+ All Categories
Home > Documents > Heat Equations of Change II

Heat Equations of Change II

Date post: 22-Feb-2016
Category:
Upload: renata
View: 72 times
Download: 1 times
Share this document with a friend
Description:
Heat Equations of Change II. Outline. 7. Heat Equations of Change 7.1. Derivation of Basic Equations 7.1.1. Differential Equation for Heat Conduction 7.1.2. Energy Equation 7.1.3. Buckingham Pi Method 7.2. Unsteady-state Conduction - PowerPoint PPT Presentation
Popular Tags:
36
Heat Equations of Change II
Transcript
Page 1: Heat Equations  of Change II

Heat Equations of Change II

Page 2: Heat Equations  of Change II

7. Heat Equations of Change

7.1. Derivation of Basic Equations

7.1.1. Differential Equation for Heat Conduction

7.1.2. Energy Equation

7.1.3. Buckingham Pi Method

7.2. Unsteady-state Conduction

7.2.1. Gurney-Lurie Charts

7.2.2. Lumped Systems Analysis

Outline

Page 3: Heat Equations  of Change II

Quiz – 2014.02.14

An electrically heated resistance wire has a diameter of 2 mm and a resistance of 0.10 ohm per foot of wire. The thermal conductivity of the wire is 20 W/mΒ·K. At a current of 100 A, calculate the steady state temperature difference between the center and surface of the wire.

TIME IS UP!!!

Page 4: Heat Equations  of Change II

From the previous lecture…

A 10-cm diameter nickel-steel sphere has a thermal conductivity, k = 10 W/m-K. Within the sphere, 800 W/m3 of heat is being generated. The surrounding air is at 20Β°C and the heat transfer coefficient from the surroundings to the surface of the sphere is 10 W/m2-K. What is the temperature at the center of the sphere?

Exercise!

Page 5: Heat Equations  of Change II

A Comparison Between Methods

Energy Equation:Solution!

We are left with: 0=π‘˜[ 1π‘Ÿ2 πœ•πœ•π‘Ÿ (π‘Ÿ2 πœ•π‘‡πœ•π‘Ÿ )]+𝑔Because T depends on r only: 0=

π‘‘π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ

2

π‘˜

πœŒπ‘π‘π·π‘‡π·π‘‘ =π‘˜π›»2𝑇 +𝑔

πœŒπΆπ‘π·π‘‡π·π‘‘ =βˆ’ (𝛻 βˆ™π‘ž )βˆ’ (𝜏 βˆ™π›» 𝒗 )

In spherical coordinates:

From the Energy Equation

For solids with generation

+𝑔

Page 6: Heat Equations  of Change II

1π‘Ÿ2

πœ•πœ•π‘Ÿ (π‘Ÿ 2 πœ•π‘‡πœ•π‘Ÿ )+ 1

π‘Ÿ2 sinπœƒπœ•πœ•πœƒ (sinπœƒ πœ•π‘‡πœ•πœƒ )+ 1

π‘Ÿ 2sin 2πœƒπœ•2π‘‡πœ•πœ™2

+π‘”π‘˜=

1π›Όπœ•π‘‡πœ•π‘‘

A Comparison Between Methods

Differential Equation of Heat Conduction:

Solution! Another way!!

We are left with: 0= 1π‘Ÿ2

πœ•πœ•π‘Ÿ (π‘Ÿ2 πœ•π‘‡πœ•π‘Ÿ )+π‘”π‘˜

Because T depends on r only:

𝛻2𝑇+π‘”π‘˜=

1π›Όπœ•π‘‡πœ•π‘‘

In spherical coordinates:

From the Diff. Eqn of Heat Conduction0= 𝑑

π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ2

π‘˜

Page 7: Heat Equations  of Change II

A Comparison Between Methods

Overall Shell Heat Balance:

Solution! Another way again!! The Shell:

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿβ‘)|π‘Ÿ(4πœ‹ π‘Ÿ2π‘žπ‘Ÿβ‘)|π‘Ÿ+βˆ†π‘Ÿ(4πœ‹π‘Ÿ 2βˆ†π‘Ÿ )𝑔

(π‘Ÿ 2π‘žπ‘Ÿβ‘)|π‘Ÿ+βˆ†π‘Ÿβˆ’ (π‘Ÿ 2π‘žπ‘Ÿβ‘ )|π‘Ÿβˆ†π‘Ÿ =π‘”π‘Ÿ2

Adding the terms and dividing :

π‘‘π‘‘π‘Ÿ (π‘Ÿ 2π‘žπ‘Ÿ )=π‘”π‘Ÿ2

Page 8: Heat Equations  of Change II

A Comparison Between Methods

Overall Shell Heat Balance:

Solution! Another way again!! The Shell:

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿβ‘)|π‘Ÿ(4πœ‹ π‘Ÿ2π‘žπ‘Ÿβ‘)|π‘Ÿ+βˆ†π‘Ÿ(4πœ‹π‘Ÿ 2βˆ†π‘Ÿ )𝑔

βˆ’ π‘‘π‘‘π‘Ÿ (π‘Ÿ2π‘˜ π‘‘π‘‡π‘‘π‘Ÿ )=π‘”π‘Ÿ2

Inputting Fourier’s Law:

π‘‘π‘‘π‘Ÿ (π‘Ÿ 2π‘žπ‘Ÿ )=π‘”π‘Ÿ2

Page 9: Heat Equations  of Change II

A Comparison Between Methods

Overall Shell Heat Balance:

Solution! Another way again!! The Shell:

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿβ‘)|π‘Ÿ(4πœ‹ π‘Ÿ2π‘žπ‘Ÿβ‘)|π‘Ÿ+βˆ†π‘Ÿ(4πœ‹π‘Ÿ 2βˆ†π‘Ÿ )𝑔

Inputting Fourier’s Law:

From the Overall Shell Heat Balance0= 𝑑

π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ2

π‘˜βˆ’ π‘‘π‘‘π‘Ÿ (π‘Ÿ2π‘˜ π‘‘π‘‡π‘‘π‘Ÿ )=π‘”π‘Ÿ2

Page 10: Heat Equations  of Change II

A Comparison Between Methods

Solution! Apparently…

0= π‘‘π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ

2

π‘˜From the Overall

Shell Heat Balance

From the Diff. Eqn of Heat Conduction0= 𝑑

π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ2

π‘˜

0= π‘‘π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ

2

π‘˜From the

Energy Equation

Using any method below, we can obtain the same ODE to solve!!

Increasing range of

applicability of the method

Page 11: Heat Equations  of Change II

A Comparison Between Methods

Solution!

0= π‘‘π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ

2

π‘˜From the Overall

Shell Heat Balance

From the Diff. Eqn of Heat Conduction0= 𝑑

π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ2

π‘˜

0= π‘‘π‘‘π‘Ÿ (π‘Ÿ2 π‘‘π‘‡π‘‘π‘Ÿ )+π‘”π‘Ÿ

2

π‘˜From the

Energy Equation

The next step is to solve the ODE and define boundary conditions.

Integrating twice:

𝑇 (π‘Ÿ )=βˆ’ π‘”π‘Ÿ2

6π‘˜ βˆ’πΆ1

π‘Ÿ +𝐢2

Boundary conditions:

π‘Žπ‘‘ π‘Ÿ=0 , π‘žπ‘Ÿ 𝑖𝑠 𝑓𝑖𝑛𝑖𝑑𝑒

ΒΏπ‘Žπ‘‘ π‘Ÿ=𝑅 , π‘˜ π‘‘π‘‡π‘‘π‘Ÿ =h (𝑇 π‘Žπ‘–π‘Ÿβˆ’π‘‡ (𝑅 ) )

Page 12: Heat Equations  of Change II

A Comparison Between Methods

Solution!

Applying the boundary conditions:

𝑇 (π‘Ÿ )=𝑇 π‘Žπ‘–π‘Ÿ+𝑔𝑅2

6 π‘˜ [1βˆ’( π‘Ÿπ‘… )2]+𝑔𝑅3h

π‘˜=10 π‘Šπ‘šπΎh=10 π‘Š

π‘š2𝐾

𝑅=0.05π‘šπ‘”=800π‘Š

π‘š3

𝑇 π‘Žπ‘–π‘Ÿ=20 °𝐢

Final Answer:

21.37Β°C

Page 13: Heat Equations  of Change II

7. Heat Equations of Change

7.1. Derivation of Basic Equations

7.1.1. Differential Equation for Heat Conduction

7.1.2. Energy Equation

7.1.3. Buckingham Pi Method

7.2. Unsteady-state Conduction

7.2.1. Gurney-Lurie Charts

7.2.2. Lumped Systems Analysis

Outline

Page 14: Heat Equations  of Change II

Example!

1-D Transient Heat Conduction

Consider a flat slab of thickness L with an initial temperature of T0. It is later submerged in a large fluid with temperature T1 (> T0). Neglecting surface resistance (infinite h), determine the temperature at the center of the slab at any time t.

Page 15: Heat Equations  of Change II

Example!

1-D Transient Heat Conduction

What do we expect to happen?

β€’ The surface temp. is held at T1. (because of infinite h)

β€’ Temperature profile at any time is symmetrical

β€’ Unidirectional (x only) heat flow only

β€’ The temp. at the center, T0, slowly approaches T1.

T0

T1

Page 16: Heat Equations  of Change II

Example! Solution:

1-D Transient Heat Conduction

T0

T1

Differential Equation of Heat Conduction:

𝛻2𝑇+π‘”π‘˜=

1π›Όπœ•π‘‡πœ•π‘‘

With the assumptions:πœ•π‘‡πœ•π‘‘ =𝛼 πœ•

2π‘‡πœ•π‘₯2

Initial and Boundary conditions:

Initial:

Boundary:

Page 17: Heat Equations  of Change II

Example! Solution:

1-D Transient Heat Conduction

πœ•π‘‡πœ•π‘‘ =𝛼 πœ•

2π‘‡πœ•π‘₯2

To facilitate solving, we will make this dimensionless!

Let: Y = dimensionless temp.

π‘Œ=𝑇1βˆ’π‘‡π‘‡ 1βˆ’π‘‡ 0

*The choice of definition of Y is arbitrary.

πœ•π‘Œπœ•π‘‘ =

βˆ’1𝑇 1βˆ’π‘‡0

πœ•π‘‡πœ•π‘‘

Implications:

πœ•π‘Œπœ•π‘₯ =

βˆ’1𝑇 1βˆ’π‘‡0

πœ•π‘‡πœ• π‘₯

πœ•2π‘Œπœ• π‘₯2

=βˆ’1

𝑇 1βˆ’π‘‡0πœ•2π‘‡πœ•π‘₯2

βˆ’ (𝑇1βˆ’π‘‡ 0 ) πœ•π‘Œπœ•π‘‘ =βˆ’π›Ό (𝑇 1βˆ’π‘‡ 0 ) πœ•2π‘Œπœ• π‘₯2

Page 18: Heat Equations  of Change II

1-D Transient Heat Conduction

πœ•π‘Œπœ•π‘‘ =𝛼 πœ•

2π‘Œπœ• π‘₯2

To facilitate solving, we will make this dimensionless!

Let: X = dimensionless length

𝑋=π‘₯𝐿

*The choice of definition of X is arbitrary.

πœ• 𝑋=1𝐿 πœ•π‘₯

Implications:

πœ•π‘Œπœ•π‘‘ =

𝛼𝐿2πœ•2π‘Œπœ• 𝑋 2

πœ• 𝑋 2=( 1πΏπœ•π‘₯)2

=1𝐿2πœ•π‘₯2

Example! Solution:

Page 19: Heat Equations  of Change II

1-D Transient Heat Conduction

πœ•π‘Œπœ•π‘‘ =

𝛼𝐿2πœ•2π‘Œπœ• 𝑋 2

To facilitate solving, we will make this dimensionless!

Let: Ο„ = dimensionless time

𝜏=𝛼𝑑𝐿2

*The choice of definition of Ο„ is arbitrary.

πœ•πœ= 𝛼𝐿2πœ•π‘‘

Implications:

πœ•π‘Œπœ•πœ =

πœ•2π‘Œπœ• 𝑋 2

Example! Solution:

Page 20: Heat Equations  of Change II

1-D Transient Heat Conduction

πœ•π‘Œπœ•πœ =

πœ•2π‘Œπœ• 𝑋 2

DIMENSIONLESS FORM:

Previous IC & BC: New IC & BC:

Easier to solve and no worries with units!

π‘Œ=1 , 𝜏=0 , 𝑋=π‘‹π‘Œ=0 , 𝜏=𝜏 , 𝑋=0π‘Œ=0 , 𝜏=𝜏 , 𝑋=1

𝜏=𝛼𝑑𝐿2

𝑋=π‘₯πΏπ‘Œ=

𝑇1βˆ’π‘‡π‘‡ 1βˆ’π‘‡ 0

Example! Solution:

Page 21: Heat Equations  of Change II

A new dimensionless number…

1-D Transient Heat Conduction

𝜏=𝛼𝑑𝐿2

𝑋=π‘₯πΏπ‘Œ=

𝑇1βˆ’π‘‡π‘‡ 1βˆ’π‘‡ 0

Dim. Group Ratio EquationFourier, Fo Rate of heat conduction/

Rate of heat storage

Rate of heat conduction:

π‘˜πΏ3

Rate of heat storage: πœŒπ‘π‘πΏ3/𝑑

Page 22: Heat Equations  of Change II

Going back…

1-D Transient Heat Conduction

πœ•π‘Œπœ•πœ =

πœ•2π‘Œπœ• 𝑋 2

DIMENSIONLESS FORM:

New IC & BC:

π‘Œ=1 , 𝜏=0 , 𝑋=π‘‹π‘Œ=0 , 𝜏=𝜏 , 𝑋=0π‘Œ=0 , 𝜏=𝜏 , 𝑋=1

𝜏=𝛼𝑑𝐿2

𝑋=π‘₯πΏπ‘Œ=

𝑇1βˆ’π‘‡π‘‡ 1βˆ’π‘‡ 0

T0

T1

Page 23: Heat Equations  of Change II

Going back…

1-D Transient Heat Conduction

πœ•π‘Œπœ•πœ =

πœ•2π‘Œπœ• 𝑋 2

DIMENSIONLESS FORM:

New IC & BC:π‘Œ=1 , 𝜏=0 , 𝑋=π‘‹π‘Œ=0 , 𝜏=𝜏 , 𝑋=0π‘Œ=0 , 𝜏=𝜏 , 𝑋=1

𝜏=𝛼𝑑𝐿2

𝑋=π‘₯πΏπ‘Œ=

𝑇1βˆ’π‘‡π‘‡ 1βˆ’π‘‡ 0

Solution: (A Fourier series)

π‘Œ (𝜏 ,𝑋 )= 4πœ‹βˆ‘π‘›=0

∞ π‘’βˆ’ (2𝑛+1)2 πœ‹2𝜏

2𝑛+1sin [ (2𝑛+1 ) πœ‹ 𝑋 ]

Page 24: Heat Equations  of Change II

Gurney-Lurie Charts

Gurney-Lurie Charts

𝜏=𝛼𝑑𝐿2

π‘Œ=𝑇1βˆ’π‘‡π‘‡ 1βˆ’π‘‡ 0

- plots of the dimensionless temperature Y against Fo with varying Bi and X for different geometries.

- Each point in the curves are solutions to the PDE involving heat conduction + convection.

𝑋=π‘₯𝐿

Page 25: Heat Equations  of Change II

For flat plates with convection

Gurney-Lurie Charts

𝜏=𝛼𝑑𝐿2

π‘Œ=𝑇1βˆ’π‘‡

𝑇1βˆ’π‘‡0

Bi

Geankoplis, Figure 5.3-6

Page 26: Heat Equations  of Change II

For long cylinders with convection

Gurney-Lurie Charts

𝜏=𝛼𝑑𝐿2

π‘Œ=𝑇1βˆ’π‘‡

𝑇1βˆ’π‘‡0

Bi

Geankoplis, Figure 5.3-8

Page 27: Heat Equations  of Change II

For solid spheres with convection

Gurney-Lurie Charts

𝜏=𝛼𝑑𝐿2

π‘Œ=𝑇1βˆ’π‘‡

𝑇1βˆ’π‘‡0

Bi

Geankoplis, Figure 5.3-10

Page 28: Heat Equations  of Change II

Gurney-Lurie Charts

How do we compute the Biot Numbers for different geometries?

Recall: Biot Number 𝐡𝑖=h π‘₯1π‘˜

Characteristic length: Volume/Surface Area

Page 29: Heat Equations  of Change II

From a while ago…

A 10-cm diameter nickel-steel sphere has a thermal conductivity, k = 10 W/m-K. Within the sphere, 800 W/m3 of heat is being generated. The surrounding air is at 20Β°C and the heat transfer coefficient from the surroundings to the surface of the sphere is 10 W/m2-K. What is the temperature at the center of the sphere?

Recall this exercise:

Page 30: Heat Equations  of Change II

From a while ago…

A 10-cm diameter nickel-steel sphere has a thermal conductivity, k = 10 W/m-K. Within the sphere, 800 W/m3of heat is being generated.The sphere, initially at T0 = 30Β°C, is suddenly submerged into a fluid…The surrounding air is at and the heat transfer coefficient from the surroundings to the surface of the sphere is 10 W/m2-K. What is the temperature at the center of the sphere across time?

Recall this exercise:

Page 31: Heat Equations  of Change II

From a while ago…

To solve the new problem:Differential Equation of Heat Conduction:

𝛻2𝑇+π‘”π‘˜=

1π›Όπœ•π‘‡πœ•π‘‘

1π‘Ÿ2

πœ•πœ•π‘Ÿ (π‘Ÿ2 πœ•π‘‡πœ•π‘Ÿ )+ 1

π‘Ÿ2 sinπœƒπœ•πœ•πœƒ (sinπœƒ πœ•π‘‡πœ•πœƒ )+ 1

π‘Ÿ 2sin2πœƒπœ•2π‘‡πœ•πœ™2

+π‘”π‘˜=

1π›Όπœ•π‘‡πœ•π‘‘

In spherical coordinates:

Steps:1. Turn the remaining PDE into

dimensionless form.2. Solve analytically for T(r, t).

But there is an easier way!

Page 32: Heat Equations  of Change II

Lumped Systems Analysis

Let’s assume that the sphere is too small for conduction to matter. The temperature distribution inside the sphere can, therefore, be assumed uniform!

Heat Balance: ( π‘…π‘Žπ‘‘π‘’π‘œπ‘“ hπ‘’π‘Žπ‘‘ π‘“π‘™π‘œπ‘€π‘–π‘›π‘‘π‘œπ‘ π‘œπ‘™π‘–π‘‘π‘œπ‘“ π‘£π‘œπ‘™π‘’π‘šπ‘’π‘‰ h h𝑑 π‘Ÿπ‘œπ‘’π‘”π‘π‘œπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’π‘  𝐴 )=(π‘…π‘Žπ‘‘π‘’π‘œπ‘“ π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘’π‘œπ‘“π‘–π‘›π‘‘π‘’π‘Ÿπ‘›π‘Žπ‘™π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ π‘œπ‘“

π‘ π‘œπ‘™π‘–π‘‘π‘œπ‘“ π‘£π‘œπ‘™π‘’π‘šπ‘’π‘‰ )h𝐴 (𝑇 βˆžβˆ’π‘‡ (𝑑 ) )=πœŒπ‘π‘π‘‰

𝑑𝑇 (𝑑)𝑑𝑑

Initial Condition:

𝑇 (𝑑 )=𝑇 0 , 𝑑=0𝑑𝑇 (𝑑)𝑑𝑑 = h𝐴

πœŒπ‘π‘π‘‰(𝑇 βˆžβˆ’π‘‡ (𝑑 ) )

Page 33: Heat Equations  of Change II

Lumped Systems Analysis

𝑑𝑇 (𝑑)𝑑𝑑 = h𝐴

πœŒπ‘π‘π‘‰(𝑇 βˆžβˆ’π‘‡ (𝑑 ) )Initial Condition:

𝑇 (𝑑 )=𝑇 0 , 𝑑=0𝑑𝑇 (𝑑 )

𝑇 βˆžβˆ’π‘‡ (𝑑)= hπ΄πœŒπ‘π‘π‘‰

𝑑𝑑

βˆ’ ln(𝑇 βˆžβˆ’π‘‡ (𝑑)π‘‡βˆžβˆ’π‘‡0 )= h𝐴 𝑑

πœŒπ‘π‘π‘‰Integrating and plugging the IC:

Rearranging: 𝑇 (𝑑 )βˆ’π‘‡βˆžπ‘‡ 0βˆ’π‘‡ ∞

=exp ( βˆ’ h𝐴 π‘‘πœŒπ‘π‘π‘‰ )

Page 34: Heat Equations  of Change II

Lumped Systems Analysis

Rearranging: 𝑇 (𝑑 )βˆ’π‘‡βˆžπ‘‡ 0βˆ’π‘‡ ∞

=exp ( βˆ’ h𝐴 π‘‘πœŒπ‘π‘π‘‰ )

(βˆ’h (𝑉 / 𝐴 )π‘˜ )( π‘˜

πœŒπ‘π‘π‘‘

(𝑉 / 𝐴 )2 )

(βˆ’π΅π‘– ) (πΉπ‘œ )Temperature Profile at the center of the sphere across time:

𝑇 (𝑑 )βˆ’π‘‡βˆžπ‘‡ 0βˆ’π‘‡ ∞

=π‘’βˆ’π΅π‘–πΉπ‘œ

Page 35: Heat Equations  of Change II

Lumped Systems Analysis

Temperature Profile at the center of the sphere across time:

𝑇 (𝑑 )βˆ’π‘‡βˆžπ‘‡ 0βˆ’π‘‡ ∞

=π‘’βˆ’π΅π‘–πΉπ‘œ

This Lumped System Analysis is sufficiently accurate only when

Bi < 0.1.

π‘˜=10 π‘Šπ‘šπΎh=10 π‘Š

π‘š2𝐾

𝑅=0.05π‘šπ‘‡ 0=30 °𝐢𝑇 ∞=20 °𝐢

𝐡𝑖=10 π‘Šπ‘š2π‘˜

10 π‘Šπ‘šπΎ( 0.05π‘š3 )=0.0167<0.1

Given:

Valid!!Checking:

Page 36: Heat Equations  of Change II

Lumped Systems Analysis

For review:A person is found dead at 5 PM in a room where T = 20Β°C. The temperature of the body was measured at 25Β°C when found. The heat transfer coefficient is estimated to be 0.8 W/m2K. Estimate the time of death assuming:

(1) The body can be modeled as a 30-cm diameter, 1.7-m long cylinder.(2) The thermal properties of the body and the heat transfer are

constant.(3) The body temperature was 37Β°C at the time of death.(4) Since the human body has almost the same properties of water at

the average temperature of 31Β°C: k = 0.617 W/mK, density = 996 kg/m3, and cp = 4178 J/kgK.

(5) Radiation effects are negligible.


Recommended