n

    (

    2

    0

    «

    r

    c

    y

    a

    c

    a

    «

    n

    t

    h

    c

    o

    g

    i

    n

    n

    e

    o

    s

    2

    O

    W

    P

    0

    N

    (

    a

    G

    o

    n

    O

    f

    a

    o

    i

    n

    a

    a

    o

    u

    e

    y

    o

    c

    o

    o

    y

    c

    o

    g

    n

    p

    o

    m

    b

    c

    h

    d

    w

    h

    a

    e

    n

    h

    o

    (

    b

    E

    m

    e

    C

    o

    y

    g

    p

    o

    (

    -

    X

    +

    D

    X

    +

    X

    *

     

    *

    M

    M

    -

     

    *

    (

    C

    e

    O

    f

    f

    a

    o

    i

    n

    a

    a

    o

    u

    e

    y

    o

    g

    n

    p

    o

    c

    a

    h

    r

    c

    a

    a

    d

    w

    h

    a

    e

    n

    t

    h

    p

    o

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    11/206

      H

    •—1

    ~w¡

    14 2.07 CONTINUED FRACTIONS, BASIC CONCEPTS

    (a) Continuadfraction is of the form

    Numerical

    Constants

    where the right-side expression is a symbolic reprcsentation.

    (b) NumberOfterms ay,bx,a2,b2,... ,aK,bm

    defines the continued fraction as terminating (n < °°)

    or inf in it e (n = °°) .

    (c) Simple COntlnued fraction has all partial numerators cqual to I.

    I

    f, =

    4 ,+

    b, +

    1

    ¿,

    +

    * ,+

    0

    r¿

    j l i

    L

      'b.+ 'b,

    +

    '¿,+

    *

      J

    (d) Successive convergents for ak > 0, bk > 0 are defined as

    /=o = 7 7 =

    *o

    ^. = 77 =

    *o

    + 7* = —:

    Qo

    C¿i

    b, b.

    _ _

    /j

    _ . a, MMj 4- a.,) + a,¿ ,

    *i +

    *2

    F_ P* _ a*P*-* +M1-.

    * a* «iai-2 + *iGi-,

    an d

    laJ

    tai-, c J U J

    where P_, = 1,

    P„

    =

    b0, Q...

    = 0,

    &> =

    1.

    (e) Convergent continued fraction. If

    />

    lim Fm = lim -=• = F (- » < F < »)

    « - ♦ ■ « »-«o12.»

    exists, the fraction is convergent. If ak = 1 and

    bk

    are integers, the continued fraction is always

    convergent. lfak,bk are positiveintegers or fractions and

    ak :£ bk

    bk >

    0

    then the continued fraction is convergent. If

    T« a\ ai fla 1

    L A,

    4-

    b¡+ bs + J

    and - |«¿ |-M-s-l>í|—--(* =-1, -2,3,—.)

    then this conünucd fraction converges and its

    absolute valué does

    not cxcced unity.

    rS-j

    — i  ~1 •— 1

    208~

    CONTINUED FRACTIONS,

    is

    NUMERICAL

    PROCEDURES

    umerical

    Constants

    (a)

    Conversión Of

    COntlnued fraction to a simple

    fraction is obtained by

    performing all

    the

    operations indicated

    by

    the continued fraction.

    (b) Example

    i

    ii

    i 1 43 931

    5 +

    6 +

    *

    (C) Any pOSltive rational number may be converted to a

    fini.e

    continued

    fraction by

    a

    reversed

    process.

    (d) Example

    i + 5

    (e)

    Any

    positive

    Irrationa.

    number

    may be

    converted

    to

    an infinite

    continued

    fraction

    by

    the

    same

    process.

    or

    it may be approximated by the convergent

    Fk

    (2.07rf).

    (1)

    Fk

    of odd

    order

    is

    greater than

    F.

    but

    decreasing.

    (2) Fk

    of even

    order is iess than Fm but

    increasing.

    *

    X - 1

     l- l

    k

    *

    -1

    0

    1

    2

    3

    *- 2

    «4

    0

    «i

    fl2

    «i

    *4

    1

    0

    1

    P,

    a.

    P,

    A -,

    a» - i

    /V-i

    d i - i

    \—'—

    From this table, P_, =

    1,

    G-. = , P0 = ¿o, Go = Uand rccurrently,

    gktc*

    la-iuia-

    la-i^^i

    (g)

    Example.

    If

    x

    =3.141

    59,

    the corresponding truncated

    continued fraction is

    1

    3 +

    7 +

    1

    15 4-

    1

    1 4-

    25

    +

    A„ = 3

    1-H

    1/0.14159=

    7.062

    65

    1/0.062

    65= 15.962

    80

    1/0.962 80=

    1.038

    64

    1/0.03864 = 25.878 79

    1/0.878 79= 1.137 93

    1/0.137 93= 7.25008

    and with

    a,

    =a3 =

    a3

    ==

    «i

    = 1.

    the

    convergents

    calculated

    by (/) are

    F4 = P4/& = 9208/2831 = 3.141 59

    F, =

    /VQi

    = 9563/3044 = 3.141 59

    * . -

    7

    b, = 15

    ¿3 = 1

    64 = 25

    A4 = 1

    *» -

    7

    1

    F, = PJQ.X = 22/7 = 3.142 86

    F,= /VGi = 333/113 = 3.141

    51

    Fs = PJQ¿ = 355/113 = 3.HT59

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    12/206

    16

    2.09

    FACTORIALS

    (a) Factorialof positive integer

    n

    ¡sdefincd as

    n = »(« - I)(h - 2)

    3-2-

    1

    =

    n(n -

    1)

    = „(,, - \)(n

    -

    2)

    Numerica l Constants

    andbydcfinition,

    0

    =

    1.

    Numerical valúes ofn

    for n =

    1,2,3,..., 100 are tabulatcd in

    (A.03).

    (b) Factorial ofproper

    fraction (/(O

    < U 0)

    where N —n = u and n i sa posit ive integer nearest to

    .Y.

    (d) Example. For

    N =

    3.785.

    n =

    3,

    u =

    0.785.

    A - (3.785)(2.785)(1.785)(0.785) = 17.410416

    where from (A.04), u = 0.927 488.

    (e) Factorialof N> 4 can be approximatcd by Stirling's expansión

    N\ =

    •«•©'

    v/2AJr +

    e

    \ e \ < .

    x I0 10

    where n = Archimcdes constant (2.17), e = Fulcr 's const an t (2. 18) , and in te rms of Bernoul li

    numbers/},,,/}4./}ri,5li (2.22),

    A»2^

    B2,

    B,.\'-'

    /}4.V '

    B..N

    ' BnN~7

    + —

    + —

    ,r,2r(2r

    - 1)ArJ'-' 1-2 3-1 5 6

    _N^__N^ A^ _ A^

    12 360

    1260

    1680

    1 / S / 2S i 3SU\

    I,,

    nested

    form, A=— (l -~(l -y( l - j)l)

    (f)

    Example.

    For

    A'

    =

    7.3.

    with5 = (7.3)-' ,

    A =

    12(7.3)

    V 30V 7 V 1

    7. 3

    By (e). A = / ' *' (

    — Vl4.6,T

    = 9281.39

    with

    S

    = A'

    By

    (c),

    A = (7.3)(6.3)(5.3)(4.3)(3.3)(2.3)(1.3)(0.3> = 9281.39

    where rrom (A.04), (0.3) = 0.897 471.

    (g) Factorial ofN > 100can be approximatcd by Stirlinv;s formula

    'A\A'-,

    A

    =(-)

    \¡2Ññ +e \e\ <

    5x

    lO '

    This formula applics part icularly well in computing ratios

    of

    two factorials.

    Numerical Constants

    (a)

    Notation.

    x- signed number

    k,m,n

    = positive integers

    (b) Binomial coefficient in xand k

    is

    by definition

    (x(x- l)(x-2) (*-* + 1) 1}

    k\

    1 (* = 0)

    (k =

    I)

    2.10 BINOMIAL

    COEFFICIENTS i?

    an d

    for k > 0,

    (x +

    1

    V

    k

    +

    (I)

    k + 1

    x +

    1

    v* -

    1/

    U + 1

    C+l)

    n-k

    \k-

    ¡j

    )-o.*(*;.)

    - /t 4 - 1

    (c) Example

    /-6.4X (-6.4)(-7.4)(-8.4>

    =

    ^^

    l 3 / (3)(2)(I)

    (d) Binomial

    coefficient in

    n

    and

    k

    is by

    definition

    (« - k)\k\

    n(n -

    Din

    - 2)

    (n

    -A-+ 1)

    /.-

    id

    for 0 <

    k:

    S n,

    CK-,>  

    * -

    n -

    1

    («> *)

    (l»l > *)

    (k

    = 1 or

      = n

    -

    1)

    (A

    = n or A- = 0)

    (k < 0)

    ¿4-1/

    A+ lU/ ( l) '

    . / \ -

    , i io

    9

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    13/206

    1

    2

    1

    B

    N

    M

    A

    F

    U

    O

    B

    C

    C

    N

    m

    c

    C

    a

    (

    a

    F

    o

    a

    p

    y

    m

    a

    s

    X

    n

    e

    v

    a

    e

    l

    2

    3

    >

    e

    b

    n

    o

    A

    )

    =

    *

    n

    =

    =

    í

    »

    A

     

    2

    =

    X

    2

    =

    x

    -

    =

    <

    >

    +

    *

    A

    -

    <

    »

    =

    ^

    =

    x

    -

    )

    x

    -

    =

    *

    +

    x

    +

    x

    A

    T

    =

    *

    ¿

    =

    x

    -

    )

    x

    -

    2

    x

    -

    p

    -

    =

    »

    +

    <

    +

    +

    V

    w

    e

    &

    s

    e

    S

    r

    n

    m

    o

    h

    r

    k

    n

    A

    0

    (

    b

    F

    e

    o

    o

    m

    a

    I

    5

    a

    k

    m

    a

    e

    w

    h

    o

    m

    2

    *

    0

    ¿

    P

    C

    +

    =

    y

    _

    m

    X

    m

    (

    O

    =

    0

    1

    2

    )

    w

    e

    o

    k

    m

    S

    0

    =

    I

    a

    o

    k

    0

    o

    k

    m

    +

    1

    ¡

    *

    (

    C

    E

    m

    e

    I

    y

    2

    =

    -

    1

    =

    +

    h

    n

    o

    S

    =

    í

    ^

     

    =

    ^

    2

    2

    =

    +

    y

    =

    y

    -

    2

    -=

    -

    3

    y

    =

    I

    (

    d

    P

    w

    X

    i

    n

    e

    m

    o

    a

    o

    a

    p

    y

    m

    a

    s

    A

     

    A

    2

    ,

    A

    (

     

    e

    x

    =

    y

    W

    +

    A

    x

    =

    &

    X

     

    +

    W

    »

    A

    x

    =

    A

    5

    +

    »

    X

    4

    +

    r

    X

    w

    e

    y

     

    s

    e

    S

    r

    n

    m

    o

    h

    n

    A

    0

    (

    e

    S

    e

    o

    o

    m

    a

    I

    S

     

    L

    a

    e

    w

    h

    o

    o

    a

    *

    0

    g

    m

    U

    +

    )

    (

    m

    =

    1

    2

    )

    w

    e

    o

    k

    m

    §

    =

    a

    o

    k

    k

    m

    ^

    =

    i

    (

    E

    m

    e

    I

    9

    4

    1

    a

    *

    =

    1

    h

    n

    o

    9

    >

    &

    *

    =

    *

    +

    &

    >

    1

    9

    *

    &

    +

    2

    &

    =

    3

    ^

    ^

    +

    ^

    N

    m

    c

    C

    a

    2

    1

    B

    N

    M

    A

    F

    U

    O

    O

    O

    1

    (

    a

    S

    m

    O

    b

    n

    m

    a

    u

    o

    I

    Q

    n

    *

    a

    e

    b

    n

    m

    a

    f

    u

    o

    n

    a

    e

    v

    a

    b

    e

    x

    n

    a

    a

    e

    v

    n

    e

    p

    h

    (

    K

    =

    +

    =

    [

    +

    ]

     

    \

    ¿

    \

    ?

    P

    ?

    w

    e

    a

    s

    o

    o

    k

    q

    (

    b

    D

    v

    v

    o

    *

    a

    e

    M

    -

    1

    *

    w

    í

    ^

    =

    O

    *

    ^

    A

    -

    e

    A

    r

    *

    *

    p

    %

    \

    2

    k

    a

    n

    a

    4

    C

    =

    P

    I

    L

    W

    (

    n

    (

    n

    w

    e

    Z

    =

    d

    d

    1

    2

    3

    (

    c

    n

    n

    o

    n

    e

    á

    s

    o

    a

    e

    a

    n

    a

    4

    3

    ¿

    1

    (

    *

    4

    C

    x

    1

    C

    x

    2

    4

    C

    f

    o

    n

    $

    >

    w

    e

     

    =

    <

    &

     

    n

    2

    3

    a

    C

    C

    C

    e

    h

    a

    s

    o

    n

    e

    a

    o

    (

    d

    P

    c

    a

    n

    e

    á

    s

    n

    vn

    M

    a

    e

    f

    x

    +

    1

    A

    >

    >

    +

     

    í

    (

    a

    +

    d

    =

    ±

    a

    X

    +

    C

    f

    x

    1

    A

    >

    f

    ^

    V

    ^

    n

    ^

    W

    +

    C

    w

    e

    b

    e

    g

    m

    l

    ^

    p

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    14/206

    1

    20

    2.13 BINOMIAL SERIES, GENERAL RELATIONS

    Numérica Constants

    (a) General case. The nth power

    of

    a ± x can be expanded by Newton's formula in a power series

    called

    a binomial series.

    (.*»)=«•(. ±)•=«•[. *

    (;).+ (2>-

    *...

    *(>•]=.-¿^y

    where n = signed

    number,

    í I =

    binomial

    coefficient, a = (±1) , B= (±l)á, and u = x/a.

    (b) Classification. If in theexpansión above

    n

    = 0,1 ,2 ,3 , . . . ,

    p

    the series is finite

    n # 0 ,1 ,2, 3,... ,p anda2 < 1 the series is convergent

    n # 0,1,2,3,.. . ,

    p

    andu2 > 1 the series isdivergent

    (c) CAmodel. The most convenient model

    of

    this series is the nested series introduced in (1.07),

    which for« =

    x/a

    is

    (a ± ) =   Á

    (1

    ±ku) =a (l ±nu(\ ±í-^—

    a(l

    ±^ . ( l±

    ))))

    Five distinct forms of this mode l are given below in

    (d),

    and selected particular cases are

    tabulatcd in (2.14).

    (d) OistinctCAmodels. Uu'2 < I a nd X = u/p,

    n ——m,p = 1

    1 i tJ i

    Tm+

    ' h

    -m

    + 2

    (, rm + 3,iT lll\

    (1±«)- ,TmTT 2 (,T 3 Ul'T 4 U(T

    ))))

    n —

    -, m = 1

    P

    vTT;= .±a(,

    *>-

    '*(.

    =2% '*('

    *3\~ «X(l *-))))

    1

    n

    =

    ,m

    = 1

    P

    ^, ,^(, ,^-(,=^.,( , ,3^. , ,

    ,..,)))

    m

    n = —

    P

    {/(I ±«r - 1±

    mA'(l

    T>2H .V( i;2í3  A'(l T*4 .V(l T))))

    m

    1 . T ../. T /> + » . ./ . ^2/>+ mtY. T3/>+ m \ \ \

    7¡===ITHa(.T 2 A(lT 3

    A(lT

    4 A(. 1 )))]

    where

    m,/>

    are positive integers or positive decimal numbers.

    (e) Absolute truncatlon error

    \e\

    in these seriesis lessthan the absolute valué of the first dclctcd

    t e rm .

    In series (a), |er+l| =S

    M Ju,+ l a

    In series (c), |fr+1|

    <

    |c,r2rs

    cfc,+ ,u'+,\a*

    (f) Example. By series (c).

    (I 4- 0.234)°* =I+0.567(0.234)(l - ^(0.234)(l - -^p(0.234)(l - — (0.234))))

    = 1.126 601 (correct valué 1.126615)

    , • . ^^ ,v /0«3 \ /1 .433 \ /2 .433 \ /3 .433 \ _ v.

    and |))))))

    _i_

    =

    J:(lTWlT5„(lI|„(1T2„(lT „(lT5„(1T...,))))))

    (b)

    Exponent

    n=1/m (m = 2,3,4;«= x/am)

    y/a

    ±x=Vaíl ±

    «(

    ^a

    ±x

    =

    V^(l

    ±

    «(

    V a ±x=

    Va(l

    ±

    «(

    (c)

    Exponent

    n=

    -1/m

    (m

    Va ix

    Va V

    1 1 / i

    »o»«

    1 1 /

    WTx=Ta\i:fu[

    ( H'^-O'H ^' •< '))))))

    ('H I ( -( t ( >

    *-'))))))

    (.H-( í ( 7-( T-( > *->))))))

    = 2, 3,4; u = x/am)

    (.*|.(.*f.(.*H H >

    *-'))))))

    0*i-( HlT7o-( T-( f *- >))))))

    ('*H H 7-{ T-( 7' *->))))))

    (d) Exponent /» = p/fl (p = 2,3,4;a = 3,4,5;«= x/a?)

    iíw^f=.'(.*4 *M1 * -(' t í-(' t7'(: t 7-(i t >))))))

    tf7±7P

    =

    '(>

    ±

    fc(l

    í

    i.(l

    T

    .(l

    *

    |«(l

    T

    ^lífl l í

    o))))))

    ^7±7F=«(1 ±

    «.(i

    *^(. *f^i í ^ h f(i *£.(.*• )))))))

    (e)

    Exponent

    n

    = -p/

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    15/206

      1

      1

    22 2.15

    GENERAL

    SERIES AND PRODUCTS

    OF BINOMIAL COEFFICIENTS

    ' 1 ' i

    Numérica Constants

    (a)Generalsums of complete, monotonic sequences

    (n,r,N = 1,2,3,.. .)

    ÍQ-Q +OQ +- +

    Q-*

    l/0=(MM2 )+-+0 , +

    ('-,>r

    | ^K)+

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    16/206

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    17/206

    2

    2

    1

    E

    U

    S

    C

    e

    N

    m

    c

    C

    a

    (

    a

    D

    n

    o

    T

    y

    m

    e

    e

    h

    m

    t

    =

    m

    (1

    +

     

    m

    (

    1

    4

    n

     

    =

    7

    .

    _

    m

    «

    o

    a

    s

    h

    o

    h

    u

    a

    s

    y

    e

    m

    o

    o

    h

    m

    I

    n

    C

    H

    m

    e

    o

    h

    e

    s

    b

    h

    i

    a

    o

    a

    a

    a

    n

    m

    (

    b

    C

    c

    a

    o

    O

    e

    o

    e

    e

    o

    a

    a

    m

    s

    h

    m

    o

    n

    n

    e

    e

    a

    n

    a

    o

    h

    w

    o

    w

    F

    m

    e

    a

    d

    o

    m

    o

    r

    4

    =

    7

    4

    6

    (

    <

    0

    s

    1

    1

    o

    d

    e

    y

    b

    C

    a

    1

    \

    o

    +

    e

    =

    2

    7

    e

    (

    <

    2

    3

    1

    6

    e

    =

     

    \

    I

    +

    )

    +

    =

    7

    +

    (

    e

    <

    4

    x

    )

    /

    1

    \

    1

    O

    +

    =

    7

    +

    e

    (

    e

    <

    4

    X

    6

    /

    1

    \

    (

    H

    =

    +

    7

    (6

    6

    °

    k

    1

    (

    c

    E

    e

    s

    e

    b

    1

    1

    I

    1

    1

    c

    e

    n

    T

    (

    d

    E

    e

    s

    n

    r

    a

    o

    I

    e

    =

    2

    +

    I

    +

    2

    +

    3

    +

    4

    +

    2

    1

    T

    a

    d

    g

    o

    h

    s

    e

    s

    h

    w

    n

    e

    o

    n

    e

    <

    6

    (

    e

    V

    ú

    o

    e

    e

    m

    a

    o

    m

    o

    5

    +

    6

    +

    c

    g

    ra

    d

    y

    a

    s

    h

    w

    i

    n

    (

    e

    (

    o

    n

    1

    6

    6

    X

    °

    a

    s

    s

    o

    C

    m

    m

    S

    e

    F

    o

    1

    2 3

    4 5

    2

    0

    2

    6

    2

    7

    2

    7

    2

    7

    2

    0

    2

    6

    2

    7

    2

    7

    1

    2

    7

    6

    7

    8

    9

    1

    2

    7

    2

    7

    2

    7

    2

    7

    2

    7

    2

    2

    7

    1

    2

    7

    ~

    1

     

    ~

    N

    m

    c

    C

    a

    (

    a

    D

    n

    o

    T

    y

    m

    y

    e

    h

    m

    v

    H

    f

    +

    +

    +

    -

    n

    =

    5

    y

    i

    Ü

    2

    3

    n

    I

    N

    o

    s

    y

    a

    a

    e

    w

    h

    y

    s

    a

    a

    o

    n

    m

    (

    b

    C

    c

    a

    o

    O

    y

    o

    e

    e

    o

    a

    a

    m

    s

    h

    h

    u

    o

    h

    g

    v

    m

    o

    a

    g

    n

    h

    w

    o

    w

    o

    b

    h

    n

    a

    o

    s

    e

    n

    (

    c

    E

    m

    e

    .

    +

    +

    +

    +

    L

    n

    1

    6

    =

    5

    6

    (

    e

    <

    X

    0

    4

    2

    3

    1

    V

    +

    +

    4

    4

    L

    n

    1

    e

    =

    5

    2

    6

    (

    6

    <

    7

    y

    +

    3

    1

    ,

    +

    +

    +

    +

    L

    n

    1

    -

    6

    =

    5

    6

    (

    6

    <

    °

    2

    1

    E

    U

    S

    C

    y

    2

    (

    d

    E

    e

    s

    n

    f

    r

    a

    o

    l

    (e

    V

    ú

    o

    y

    n

    e

    m

    o

    m

    o

    y

    =

    0

    +

    n

    F

    o

    1

    2

    3

    4

    5

    1

    0

    0

    5

    0

    6

    0

    5

    0

    5

    6

    7

    8 9

    1

    0

    5

    0

    5

    0

    5

    1

    0

    5

    0

    5

    I

    0

    5

    1

    +

    1

    +

    1

    2

    +

    1

     

    2

    +

    1

    +

    4

    +

    3

    +

    1

    +

    5

    +

    c

    g

    v

    y

    r

    a

    d

    y

    h

    w

    i

    n

    {

    (

    o

    n

    1

    e

    <

    5

    X

    °

    a

    s

    s

    o

    C

    m

    (

    S

    m

    e

    a

    d

    o

    m

    o

    b

    m

    e

    a

    o

    e

    h

    g

    s

    o

    d

    f

    u

    y

    =

    -

    6

    5

    3

    6

    (

    6

    8

    O

    3

    1

    -

    6

    5

    7

    6

    (

    6

    1

    x

    5

    1

    +

    5

    +

    (

    6

    8

    7

    .

    3

    a

    o

    o

    n

    c

    a

    o

    y

    =

    I

    _

    =

    5

    e

    (

    e

    <

    3

    x

    4

    i

    (

    g

    F

    b

    C

    S

    o

    m

    a

    n

    e

    m

    O

    R

    =

    1

    +

    a

    =

    7

    8

    2

    1

    )

    i

    s

    h

    a

    o

    m

    o

    a

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    18/206

      ~1

      ^

    20 2.20 NATURAL LOGARITHM OF 2 Numerical Constants

    (a) Definition.

    The symbol ln2 denotes the natural logarithm of2,

    defined

    bythe relationship

    e,a2 =

    flim ('+-)] whcrc

    m2 =

    °-693

    147

    180559 945

    309417

    232

    This constant is an important component in the construction ofCA modcls of natural logarithms

    of large numbers (9.06).

    (b) Calculation Of ln2 to a desired degree of aecuracy can be accomplished by

    means

    of continued

    fractions and infinite series as shown below. For simple and rapid calculations,

    ln2= Vi - 6 = 0.693 375 245 - 6 (6 < 2.3 x

    I0 4)

    (c)

    Napier's

    continued fraction,

    1

    ln 2 = 0 +

    1 +

    1

    2 +

    3 +

    1 +

    6 +

    3 +

    1 +

    1 +

    2 +

    converges

    as

    shown

    in

    (/ )

    (for

    n

    =

    11, \e\ <

    2.8x

    10~a).

    Simple and rapid

    approximations

    by

    simplefractions are the convergents of this fraction constructedby (2.08/).

    (d)

    Gauss' series

    based on

    for

    x

    = g yi eld s

      I

    - = - + — +

    —7

    +

    1 x 3*J 5* '

    ln2

    =T+_+_ +

    .. .

    where

    a

    = 5.

    The

    relatively slow con

    vergence of this seriesis shown in ( /)

    (forn = II, 6 <

    4.1

    X 10-7).

    (e) Goursat's series basedon

    N+

    I = f l 1

    N 12N + I 3(2N + l)3

    ' ]

    (2^+

    I)'*

    for N = yields

    • r¿ t>* f 1

    where

    b

    ^-4^-The better convergence^of

    this serie;* is

    shown

    in

    (f )

    (for

    n

    = 8,

    6 < 5.1 :; lO '0).

    (f) Valúesof ln2 based on n-termapproximation

    i

    Fraction

    Gauss

    Goursat

    1

    1 000000000 0 600000000

    0 666666667

    2

    0 666666667

    0 672000000 0 691358025

    j

    0 700000000

    0.687 552000 0.693004 115

    4 0.692307692 0.691551 016

    0.693 134757

    5 0.693 181818

    0 692670830

    0.693

    146047

    6

    0.693 140794

    0 693000646

    0.693 147074

    ;

    0 693150685 0.693011 129

    0.693 147 170

    8

    0 693146417 0 693132459 0.693 147 180

    9

    0.693 147362

    0.693 142 154

    10

    0 693147097 0.693 146226

    11

    0.693147208

    0.693 146672

     ñ

    — 1

    1

    Numérica

    Constants 2.21 FIB0NACCI

    NUMBERS 29

    (a)

    FibonaCCi numbers

    Fr

    (r= 0,

    1,2,

    3,...)

    are defined

    by

    their

    gencrating rclatton

    Fr = /%-, + /= ,-

    where

    F0

    = 0,

    Ft

    = 1, F2 = 1,

    Fs

    = 2,

    F4

    = 3,

    numbers are given belowin (*)

    (b)

    Closed form ofthis number is

    Numerical valúes of the f irst 50 Fibonacci

    r . -u^ -^y-^-

    where

    a = 1.618033988 749894848204

    are the gotden mean

    numbers.

    (c)

    Golden mean numbers arethe roots of

    x*

    - x -

    1 = 0

    which is thecondition of thedivisión ofa linesegment AB in

    the

    adjacent

    figure by the point C in the mean

    and exteme

    ratio,

    so that

    the greater

    segment

    AC

    is the

    geometric mean

    of

    AB

    and

    CB,

    B

    =

    -0.618

    033

    988

    749

    894 948204

    * = V(i)(* + i)

    and the

    golden rectangle

    is the rcctangle

    whose

    sides have the

    ratio

    ofé(l

    +VÜ)

    and

    is

    supposcd to

    have the most pleasing cffect on the cyc.

    (d)

    Series representation

    of the u + l)th

    Fibonacci number

    is

    '--¿(,1*)

    where m is the n ear es t higher i nt eg er

    above j ror |r.

    (f)

    Ratio of two consecutive Fibonacci

    numbers

    is

    K

    =

    FJF,.

    where R, =

    1 +

    I +

    1 +

    1 +

    1 +

    is a continued fraction with r divisions.

    (g) Examples

    By (b),

    FB ^yjrí 8 -

    0 )

    =21-

    (e)

    Table of Fibonacci numbers

    r

    F,

    r

    Fr

    r

    F,

    1

    1

    18

    2 584

    35

    9227

    465

    ?

    1

    19

    4 181

    36

    14930 352

    3

    2

    20

    6 765

    37

    24157817

    4

    3

    21

    10946

    38

    39088 169

    •i

    5

    22

    17711

    39

    63245986

    6

    8

    23

    28657

    40

    102334 155

    7

    13

    24

    46368

    41

    165 580141

    8-   21

    25

    75025

    42

    267914 296

    9

    34

    26

    121393

    43

    433494437

    10

    55 27

    196418

    44

    701408733

    11 89

    28

    317811

    45

    1 134903 170

    12

    144

    29

    514229

    46

    1836311903

    13

    233

    30

    832040

    47

    2971215073

    14

    377

    31

    1346 269

    48

    4807

    742049

    15

    610

    32

    2178

    309 49

    7778 742049

    16

    987

    33

    3

    524578

    50

    12586269025

    17

    1597

    34

    5 702 887

    -twí *~t>®*GVQ-«

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    19/206

     ~ ~J ~J   1   H

    '

    H

    30 2.22 BERNOULLI NUMBERS

    (a) Generatlngfunction

    e'

    - 1 fT0

    'r

    O 1 2 3

    where

    (W < 2jt)

    Numerical

    Constants

    B0 =

    1

    ¿ 2 = é

    a - L

    a4 311

    *« = é

      « 30

    « = -i

    *>IO «i

    i , = -é

    ¿ 3= 0

    ¿s = 0

    ¿7 = 0 fi„ = 0

    ¿M=0

    are Bemoulli numbers of order r = 0, 1, 2, (A. 10).

    (b) Auxiliary generatlng function

    x x ^ n

    x2' B„

    Btx2 B.x' B^x6

    2- í - í ,?„Bw=«+ ir+

    i r+ ir+

    where

    (M <

    *)

    B0= \

    fl,

    ^*I

    _30

    *»> — 42   4 — 30 f. — 60

    are

    auxiliary

    Bemoulli

    numbers of

    or de r r = 0, 1.

    2. . . .

    (A. 10).

    (c) Relatíonships. Bcrnoulli numbers Br and

    B,

    oforderr canbe alwayscomputed in terms oftheir

    lower countcrparts as

    r - 1 1 A

    ír+ l\ -

    B'=i(7T0-rTT.?,(2*K (-4,6,8....,

    r-

    l ¿

    „/2r

    +

    l\

    2r - 1 l ¿ „, 2r + l

    5 '=^

    =ai(i

    wherej = ±r - 1, / = r - I, a =

    (-1)'+',

    and 8 =

    (-l)í+\

    (d)

    Examples.

    If B2 = ¿, thenby (c),

    s 3 1 /5 \ - 1

    ,-

    1

    B. =

    ( )B2

    =

    B,= (-l)iB.

    = + —

    4

    10 5\2/

    2 30 - V 4 30

    Similarly, if B2 = ¿

    ana

    ¿4 = —

    o> (hen again

    by (c),

    (e) Series representation. For r =

    2,3,4, . . .

    and a =

    ( - l)'*',

    - „ (2r) / I 1 1

    )

    The series converges rapidly for r > 3.

    (f) Example. From

    (b), Bs

    = ¿ = 0.075758,and bya seriesof three terms,

    *5 =

    ¿w

    =2(2^[I +

    ¥°

    +3^] =075758

    ' 1

    Numerical

    Constants

    I

    2.23 BERNOULLI POLYNOMIALS di

    (a)

    Definition. Bemoulli polynomials

    B,(x) oforder r=0,1,2, 3,... are defined

    as

    *w=«*+(;)»-¿.

    Q>-,s>+O' 15»+•

    +0*

    where B0,B,,B2,... ,B, are the Bemoulli

    numbers introduced

    in

    (2.22a).

    Particular

    polynomials

    for r = 0 ,

    1,2,3,.. . .

    25are

    tabulatcd

    in (A.l1).

    (b) PropertieS. In general,

    B,(x

    +

    1)

    -

    B,(x)

    = «'-' Br(x) = -a# ,( l - x)

    Forx = 0,r= 1,2, 3,..., the polynomials define the respective Bcrnoulli numbers as

    ¿2,(0)

    =

    K =

    ccB,

    ¿2,+i(0)

    =

    B2t+l

    =0

    wherea=

    (-l)'+l.

    (c) Derivatives of B,(x) are

    dBt(x)

    dx

    =

    rB,_t(x)

    £M±=r(r-l)B,_2(x)

    dx

    and in general,

    '

    Qnl

    BK.m(x)  n 0

    (« = r)

    ( » > 0

    where

    Dn

    = — and «=1.2,3,

    dx

    (d) GraphS

    of the f irs t four

    polynomials are

    shown

    below.

    (e) Indefinite

    integráis

    of B,(x) are

    I Br(x)

    dx

    =-^-¡-+

    C,

    jj/írw«fflf

    (r+l)(r

    +

    2)

    andin general,

    »,5

    /rU

    _

    £

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    20/206

      1

    32 2.24

    EULER

    NUMBERS

    Numerica l Constants

    (a) Generating function

    i ^=v l> ' =£o +

    i1 i

    + ¿1£ +£¿ +...

    (|x|

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    21/206

    -— i 1

    —I •— 1

    34

    2.26 RIEMAN ZETA FUNCTION

      1 1 i — 1

    Numérica Constants

    (a) Definition. Rieman zeta

    functions

    Z( r) of o rd er r =

    1,2,

    3, . . . are defined by the series

    A I 1 I I

    zw=.?,P =P+?+?+

    or bythe product

    «n-ní-i) --

    where the product is taken over all prime numbers

    p

    = 2, 3,5, 7, 11, 13,

    (b) Alternativeseries definingZ(r) is

    2' A

    I

    2' /

    I

    1 1 \

    z(r) = y = ( - + - + - +

    2' -

    iiT,(2*

    - i)' 2' - i

    \v y y

    /

    The series converges rapidly for r > 5.

    (c) Special

    valúes of Z(r) are

    Z(,) =

    oo,Z(2)=^,Z(4)=^,Z(6)

    =^....

    and ingeneral, in tcrms of Bemoull i numbers and polynomials (2.22), (2.23),

    {2n)'\B,\

    +

    o- if

    r is

    even

    Z(0 = 2

    T,

    =

    i-i

    *

    (2*)' f• B,(x)

    -.fifi/'

    r Jo

    (cot-T.v ¿r i frisodd

    where r > 1and a = (-l)'+l. Numericalvalúes ofZ(r) for r = 1,2,3,. . . ,20 are tabulated in

    (2.27r). Large tables ofZ(r), including decimal valúes of argument, can be found in Ref. 2.03.

    (d) Sums of reciprocal powers

     i l i l í

    i_,* 12 3 4

     l

    l i l i

    / \'

    X = - + - + - +

    -+-=(-Z

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    22/206

      1

    36 2.28 GAMMA FUNCTION, GENERAL RELATIONS

    (a) Euler's integral. Gamma function ü(x + 1)is the generalizaron

    of the factorial (2.09o) and is defined as

    r(x+

    I) = I

    e-t'dt = x\ (*>0)

    (b)Gauss' limit is a broader definition of the gamma function

    expressed as

    T{x

    + 1) = lim

    —-(x + n){x + n - 1) - - - {x + 2)(x + 1)

    -jáL-TiC-T1) -

    Numerica l

    Constants

    iru+i)

    The graph

    shows

    that

    T(x

    + 1) is

    single-valued except

    at

    x = - I, -2 , -3, . . .

    , and

    its alternating extremes are T(l.462) =

    0.886,

    T(-0.504) = -3.545, T(-1.573) =

    2.302,

    r(-2.6ll)

    = -0.888, T(-3.635) =

    0.245.

    T(-4.653)= -0.053, T(-5.667) =

    0.009,

    T(-6.678)

    =

    -0.001

    (Reí. 2.08).

    (C)

    Functional equations. With

    the restrictions

    placed

    upon

    x

    in

    (b),

    r(x

    + n) =

    (x

    +

    n

    - I)(* + n - 2) u +

    2)(x

    + l)r(* + 1)

    rt.-.)-7

    0i±Jl

    (* - «)(* - n + I) (x - 2)(* - 1)*

    wherc

    n =

    positive

    integer and

    x

    =

    signed

    number (positive or negative,

    integer

    or fraction).

    (d) Integer and

    fraction

    arguments (n,p,q = l. 2.3....)

    r( „ + i)

    = n(n -  )( « - 2) 3 -2 - I = ni

    = (n - 2)(n - 3) 3 2 1 =

    (n •

    -2)

    r(n + p + 1) = (n + p)\

    r (n -p+

     ) = («

    -p ) \

    rK)=K-0K->)-

    K)H)K>H)

    (e) Reflectlonand duplication formulas

     n

    r(«)r(-«)

    =

    u sin uJ T

    where

    x

    = signed number, « =

    1,2,3 , . . . ,

    and

    u <

    1

    ( f) Special valúes (n = l, 2,3,.. .)

    4*

    r(2*)=^=r(*)r(*

    +

    2-)

    r » r ( i

    - „)

    r ( -n)

    = *

    f

    (o) = *

    r( i) = i

    £(n) =

    (n -

    - D

    n-k)

    =

    -2 \£

    rtí) = V^r

    n-+

    )

    - (2n 4^

     4

    r(-« +

    A)

    =

    (_4)--'̂

    (2n)

    Numerical valúes ofT(n + 1)

    and

    r(u)

    are

    tabulatcd in (A.03)

    and

    (A.04),

    rcspcctively.

    NumericalConstants

    1

    ~i

     H ' 1 1 1

    2.29

    GAMMA

    FUNCTION, NUMERICAL

    EVALUATION

    37

    (a) Smallargument. For o < u ^ 3, the gamma func- (b)

    Factors

    akand¿*

    t ion can be evaluated to a dcsi red degrec ofaecuracy

    . / (1 - u)un

    , / (1 +

    u)u3t

    ni - u = rrW--i—-?— +

      (I

    —«)sm«jr

    where in terms of ak given in

    (b),

    z = atu —OjU3 —a5«5 — —fl|j«

    and \e\ S 5 X 10 '°. Nestedform intcrmsof Ak given in (A) is

    r =

    A,u(l - i4,«*(l

    -

    .4s«-(l

    -

    A,u2(l A,3u2))))

    The

    general expressions

    for ak and

    Ak

    are a, = I - y,

    a:l

    = Z(3)—I,

    a5

    = Z(5)— I,... and

    A,

    = a, ,

    A3

    = a3/a,,

    i45

    =

    as/a3,...,

    where y = Euler's constant

    (2.19)

    and Z(r) = Riemann

    zeta function (2.26).

    (C)

    Example. If

    T(1.25), T(0.75), T(3.25), and

    T(3.75)

    are dcsired,

    eT

    is calculated first with

    u = 0.25.

    k

    «1

    Ak

    1

    0.422

    784335

    0.422

    784335

    3

    0.067352

    301 0 . 159306581

    5 0.007 38 5 551

    0 . 109655511

    7

    0 .001 192 754

    0.161498309

    9 0 . 000223

    155

    0.187092229

    II

    0.000044926

    0.201

    321951

    13 0 . 000009439

    0.284 490050

    axu = 0.105 696083 8

    -a3«3=

    -0.0010323797

    the sum of which is r = 0.104

    636418

    2 and eT = 1.110306 850. Then by relalions (a),

    -as i r

    =

    -0.000007

    2124

    -a7«7 = -0.000 000 072 7

    ,.* —

    -a.,u = -0.0000000008

    n,

    , n„A r

    /(0.75)(0.25)tt

    /(L25)(0.25)g

    r(,+0-25)-íV,.25sin0.25^ T(l -

    0.25)

    - , V0.75sin0.25^

    0 . 906 402

    47 7 3 + e

    1.225 41 6 702 2 + 6

    where€ = -2 X 10 ' basedon comparisonwith the tabulated valúesin (A.04). The remaining

    valúes are calculated by (2.28a*).

    (d)

    Large

    argument.

    If

    x > 4

    isan integer or

    decimal

    number, the Stirling's

    expansión

    (2.09í),

    r{x + i)

    tl{^'y/2xH

    + € = xl

    yieldsgood rcsults as shown in (í) below.

    (e)

    Errors

    of Stirling'sexpansión of r(x + 1)

    X

    + 1

    Correa valúe o(T(x

    + 1)

    Approximatc valúeof ü(x +

    1)

    3.00

    2.000000000

    (+00)

    1.999997

    800

    (+00)

    3.25

    2.549 2 56 96 7 ( +0 0)

    2.549 2 55 92 8 ( +0 0)

    3.50

    3.323

    3 50 97 1 ( +0 0)

    3.323

    350

    418

    (+00)

    3.75

    4.422988 410 (+00)

    4.422988086 (+00)

    4.00 ,

    6.000000000

    (+00)

    5.999999

    792

    (+00)

    5.00

    2.400000000 (+01)

    2.399999993

    (+01)

    6.00

    1.200000000 (+02)

    1.200000000

    (+02)

    7.00

    7.200000000 (+02)

    7.199999 999 (+02)

    1ÜM) i

    5.040000000 (+03)

    . 040000000 (+03)

    10.00 ' 3.628800000

    (+05)

    3.628800000 (+05)

    20.00

    1 .2 1 64 51 0 04 (+17 )

    1.216451004

    (+17)

    50.00

    6.082 8 18 6 40 ( +6 2)

    6.082818 640 (+62)

    __^^

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    23/206

    3

    2

    3

    O

    O

    W

    T

    H

    G

    M

    F

    U

    O

    (

    a

    B

    n

    m

    a

    c

    c

    e

    1

    e

    n

    e

    m

    o

    g

    m

    u

    o

    (

    *

    =

    *

    =

    H

    I

    W

    (

    x

    *

    *

    r

    x

    k

    +

    )

    r

    k

    +

    w

    e

    k

    0

    1

    2

    a

    s

    g

    m

    e

    3

    (

    b

    F

    o

    a

    p

    y

    m

    a

    o

    s

    e

    2

    1

    a

    o

    o

    d

    m

    n

    s

    T

    x

    1

    N

    m

    c

    C

    a

    s

    A

    (

    =

    x

    x

    l

    x

    -

    2

    x

    m

    +

    1

    =

    1

    r

    u

    m

    +

    i

    r

    *

    +

    i

    x

    (

    x

    l

    x

    2

    x

    m

    -

    l

    x

    m

    T

    x

    m

    +

    1

    w

    e

    m

    =

    p

    v

    =

    a

    s

    h

    g

    m

    e

    c

    e

    2

    2

    (

    c

    F

    o

    a

    p

    y

    m

    a

    o

    s

    e

    o

    d

    m

    n

    s

    A

    >

    x

    k

    x

    2

    A

    x

    (

    m

    -

    D

    =

    (H

    A

    (

    -

    +

    )

    (

    H

    .

    r

    =

    (

    x

    A

    x

    2

    A

    x

    m

    r

    ^

    +

    m

    )

    w

    e

    x

    e

    h

    n

    i

    n

    b

    a

    h

    s

    v

    a

    (

    d

    D

    e

    a

    o

    a

    d

    e

    a

    x

    i

    s

    p

    a

    c

    a

    f

    a

    o

    a

    p

    y

    m

    a

    w

    h

    x

    2

    x

    2

    1

    A

    2

    a

    n

    1

    2

    3

    I

    n

    c

    a

    (

    2

    ü

    2

    2

    2

    2

    4

    6

    4

    2

    2

    n

    =

    2

    T

    n

    1

    2

    >

    -

    \

    2

    T

    +

    \

    (

    2

    1

    1

    =

    (

    2

    1

    2

    3

    2

    5

    5

    3

    1

    V

    \

    (

    e

    N

    u

    a

    o

    h

    m

    h

    m

    u

    o

    o

    0

    u

    ;

    s

    V

    1

    u

    u

    .

    .

    .

    i

    +

    a

    u

    a

    U

    a

    -

    a

    (

    1

    u

    n

    /

    (

    1

    u

    u

    .

    ,

    .

    l

    n

    T

    a

    =

    n

    W

    a

    u

    «

    +

    «

    +

    +

     

    1

    w

    n

    w

    e

    a

    a

    a

    e

    h

    a

    o

    s

    e

    n

    2

    F

    1

    (

    «

    «

    <

    n

    2

    3

    l

    n

    n

    u

    =

    l

    n

    n

    u

    I

    +

    l

    n

    n

    u

    2

    +

    +

    l

    n

    1

    u

    +

    l

    n

    T

    +

    u

    w

    e

    n

    T

    +

    u

    s

    h

    c

    a

    o

    (

    S

    r

    n

    s

    ó

    o

    n

    E

    x

    +

    o

    v

    s

    _

    n

    r

    *

    +

    =

    n

    +

    n

    V

    +

    w

    e

    A

    s

    h

    e

    n

    2

    0

    a

    f

    o

    v

    y

    a

    g

    A

    0

    N

    m

    c

    C

    a

    s

    2

    3

    P

    A

    B

    U

    O

    3

    G

    R

    O

    (

    a

    P

    u

    o

    í

    x

    s

    h

    g

    a

    z

    o

    h

    a

    o

    a

    2

    0

    a

    s

    d

    n

    n

    x

    =

    x

    +

    1

    =

    t

    d

    =

    (

    x

    >

    w

    e

    s

    h

    a

    a

    o

    a

    A

    r

    e

    a

    o

    n

    o

    n

    (

    2

    2

    o

    (

    2

    3

    a

    e

    c

    e

    n

    o

    a

    o

    w

    h

    h

    s

    u

    o

    (

    b

    B

    a

    u

    o

    H

    x

    y

    s

    d

    n

    B

    *

    r

    =

    -

    (

    -

    0

    d

    =

    (

    +

    <

    >

    >

    >

    a

    s

    e

    a

    e

    o

    h

    m

    u

    o

    u

    o

    B

    x

    r

    H

    ^

    r

    x

    B

    x

    y

    =

    n

    x

    \

    U

    y

    1

    n

    x

    -

    I

    (

    c

    R

    e

    o

    o

    m

    a

    (

    n

    =

    1

    2

    3

    )

    B

    x

    y

    =

    B

    r

    x

    B

    x

    y

    z

    =

    B

    ¿

    x

    +

    B

    x

    7

    B

    x

    +

    z

    =

    B

    *c

    B

    +

    x

    _

    w

    +

    v

    n

    -

    x

    J

    x

    B

    «

    +

    h

    x

    r

    (

    2

    )

    s

    n

    T

    n

    +

    >

    x

    =

    J

    <

    T

    2

    1

    B

    n

    +

    +

    n

    +

    x

    r

    v

    l

    (

    2

    c

    J

    x

    w

    e

    P

    =

    /

    »

    =

    V

    A

    -

    x

    2

    -

    x

    P

    =

    x

    2

    x

    2

    x

    &

    =

    e

    =

    m

    %

    &

    =

    5

    a

    *

     

    -

    *

    ]

    Q

    é

    a

    «

    H

    -

    *

    H

    -

    8

    F

    «

    B

    u

    1

    u

    =

    n

    u

    s

    n

    «

    (

    d

    n

    e

    a

    r

    a

    o

    a

    g

    m

    s

    »

    ?

    =

    1

    2

    3

    )

    (

    >

    h

    a

     

    r

    >

    »

    <

    M

    r

    ^

    ~

    M

    l

    B

    >

    +

    /

    +

    2

    +

    I

     

    2

    >

    +

    2

    >

    2

    -

    2

    2

    >

    I

     

    w

    #

    ^

    1

    B

    ^

    +

    I

    2

    _

     

    2

    >

    )

    2

    -

    2

    2

    3

    B

    »

    >

    B

    ¿

    A

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    24/206

    ~~Jj 1 ' 3 ' 1 ' 1 1

    40 2.32

    DIGAMMA

    FUNCTION, GENERAL RELATIONS

    (a) Derivative of natural logarithm of T(x + 11 in (2.28a) is called

    the

    digamma function rp(x).

    „,).¿{nn,ti)»-Efe+Jl

    where T'(x + 1)is the derivat iveof T(x +

    11

    with respect to x.

    (b)

    Natural logarithm

    ofGauss'limit in

    (2.296)

    canbe

    diQcrcntiatcd

    term by term so that

      1 ~H  

    1

    Numerical

    Constants

    M =im (in. - i j^) =i

    (1

    - --^)- y

    where y = Euler's constant (2.19a). In some literatures

    ip{x)

    is calledthe

    psifunction.

    The graph

    in (a) shows that \p(x) issinglc-valuedexcept at x = —1,—2,—3,... , and its zero pointsareat

    x = 0.462,

    -1.504,

    -2.573,

    -3.611,

    -4.635.

    -5.653, -6.667,

    -7 .678 , . . . .

    (c) Functional equations with restrictions placed upon x in

    (b)

    are

    1

    x¡){x +r )= x¡>(x) + 2

    a^i

    x

    +

    k

    where r ¡sa positive integer and x is a signed number.

    (d) Integerand fractionarguments (n,p,q

    =

    1.2.3—)

    V v - r) =

    Y(Jt)

    - 2

    * f

    , * + 1 - *

    *(.) =  +j +5 +-- + ,_ l +

    1 ¿ 1

    ;-r-.?.¡-r

    *KH(*)+4.,+'?*

    v1,.í)=v(.í)+,¿ '

    a/

    \ q)

    k.,qk

    - ¿

    (e) Reflectionandduplicationformulas

    V(x

    +1-

    n)

    - lfi(x

    +

    I)

    =¿

    .i x — k

    tp(x) - y>(x+ l) =

    2y(2x - 2) = y( * - O + V(* - 5) + 1 4

    y(«)

    - V(-«)

    where x = signednumber, n = 1,2,

    3,. . .

    . and | a| < 1.

    (f) Special valúes

    u tan

    uJ l

    V»(-n) = ±» V(0) = -y V(D = l ~ 7 V(2) = 1+ 5 - Y VO) = l+ | +   y

    v,(_i) = _v_|n4

    V(-5)= -y-lnV27 +

    V3-

    V(~¿) =

    - y - ln 16 + -

    ' 2

    V(j) = 2 - y -

    ln 4

    V(5)

    = 3 -y - l nV27 -

    VÍJt

    V(í) = 4-y-lnl6--

    Numerical valúes ofV(u)

    are

    tabulated in

    1

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    25/206

    '

    4

    (

    V

    VWC

    w

    (

    a

    j

    Á

    V

    T

    m

    vm

    t

    (W

    (m

    m

    (

    m

    VWmmm

    w

    V

    j

    .m

    y

    m

    w

    (m

    vW

    s

    y

    r

    w

    (

    u

    y

    y

    V

    ^

    t

    V

    N

    N

    OO

    (m

    rm

    ;

    4

    =

    aH

    -<

    a

    1

    a

    d

     

    a

    r

    2

    (

    1

    A^

    d

    1

    *—AV

    d

    asm

    d

    d

    -

    M

    w

    (

    d

    D

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    0

    0

    0

    0

    0

    0

    0

    0

    (d

    a2

    u5«

    u

    —^

    d

    v

    l

    2

     

    T

    d

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    26/206

    J

    4

    2

    3

    P

    O

    G

    M

    F

    U

    O

    N

    M

    E

    C

    E

    U

    O

    (

    C

    n

    (

    e

    I

    n

    e

    m

    a

    e

    g

    m

    F

    §

    <

    <

    h

    e

    c

    o

    m

    a

    n

    (

    2

    3

    y

    e

    d

    r

    e

    u

    a

    N

    m

    c

    C

    a

    x

    X

    r

    +

    =

    V

     

    (

     

    2

    1

    (

    *

     

    -

    w

    e

    r

    =

    2

    3

    V

    (

    «

    V

    »

    a

    c

    c

    c

    a

    e

    b

    (

    2

    3

    a

    t

    »

    )

    «

    Í

    >

    m

    u

    a

    e

    o

    a

    n

    2

    3

    n

    e

    m

    o

    h

    e

    n

    ú

    *

    >

    «

    V

    ,

     

    «

    +

    2

     

    T

     

    _

    (

    *

    U

    ^

    «

    =

    «

    +

    3

    (

    E

    m

    e

    I

    h

    ú

    o

    V

     

    3

    5

    a

    y

    M

    0

    5

    a

    c

    e

    h

    e

    y

    (

    3

    +

    5

    =

    V

     

    (

    0

    5

    p

    ~

    Y

    2

    2

    a

    b

    23

    *

    <

    0

    5

    =

    U

    +

    -

    V

    °

    5

    =

    9

    7

    (

    0

    5

    s

    2

    (

    g

    L

    g

    g

    m

    v

    >

    s

    i

    n

    e

    o

    d

    m

    n

    m

    h

    v

    v

    o

    S

    n

    s

    ó

    i

    n

    2

    3

    y

    e

    d

    a

    n

    a

    w

    h

    =

    (

    1

    .

    1

    I

    <

    >

    a

    w

    -

    1

    <

    w

    e

    ¿

    =

    L

    +

    L

    +

    <

    x

    6

    3

    4

    7

    3

    6

    r

    >

    1

    _

    J

    _

    3

    5

    d

    ~

    2

    +

    6

    v

    +

     

    6

    d

    m

    _

    r

    w

    +

    _

    w

    +

    .

    m

    +

    _

    m

    +

    5

    w

    +

    M

    <

    *

    1

    V

     

    I

    2

    3

    *

    2

    5

    *

    2

    7

    a

    6

    9

    a

    u

    I

    v

    e

    m

    o

    h

    y

    m

    o

    c

    e

    e

    n

    u

    n

    o

    o

    o

    1

    d

    g

    d

    s

    p

    a

    T

    c

    A

    b

    o

    w

    s

    h

    w

    h

    a

    o

    a

    c

    o

    o

    h

    s

    o

    m

    a

    o

    T

     

    v

    (

    h

    E

    o

    o

    S

    r

    n

    s

    ó

    (

    1

    (

    *

    X

    C

    e

    u

    y

    *

    A

    o

    m

    c

    ú

    o

    V

    x

    -

    0

    5

    0 0

    5

    1 1

    5

    a

    a

    2

    =

    4

    9

    (

    +

    C

    =

    1

    6

    (

    +

    j

    2

    =

    3

    (

    0

    %

    -

    =

    4

    (

    0

    .

    /

    2

    4

    1

    1

    3

    )

    =

    4

    9

    (

    0

    N

    a

    c

    e

    f

    o

    £

    1

    5

    3

    ;

    6

    (

    1

    1

    2

    )

    =

    9

    (

    0

    J

    T

    6

    -

    1

    I

    2

    +

    1

    3

    )

    =

    2

    8

    (

    0

    3

    9

    (

    0

    2

    8

    (

    0

    2

    2

    (

    0

    j

    r

    6

    1

    +

    2

    +

    3

    +

    =

    2

    (

    0

    5

    K

    j

    6

    1

    +

    2

    3

    +

    4

    +

    5

    =

    1

    8

    (

    0

    .

    7

    1

    1

    2

    +

    1

    3

    -

    1

    1

    -

    =

    9

    5

    (

    0

    1

    8

    (

    0

    9

    5

    (

    0

    3

    N

    M

    R

    C

    A

    D

    F

    E

    R

    N

  • 8/9/2019 Handbook of Numerical Calculations in Engineering

    27/206

    m 31

    46

    3.01 FINITEDIFFERENCES AND CENTRAL MEANS

    (b) Divided

    difference

    of first

    order defined as

    f{Xfxk+l) — _

    , _

    x

    xk*\ *k ** + l **

    isthe

    slope

    ofthechord

    k,k +

    I,

    ta n q> =

    where J t= 0, ±1, ± 2,

    ±3

    (c) Forward difference of first order, defined

    as

    a*í+i)

    --/*(**)

    =****

    -y *

    is thedifference of the valúesof the function at xt+l, xk,

    d cnot ed as

    Ax, =yk+\

    -j k

    (d) Backward difference

    of

    first order, defined

    as

    A**)

    -A**- i ) °x -J*- '

    is thedifference of the valúesof the funedon at

    xk,

    xt_,,

    denoted

    as

    v>*

    = yk - jk-i

    (e) Central difference

    of

    first order, defined as

    A*.+in)

    -/(**-i/a)

    =yk+\n ~ Jk-m

    is the

    difference

    of the valúes of the functionat

    xk+m,

    xk-in> dcnoted as

    fyk =7*+1«~ yk-

    where yk.m, yk+t/2 are the vertícal coordínales of

    midpoints

    betwccn k - 1, kand *,k+

    1. respectively.

    (f) Central

    means

    of first order,

    defined

    as

    f[xt-in) +f(xk+,n) yk-xn

    +yk

    +m

    2 2

    Numerical

    Differences

    (a)


Recommended