+ All Categories
Home > Documents > Hard X-ray Photoelectron Spectroscopy (HAXPES) Of Correlated Materials

Hard X-ray Photoelectron Spectroscopy (HAXPES) Of Correlated Materials

Date post: 01-Feb-2016
Category:
Upload: bonner
View: 162 times
Download: 5 times
Share this document with a friend
Description:
Hard X-ray Photoelectron Spectroscopy (HAXPES) Of Correlated Materials A. Chainani, 1,2 Y. Takata, 1 * M. Oura, 2 M. Taguchi, 3 M. Matsunami, 3 R. Eguchi, 3 S. Shin, 3 1 Coherent X-ray Optics Lab 2 Advanced Photon Technology Division 3 Soft X-ray Spectroscopy Lab - PowerPoint PPT Presentation
Popular Tags:
128
05/06/22 1 Hard X-ray Photoelectron Spectroscopy (HAXPES) Of Correlated Materials A. Chainani, 1,2 Y. Takata, 1 * M. Oura, 2 M. Taguchi, 3 M. Matsunami, 3 R. Eguchi, 3 S. Shin, 3 1 Coherent X-ray Optics Lab 2 Advanced Photon Technology Division 3 Soft X-ray Spectroscopy Lab RIKEN Harima Institute @ SPring-8 *deceased
Transcript
Page 1: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 1

Hard X-ray Photoelectron Spectroscopy (HAXPES)

Of Correlated Materials A. Chainani,1,2 Y. Takata,1* M. Oura,2

M. Taguchi,3 M. Matsunami,3 R. Eguchi,3 S. Shin,3

1 Coherent X-ray Optics Lab2 Advanced Photon Technology Division

3 Soft X-ray Spectroscopy Lab

RIKEN Harima Institute @ SPring-8

*deceased

Page 2: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 2

Page 3: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 3

AcknowledgementsFor the development of HAXPES @ BL29XU

Coherent X-ray Optics Lab. @ RIKEN SPring8 CenterM. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. Ishikawa

JASRI/SPring-8E. Ikenaga (BL47XU), K. Kobayashi ( BL15XU, NIMS)

HiSOR, Hiroshima Univ.M. Arita, K. Shimada, H. Namatame, M. Taniguchi

Musashi Inst. TechnologyH. Nohira, T. Hattori (Tohoku Univ.)

VG SCIENTA

Page 4: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 4

AcknowledgementsFor Collaborations

Titanates H. Hwang, H. Takagi Vanadates H. Hwang, K Motoya, Z HiroiManganites M. Oshima, Y. TokuraCobaltates E. Takayama-MuromachiCuprates T. Mochiku, K Hirata Ruthenates A. YamamotoCe compounds H. SugawaraYb compounds N. Tsujii, A. Ochiai, S NakatsujiNitrides K. Takenaka

Page 5: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 5

Outline

1) Introduction

2) Experimental Setup, Performance & Characteristics

3) Applications : Strongly correlated electron systems

4) Future directions

5) Summary

Page 6: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 6

Main Characteristic of HAXPES

IMFPs 1-4nm @ 1 keV 7-20nm @ 8 keV

Inelastic Mean Free Path (IMFP) of Electron(From NIST Database)

0 2000 4000 6000 8000 100000

50

100

150

200

250

Si

NaCl

SiO2

GaAs

Au

Electron Kinetic Energy (eV)

Inela

stic

Mean

Pat

h (

A)

30Å( SiO2)

210Å( SiO2)

140Å(SiO2)

Al KBulk sensitiveFree from surface prep.Functional thin filmsChemical depth analysisEmbedded interfaces (non destructive)

Large probing depth!

Page 7: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 7

Early HAXPES with Cu K@8keV

S. Hagstrom, C. Nordlimg, Chuck Fadley, S. Hagstrom, J. Hollander,K. Siegbahn, Phys. Lett. 9, 235 (1964) M. Klein, D. A. Shirley, Science 157, 1571 (1967)

Page 8: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 8

The first HAXPES with SR I. Lindau, P. Pianetta, S. Doniach & W E Spicer, Nature 250, 214 (1974)

Au 4fcore level: possiblevalence band: impossible

Page 9: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 9

0 10 20 30 40 50 60 70 80 901E- 8

1E- 7

1E- 6

1E- 5

1E- 4

1E- 3

0.01

0.1

1

10

Atomic Number ab

s (M

b/at

om

) at

1.0

4 K

eV

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 4f 6p

0 10 20 30 40 50 60 70 80 901E- 8

1E- 7

1E- 6

1E- 5

1E- 4

1E- 3

0.01

0.1

1

10

abs

(Mb/

atom

) at

8.0

5 K

eV

Atomic Number

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 4f 6p

Small photoionization Cross Sections

Obstacle to development of HAXPES

Rapid decrease!~ 1/100

1keV

8keV

Page 10: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 10

High-energy Ce-3d photoemission: Bulk properties of CeM2 (M=Fe,Co,Ni) and Ce7Ni3 L. Braicovich, N. B. Brookes, C. Dallera, M. Salvietti, and G. L. OlcesePhys. Rev. B 56, 15047 (1997) @ESRFHigh-energy resonant photoemission and resonant Auger spectroscopy in Ce-Rh compounds @ESRFP. Le Fèvre, H. Magnan, D. Chandesris, J. Vogel, V. Formoso, and F. CominPhys. Rev. B 58, 1080 (1998)   Hybridization and Bond-Orbital Components in Site-Specific X-Ray Photoelectron Spectra of Rutile TiO2 @NSLSJ. C. Woicik, E. J. Nelson, Leeor Kronik, Manish Jain, James R. Chelikowsky, D. Heskett, L. E. Berman, and G. S. Herman, Phys. Rev. Lett. 89, 077401 (2002)Quadrupolar Transitions Evidenced by Resonant Auger Spectroscopy @HASYLABJ. Danger, P. Le Fèvre, H. Magnan, D. Chandesris, S. Bourgeois, J. Jupille, T. Eickhoff, and W. Drube, Phys. Rev. Lett. 88, 243001 (2002)

Looking 100 Å deep into spatially inhomogeneous dilute systems with hard x-ray photoemission  @ESRF C Dallera, L. Duò, L. Braicovich, G. Panaccione, G. Paolicelli, B. Cowie, and J. Zegenhagen Appl. Phys. Lett. 85, 4532 (2004)

High resolution-high energy x-ray photoelectron spectroscopy using third-generation synchrotron radiation source, and its application to Si-high k insulator systems @SPring8K. Kobayashi et al. Appl. Phys. Lett. 83, 1005 (2003)A probe of intrinsic valence band electronic structure: Hard x-ray photoemission @SPring8Y. Takata et al. Appl. Phys. Lett. 84, 4310 (2004) HAXPES for Valence Bands with

h = 6 – 8 KeV.

Page 11: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 11

Experimental Setup

Page 12: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

How to gain in stability, resoluton, photoelectron intensity 1. High brilliance SR at SPring-8 2. High performance analyzer

3. Top-up injection4. Matching the detection angle to the polarization of SR

magic angle

For linearly polarized light, angular intensity distribution of photoemitted electrons depends on the asymmetry parameter >0 at energies of several keV, for almost all subshells

J.Yeh & I.Lindau At. Data.Nucl Data Tables 32, 1(1985)Their intensities have a maximum in a direction parallel to the electric polarization vector

0

1

2

3

0

30

6090

120

150

180

210

240270

300

330

0

1

2

3

value

electricvector

-1 -0.5 0 0.5 1 1.5 2

5. Grazing incidence of X-rays

IMFP10nm rangee-

attenuation length 10m range

X-ray1 deg.

6. Well-focused X-ray beam 7. Low emittance operation

Pol.

55m(V)35m(H)

1deg.

Page 13: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 13

Experimental setup at BL29XU in SPring-8Experimental setup at BL29XU in SPring-8

★ excitation energy: 5.95 or 7.94keV, E (h): 55 meV ★ photon flux: ~5x1011 photons/sec @ 55(V)x 35(H) m2

★ analyzer:R4000-10kV (VG Scienta)

Y. Takata et al., Nuclear Instrum. and Methods A547, 50 (2005).T. Ishikawa et al., Nuclear Instrum. and Methods A547, 42 (2005).

He flow cryostat to reduce sample vibration

Page 14: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 14

Optics Layout for the HAXPES experiments

Page 15: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 15

VOLPE @ESRF

P. Torelli et al., Rev. Sci. Instrum. 76, 023909 (2005)

30 sec

5 sec

High Energy Resolution & High ThroughputHigh Energy Resolution & High Throughput(at 7.94 keV)(at 7.94 keV)

E=55±5 meV (Ep=50 eV)E/E=140000!

15min

Page 16: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 16

P. Torelli et al., Rev. Sci. Instrum. 76, 023909 (2005)

VOLPE@ ESRF

Page 17: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 17

F. Schafers et al., Rev. Sci. Instrum. 78, 123102 (2007)

KMC-1@ BESSY-II

Page 18: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 18

Au 4f core levels @ BESSY-II

Page 19: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 19

Surface InsensitivitySurface InsensitivitySiOSiO22/Si(100) @ 7.94keV/Si(100) @ 7.94keV

Contribution of surface SiO2 is negligible!IMFP: Si=12nm, SiO2=16nm @ 8keV Si=1.8nm, SiO2=3nm @ 0.85keV

20 15 10 5 0

@7.94keV(Exp.)

@0.85keV(Exp.)

SiO2-0.58nm/Si(100)

Nor

mal

ized

Inte

nsity

Binding Energy (eV)

300sec

SiO2

7830 7835 7840

Si

SiO2x 10

SiO2-0.8nm/Si(100)

Inte

nsity

Kinetic Energy (eV)6090 6095 6100

0

SiO2-0.8nm/Si(100) Si

SiO2x 10

Inte

nsity

Kinetic Energy (eV)

Si 1sBE:1840eV

Si 2pBE:100eV10sec 30sec

Si : SiO2=42 : 1SiO2 contribution < 3%

Y. Takata et al. Appl. Phys. Lett. 84, 4310 (2004)

Page 20: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 20

Effect of Grazing Incidence of X-raysEffect of Grazing Incidence of X-rays

see also V Strocov, condmat/2013

Page 21: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 21

High SensitivityHigh Sensitivity(Buried Layer and Interface)(Buried Layer and Interface)

SrTiO3

LaVO3:3MLLaAlO3:3ML

LaAlO3:30ML

2465 2470 2475

h=7.94 keV

V 1s (BE:5467eV)

Pho

toel

ectr

on In

tens

ityKinetic Energy (eV)

H. Wadati, A. Fujimori, H. Y. Hwang et al., PRB77, 045122 (2008)

0 10 20 30 40 50 60 70 80 901E- 8

1E- 7

1E- 6

1E- 5

1E- 4

1E- 3

0.01

0.1

1

10

abs

(Mb/at

om

) at

8.0

5 K

eV

Atomic Number

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 4f 6p

5x10-7 Mb

Page 22: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 22

Large Probing DepthLarge Probing Depth

4015 4010 4005

Nor

mal

ized

Inte

nsity

Kinetic Energy (eV)

Sr 2p3/2 (BE=1940eV)

x65

e-e-

La0.85Ba0.15MnO3 (20nm)SrTiO3

H. Tanaka et al.,Phys. Rev. B 73, 094403

(2006)

Page 23: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 23

Applications

Page 24: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

La1-xSrxMnO3 M-I transition with Colossal magnetoresistance

A.Urushibara et al., Phys. Rev. B 51, 14103 (1995)

H. Fujishiro et al., J. Phys. Soc. Jpn. 67, 1799 (1998)

Page 25: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials
Page 26: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Feature absent in earlier soft-ray PES

A.Chainani et al. Phys. Rev. B 47, 15397 (1993)

T.Saitoh et al., Phys. Rev. B 56, 8836 (1997)

Page 27: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials
Page 28: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

MO6 Cluster model calculations

Ground state : linear combination of 6 configurations

3d6L2

3d6LC3d5C

3d6C2

U

F

O 2p band

UH

LH

1. Intra-atomic multiplets

2. Crystal Field

3. Hybridization between O 2p and Ru 3d orbital : Covalency

4 . Hybridization between coherent states at EF and Ru 3d orbitals : metallicity

3d4 3d5L

M. Taguchi

G. Van der Laan et al PRB 23, 4369(1981)J. Imer & E. Wuilloud. Z Phys. B66, 153 (1987) 21

Page 29: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 29

Comparison with cluster calculations

V* = 0.28VΔ* = 3.6 eV

V* = 0.39VΔ* = 4.0 eV

V* = 0.425VΔ* = 4.0 eV

V* = 0.25VΔ* = 3.0 eV

FM

AFM

FM

AFI

Good agreement!

low BE feature

CT from coherent states

2p53d5C

K. Horiba et al.Phys. Rev. Lett 93, 236401 (2004)

Page 30: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

V1.98Cr0.02O3 (experiments)

Metal

Insulator

K. Smith et al. PRB 50, 1382 (1994)

(h = Al K :1486.7 eV)

M. Taguchi et al.PRB 71,155102(2005)

(h : 5950 eV)

Page 31: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

V2O3 VB Photoemission (Coherent Peak)

Mo et al. PRL 90, 186403 (2003)

Zhang et al. PRL 70, 1666 (1993)

Coherent part

Incoherent part

U

DMFT cal.

Page 32: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Calculation vs. Experiment

*- Udc|

2p53dL

2p53d3C

2p53d2

-Udc|

*

3d3L

3d3C

3d2

| g > |f >

M. Taguchi et al.PRB 71,155102(2005)

Page 33: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Hole- and Electron-Doped High-Tc Cuprates

La2CuO4 Nd2CuO4

* M. van Veenendaal et al. PRB 49, 1407 (1994)

* Ino et al., PRL 79, 2101 (1997)* Harima et al., PRB 64, 220507(R) (2001)

* Steeneken et al. PRL 90, 247005 (2003)

Page 34: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Background ( doping induced chemical potential shift)

Mid-gap pinning scenario

Crossing the gap scenario

formation of new states within the band gap on doping

M. van Veenendaal et al. PRB 49, 1407 (1994)

moves to the top of the valence band by hole-doping and bottom of the conduction band on electron-doping

Page 35: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Calculation vs. Experiment

*- Udc|

2p53d9

-Udc|

*

3d10L

3d10C

3d9

| g > | f >

2p53d10L

2p53d10C

M. Taguchi et al.Phys. Rev. Lett. 95, 17702 (2005).

Page 36: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Cu 2p XPS (Estimated Parameters)

F

O 2p band

UHB

NCCO

F

O 2p band

UHB

LSCO

Page 37: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 37

CT type system: Nd1.85Ce0.15CuO4 (NCCO) M. Taguchi et al., Phys. Rev. Lett. 95, 17702 (2005).

1.5keV5.9keV

See also G. Panaccione et al. PRB 77, 125133 (2008)

U F

UH

LHO 2p band

Charge-Transfer type

Page 38: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 38

Valence Transition of YbInCu4

800eV43eV

5950eV

See also Suga et al., J. Phys. Soc. Jpn, 78, 074704 (2009)

H. Sato et al., Phys. Rev. Lett., 93, 246404 (2004)

Page 39: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 39

Combining HAXPES with optical spectroscopyEvidence for purely Yb2+ bulk state, Yb3+ surface state,

and energy-loss satellite due to interband transitions

However, the Yb valence estimated by L-edge RIXS & XAS:~2.08 K. Syassen, Physica B+C 139-140 (1986) 277.

~2.35 E. Annese et al., Phys. Rev. B 70 (2004) 075117.

YbS: Ionic crystal Yb2+S2-, hence typical Yb2+ system

Inte

nsit

y (a

rb. u

nits

)

1600 1580 1560 1540 1520Binding Energy (eV)

YbS

YbCu2Si2T = 20 K

Yb 3dh = 7.94 keV

Yb3+ Yb2+Yb3+ Yb2+

T = 300 K

= 0°

= 80°

= 0°

he-

Inte

nsit

y (a

rb. u

nits

)30 20 10 0 -10

Relative Energy (eV)

1550 1540 1530 1520Binding Energy (eV)

YbS Yb 3d5/2

= 80°

× 3 = 0°

Loss Function [Im(1/)]

opticalreflectivity

M. Matsunami et al., Phys. Rev. B, 78, 185118(2008)

Page 40: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 40

Remote hole-doping at an interfaceM. Takizawa et al., PRL. 102, 236401(2009)

V3+(bulk)

For LaAlO3/SrTiO3, see M. Sing et al. PRL 102, 176805 (2009)

Page 41: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Science, 291, 854 (2001)

• Electronic structure of the room temperature ferromagnet Co:TiO2 anatase

04/22/23 41

Page 42: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Nature Materials 4,173(2005)

Carriers : hydrogenic type04/22/23 42

Page 43: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Core level spectra

Al K XPSJ W Quilty et alPRL 96, 027202(2006)

T. Ohtsuki et alPRL 106,047602(2011)04/22/23 43

Page 44: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Valence band spectra CoO/Co metal

J W Quilty et alPRL 96, 027202(2006)

04/22/23 44

Page 45: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

J. Woicik et al Phys. Rev. Lett. 89, 077401(2002)04/22/23 45

Page 46: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Co 2p-3d XAS

04/22/23 46

Page 47: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Co 2p-3d Resonant PES

04/22/23 47

Page 48: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Ti 2p-3d Resonant PES

Coherent +Incoherent

feature

T. Ohtsuki et alPRL 106,047602(2011)

04/22/23 48

Page 49: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 49

Page 50: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

charge neutrality condition : Co2+ + VO 2− + 2Ti 4+ Co 2+ + 2Ti 3+

(VO is oxygen vacancy)

Surface Science, 601, 5034(2007)

04/22/23 50

Page 51: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 51

correspondence between the well-screened feature and coherent states

S. Biermann et al, PRL, 94, 026404,2005 ; J. M. Tomczak & S. Biermann, J. Phys.: Cond. Matter, 19, 365206, 2007.J. M. Tomczak, F. Aryasetiawan & Silke Biermann, PRB, 78,115103, 2008.

See also T. Koethe et al PRL 97, 166402(2006) ; S. Suga et al, New J. Physics 11, 103015 (2009).

Page 52: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Hg2Ru2O7 and Tl2Ru2O7 exhibit first order metal-insulator transitions(MIT)

• Hg2Ru2O7

• Tc = 108 K

• eff ~3.7B

• Ru 5+

• Tl2Ru2O7

• Tc = 125 K

• eff ~ 2.8B

• Ru 4+

A Yamamoto et al JPSJ(Letters) 4, 043703 (2007) S. Lee et al Nature Materials 5, 471 (2006)W. Klein et al J. Mat. Chemistry 17, 1356 (2007) 2

Page 53: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Cleartemperaturedependenceacross the MIT

Page 54: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials
Page 55: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Compound Metallic bonding energy (kcal/mol)

Covalent bonding energy (kcal/mol)

Reference No.

Tl2Ru(IV)2O7 12.60 50.73 present workHg2Ru(V)2O7 21.68 46.12 present workTi4O7 20.06 66.88 44VO2 11.07 55.34 45V2O3 17.29 66.88 22CrN 17.53 62.26 46La0.8Sr0.2MnO3 9.80 67.80 30La0.85Ba0.15MnO3 9.22 67.80 47La1.85Sr0.15CuO4 28.83 86.48 24Nd1.85Ce0.15CuO4 41.51 80.71 24Standard bond energies C-H bond 99 1 C-C bond 83 1

C-N bond 73 1Hydrogen bonding in water ~5 1

Van der Waals bonding ~1 1

Covalency and metallicity of TMCs and some standard bonding

energies.

A. Chainani et al. PRB 87, 045108 (2013)

Page 56: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

HAXPES results from our group :Zhang-Rice doublet state in NiO PRL 100 206401(2008)

Changes across successive first-order transitions in the Magneli compound Ti4O7 PRL 104,106401(2010)

Paramagentic insulator to Anti-ferromagnetic metal transition in CrN PRL 104,236404(2010)

Mixed Valency in a quantum critical f-electron system YbAlB4 PRL 104,247401(2010)

Recoil effects of core and valence photoelectron in solidsY. Takata, et al., PRL101, 137601(2008)

Page 57: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Recoil effects in PES:C 1s core level spectra of graphite

Y. Takata et al., PRB 75, 233404 (2007)

285.5 285.0 284.5 284.0

Pn

oto

ele

ctro

n In

ten

sity

Binding Energy (eV)

KE dependence at normal emission

h=7940eVE=120meV)

h=5950eV(E=120meV)

h=870eVE=100meV)

★ not observed in Au ★ not due to semimetallic

character ★ not due to bulk vs

surface but due to recoil effect !

Page 58: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Recoil effects in core level spectra of other light elements, such as

(Be, B, Al)

Page 59: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Recoil effects in valence band (Fermi-edge) of Al@ 7.94keV

Y. Takata, Y. Kayanuma et al.,Phys. Rev. Lett.101, 137601(2008)

Inte

nsit

y (a

rb. u

nits

)

1.0 0.5 0.0 -0.5 -1.0Binding Energy (eV)

h = 7.94 keVE = 120 meVT = 20 K

AuAl

M(Au): 197 (m/M)xE: 22meV

M(Al): 27.0 (m/M)xE: 160meVE=119meV 2p:115meV

Gaussian width Au:124meV Al: 160meV

Page 60: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Theory by Y. Kayanuma, S. Tanaka and S. OshimaY. Takata, Y. Kayanuma et al.,Phys. Rev. Lett.101, 137601(2008)

isotropic Debye model

Page 61: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 61

Page 62: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 62

Page 63: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 63

A X Gray et al, Nature Materials, 11, 957(2012)

Bulk electronic structure of Ga1-xMnxAs

Page 64: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 64

Bulk electronic structure of Ga1-xMnxAs

A X Gray et al, Nature Materials, 11, 957(2012)

Page 65: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 65

Future ProspectsFuture Prospects

★ Improvement of energy resolution to ~10 meV

★ Angle resolved measurements

VB mapping

Photoelectron diffraction

★ Polarization dependence

★ Atoms and molecules

non-dipole effects

★ Dynamics using time resolved HAXPES

★Application to high vapor pressure systems

Liquids/Wet samples/Gels

Gray et al

Ueda et al

Simon et alCastro et al

Page 66: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 66

Y Takashima et alNature Commun. Dec 2012DOI:10.1038/ncomms2280

Page 67: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 67

Irene Chen et al.,Advanced Functional Materials22, 2535(2012)

Page 68: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 68

HAXPES has become a valuable tool !SPring-8 (6 beamlines, not dedicated)ESRFBNL BESSY IISOLEILPETRA III ERL ?…..

Page 69: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 69

International WS to Conferences on HAXPES

1st in 2003 @ ESRF by Zegenhagen

2nd in 2006@ SPring-8 by Kobayashi and Suga

3rd in 2009 @ NSLS by Woicik and Fadley

4th in 2011 @ HASYLAB by Drube

5th in 2013 @ Uppsala by Svensson and Martensson

Page 70: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Thank you very muchfor your attention

04/22/23 70

Page 71: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Science 287, 1019 (2000)Mn:GaAs

04/22/23 71

Page 72: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 72

Page 73: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Ti 2p HX-PES

M. Taguchi et al, PRL 104, 106401 (2010)04/22/23 73

Page 74: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

*-Udc|

2p53d0

-Udc|

*

3d1L

3d1C

3d0

2p53d1L

2p53d1C

CT| g › | f ›

HT phase

04/22/23 74

Page 75: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Ti4+ cluster( V* =0 )

Ti 3+

Ti3+

Ti4+

LT phase

04/22/23 75

Page 76: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 76

Page 77: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Ti4+ cluster( V* =0.3 eV )

Ti 3+

Remnant ofCoherent states

IT phase

04/22/23 77

Page 78: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 78

SUMMARYRuthenates with and without orbital order exhibit Mott-Hubbard type band-width controlled metal-insulator transitions

The Magneli phase compound Ti4O7 has an anomalous intermediatephase sandwiched between a Fermi liquid and charge ordered insulator

Equivalence of screening due to coherent states and non-local screening

Accurate Valence determination in d and f electron systems

Page 79: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 79

Semiconductors : HfO2:SiO2 (K. Kobayashi et al) SiO2/Si(100) (Y. Takata et al), GaAs (C. Dallera et al), Cr : GaN( J.J. Kim et al),

Si (F. Offi et al), In2O3 (A. Walsh et al), etc.

Elements : Co, Cu, Ag, Ni, etc. (M.Sacchi et al, G. Panaccione et al, O. Karis et al)

f-electron systems : Ce systems (L. Braicovich et al, P. Fevre et al, M. Matsunami et al)

Yb Mixed valence (H. Sato et al, A. Yamasaki et al), Yb Kondo (L. Moreschini et al)

Titanates : XSW partial DOS ( J Woicik et al) ; Resonant Auger (J. Danger et al )

Vanadates : Mott-Hubbard transition (N. Kamakura et al, M. Taguchi et al, G. Panaccione et al, J.

Woicik et al )

   Cobaltates : charge order (A. Chainani et al)

   Manganites : doping dependence(K. Horiba et al), bilayer (F. Offi et al , S. de Jong et al)

T-dependence (H. Tanaka et al, F. Offi et al, S. Ueda et al,)

Cuprates : hole and electron doping (M. Taguchi et al, G. Panaccione et al, K. Maiti et al)

Iron Pnictides : LaFePO(Y Kamihara et al) ; BaFe2As2 (S. de Jong et al)

Nickelates : NiO (J. Woicik et al, M. Taguchi et al)

Importance of s-states in a metallic oxide : PbO2 (D. J. Payne et al)

Intermetallics : Huesler alloys ( C. Felser et al)

Ruthenate complexes : role of intermolecular interactions ( S Svensson et al)

Multilayers : Ni/Cu (Holmstrom et al)

Oxide Multilayers : LaAlO3/SrTiO3 (M. Sing et al) ; LaVO3/LaAlO3 (M. Takizawa et al)

Page 80: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 80

HAXPES has become a standard tool !SPring-8 (6 beamlines, not dedicated)ESRFNSLS BESSY IISOLEILAPS PETRA III ALS?MAX-IV?

…..

Page 81: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 81

International WS on HAXPES

1st in 2003 @ ESRF by Zegenhagen

2nd in 2006@ SPring-8 by Kobayashi and Suga

3rd in 2009 @ NSLS by Woicik and Fadley

4th in 2011 @ HASYLAB by Drube

5th in 2013 @ Uppsala by Svensson and Martensson

Page 82: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 82

Future ProspectsFuture Prospects

★ Improvement of energy resolution to ~20 meV

★ Angle resolved measurements

VB mapping

Photoelectron diffraction

★ Polarization dependence

★ Application to high vapor pressure systems

Liquids/Wet samples

★ Atoms and molecules

non-dipole effects

Recoil & Dynamics

Fadley, Papp et al

Ueda et al

Simon et alCastro et al

Page 83: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Thank You very much

04/22/23 83

Page 84: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Comparison with Nb:STO(SrTiO3)

Y. Ishida et al PRL 100, 056401 (2008)

04/22/23 84

Page 85: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Y. Ishida et alPRL 100,056401 (2008)

04/22/23 85

Page 86: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 86

Page 87: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 87

Page 88: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Y Aiura et al.Surface Science515, 61 (2002)

04/22/23 88

Page 89: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

n-type SrTiO3-

J. Chang et al PRB81,235109(2010)

04/22/23 89

Page 90: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Nature 469, 189 (2011)

04/22/23 90

Page 91: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

O K-edge XAS

04/22/23 91

Page 92: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

O K-edge Resonant PES

04/22/23 92

Page 93: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Constant initial state spectra across the O K-edge

04/22/23 93

Page 94: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Partial density of states near EF

Y. Ishida et al PRL 100, 056401 (2008)04/22/23 94

Page 95: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Ti 2p-3d Resonant PES

Coherent +Incoherent

feature

T. Ohtsuki et alPRL 106,047602(2011)

04/22/23 95

Page 96: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Cu 2p XPS (experiments)

M. A. van Veenendaal and G. A. Sawatzky, Phys. Rev. B 49, 3473 (1994)K. Okada and A. Kotani, J. Electron Spectrosc. Relat. Phenom. 86, 119 (1997).

K. Karlsson, O. Gunnarsson andO. Jepsen, Phys. Rev. Lett. 82, 3528 (1999) ; A. Koitzsch et al., Phys. Rev. B 66, 024519 (2002).

Page 97: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

O 1s XPS (Experiment)

Peak shift

NCCO LCO

0.25 eV

LCO LSCO

0.2 eV

Peak shift is rather small as compared with optical gap ( 1.0 eV )

Page 98: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

O 1s XAS

O 1s level

UHB

UHB

LSCO

NCCO

C. T. Chen et al. Phys. Rev. Lett 66, 104(1991) ; M. Romberg et al. Phys. Rev. B 43, 333(1991)

Page 99: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

T. Fukumura et alNew Journal of Physics10, 055018 (2008)

04/22/23 99

Page 100: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Recoil effects in valence band (Fermi-edge) of Al@ 880eV

1.0 0.5 0.0 -0.5 -1.0Binding Energy (eV)

Inte

nsit

y (a

rb. u

nits

)

h = 880 eVE = 120 meVT = 50 K

AuAl

Inte

nsit

y (a

rb. u

nits

)

150 100 50 0 -50 -100 -150Binding Energy (meV)

h = 880 eVE = 120 meVT = 50 K

AuAl

M(Au): 197 (m/M)xE: 2meV

M(Al): 27.0 (m/M)xE: 18meVE=12meV Gaussian width Au:118meV Al: 140meV

Page 101: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Our Experiments :Epitaxial films grown by pulsed laser deposition

Characterization :Structure and ferromagnetism

X-ray Absorption Spectroscopy(XAS)Resonant photoemission(PES) @ BL17E ~230 meV at Ti L-edge

Hard X-ray PES @ BL 29E ~250 meV at h = 8 KeV

04/22/23 101

Page 102: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

XRD RHEEDSamples : PLD grown films characterized by x-ray diffraction RHEED oscillationRHEED pattern

04/22/23 102

Page 103: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

New Journal of Physics10, 055018 (2008)

04/22/23 103

Page 104: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

0.8 B/Co

T. Fukumura et alNew Journal of Physics10, 055018 (2008)

04/22/23 104

Page 105: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Recoil effects in photoelectron emissionTheory by Y. Kayanuma & S. Tanaka (PRB 75, 233404 (2007) )

For an atom in free space E=(m/M)E E:recoil energy M: atomic mass m: electron mass E: kinetic energy

For C atom at 8 keV m/M=1/22000 E=0.36 eV

In graphite E is absorbed by the phonon bath. Excitation of phonons

Mössbauer effect in -ray emission

Page 106: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Theoretical calculation: Debye model

Normal emission: hD=75meV

Page 107: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Emission Angle Dependence

e-

285.5 285.0 284.5 284.0

normal (85deg)

(a) Experiment

GraphiteC 1sh=7940eV

Binding Energy (eV)

grazing (30deg)

1.0 0.5 0.0 -0.5

out-of-plane(bending)

in-plane(stretching)

Recoil Energy (eV)

(b) Theory

Normal emission: hD=75meVGrazing emission: hD=150meV

Recoil effects in PES reflect phonon dynamics!

Page 108: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Comparison of recoil effects in graphiteM. Vos, et al., PRB 78, 024301(2008)

photoelectron emission

electron scattering

neutron scattering

Page 109: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

287 286 285 284 283 282

B-doped Diamond

HOPG

C 1sR.T.

No

rma

kize

d I

nte

nsi

ty

Binding Energy (eV)

5.95keV 7.94keV

Comparison between Diamond & Graphite

Page 110: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

LDA & (LDA + DMFT) of Hg2Ru2O7Importance of multi-orbital correlations

negligible influence of spin-orbit coupling

24

L. Craco et al, PRB 79, 075125 (2009)

Page 111: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

S. Baidya et al, PRB 86, 125117 (2012)

Page 112: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

A. Chainani et al. PRB 87, 045108 (2013)

(3~4

Page 113: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 113

Large Probing DepthLarge Probing Depth

4015 4010 4005

Nor

mal

ized

Inte

nsity

Kinetic Energy (eV)

Sr 2p3/2 (BE=1940eV)

x65

e-e-

La0.85Ba0.15MnO3 (20nm)SrTiO3

Estimation of IMFP value

N(z)=N0exp(-z/)

(4keV)=5nm in LBMO

surface layer contribution

layer distance0.4nm

=1nm: 33%=5nm: 8%=10nm: 4%higher KE larger

H. Tanaka et al.,

Phys. Rev. B 73, 094403 (2006)

Page 114: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Be 1s core level of polycrystalline Be

Photo

ele

ctro

n Inte

nsi

ty

114 113 112 111Binding Energy (eV)

BeBe 1s @ 20KE=110meV (SX) 125meV(HX)

h=880eV

h=5950eV

h=7940eVSurface

h=5950eV

h=7940eV

Atomic weight: 9.0E(5950eV)=330meV (m/M)xE: 355meVE(7940eV)=440meV (m/M)xE: 475meVSurface

feature

Page 115: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

B 1s core level of MgB2

Photo

ele

ctro

n Inte

nsi

ty

189 188 187 186Binding Energy (eV)

MgB2

B 1s @20KE=110meV (SX) 125meV(HX)

h=880eV

h=7940eV

h=5950eV

a bundle of needle crystals supplied by H. Kitoh @NIMS

Atomic weight: 10.8E(5950eV)=240meV (m/M)xE: 290meVE(7940eV)=340meV (m/M)xE: 390meV

Page 116: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Al 2p core level of Al thin filmP

hoto

elec

tron

Inte

nsity

74.5 74.0 73.5 73.0 72.5 72.0Binding Energy (eV)

AlAl 2p @ 20KE=110meV (SX) 125meV(HX)

h=880eV

h=7940eV

h=5950eV

Atomic weight: 27.0E(5950eV)=90meV (m/M)xE: 120meVE(7940eV)=115meV (m/M)xE: 160meV

Page 117: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 117

Page 118: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

XMCD

synthesis and annealing in oxygen

K. Mamiya, T. Koide,A. Fujimori et al, APL 89, 062506

(2006)

04/22/23 118

Page 119: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Early spectroscopy : Controversy

PRL 90, 017401(2003)04/22/23 119

Page 120: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Ferromagnetism is due to Co clusterspostannealing in Vacuum

J. Y. Kim et al PRL 90, 017401(2003)04/22/23 120

Page 121: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

What is different ?

Reducing atmosphere : Co clusters

versus

Oxidizing atmosphere : Co2+ Intrinsic ferromagnetism

04/22/23 121

Page 122: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

EXAFS of Co:TiO2

04/22/23 122

Page 123: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

Ti 2p and O 1s core levels

04/22/23 123

Page 124: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

A. Chainani et al. PRB 87, 045108 (2013)

(3~4

Page 125: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials
Page 126: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

V 1s core level PES of V2O3

• PM (V ∗ = 0.75)

• T = 250 K

• AFI (V ∗ = 0) phases.

• T = 90 K

N. Kamakura et al.Europhysics Letters 68, 557(2004)

Page 127: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

charge neutrality condition : Co2+ + VO 2− + 2Ti 4+ Co 2+ + 2Ti 3+

(VO is oxygen vacancy)

Surface Science, 601, 5034

(2007)

New.J.Phys. 10, 055018

(2008)04/22/23 127

Page 128: Hard X-ray Photoelectron Spectroscopy  (HAXPES) Of Correlated Materials

04/22/23 128

Need to account for X-ray photoelectron diffraction intensity and density of states effects

A X Gray et al, Nature Materials, 10, 759(2011)


Recommended