+ All Categories
Home > Documents > HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat...

HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat...

Date post: 17-Apr-2018
Category:
Upload: hahanh
View: 223 times
Download: 8 times
Share this document with a friend
10
1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : β€²β€² = βˆ’ 2 k : Thermal Conductivity βˆ™ Heat Rate : = β€²β€² A c : Cross-Sectional Area Heat Convection Rate Equations (Newton's Law of Cooling) Heat Flux: β€²β€² = β„Ž( βˆ’ ∞ ) 2 h : Convection Heat Transfer Coefficient 2 βˆ™ Heat Rate: = β„Ž ( βˆ’ ∞ ) A s : Surface Area 2 Heat Radiation emitted ideally by a blackbody surface has a surface emissive power: = 4 2 Heat Flux emitted : = 4 2 where Ξ΅ is the emissivity with range of 0 ≀ ≀ 1 and = 5.67 Γ— 10 βˆ’8 2 4 is the Stefan-Boltzmann constant Irradiation: = but we assume small body in a large enclosure with = so that = 4 Net Radiation heat flux from surface: β€²β€² = = ( ) βˆ’ = ( 4 βˆ’ 4 ) Net radiation heat exchange rate: = ( 4 βˆ’ 4 ) where for a real surface 0 ≀≀ 1 This can ALSO be expressed as: = β„Ž ( βˆ’ ) depending on the application where β„Ž is the radiation heat transfer coefficient which is: β„Ž = ( + )( 2 + 2 ) 2 βˆ™ TOTAL heat transfer from a surface: = + = β„Ž ( βˆ’ ∞ )+ ( 4 βˆ’ 4 ) Conservation of Energy (Energy Balance) Μ‡ + Μ‡ βˆ’ Μ‡ = Μ‡ (Control Volume Balance) ; Μ‡ βˆ’ Μ‡ = 0 (Control Surface Balance) where Μ‡ is the conversion of internal energy (chemical, nuclear, electrical) to thermal or mechanical energy, and Μ‡ =0 for steady-state conditions. If not steady-state (i.e., transient) then Μ‡ = Heat Equation (used to find the temperature distribution) Heat Equation (Cartesian): οΏ½ οΏ½ + οΏ½ οΏ½ + οΏ½ οΏ½ + Μ‡ = If is constant then the above simplifies to: 2 2 + 2 2 + 2 2 + Μ‡ = 1 where = is the thermal diffusivity Heat Equation (Cylindrical): 1 οΏ½ οΏ½ + 1 2 οΏ½ οΏ½ + οΏ½ οΏ½ + Μ‡ = Heat Eqn. (Spherical): 1 2 οΏ½ 2 οΏ½ + 1 2 sin 2 οΏ½ οΏ½ + 1 2 sin οΏ½ sin οΏ½ + Μ‡ = Thermal Circuits Plane Wall: , = Cylinder: , = lnοΏ½ 2 1 οΏ½ 2 Sphere: , = ( 1 r 1 βˆ’ 1 r 2 ) 4
Transcript
Page 1: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

1

HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law)

Heat Flux : π‘žπ‘₯β€²β€² = βˆ’π‘˜ 𝑑𝑑

𝑑π‘₯ π‘Š

π‘š2 k : Thermal Conductivity π‘Š

π‘šβˆ™π‘˜

Heat Rate : π‘žπ‘₯ = π‘žπ‘₯′′𝐴𝑐 π‘Š Ac : Cross-Sectional Area

Heat Convection Rate Equations (Newton's Law of Cooling)

Heat Flux: π‘žβ€²β€² = β„Ž(𝑇𝑠 βˆ’ π‘‡βˆž) π‘Šπ‘š2 h : Convection Heat Transfer Coefficient

π‘Šπ‘š2βˆ™πΎ

Heat Rate: π‘ž = β„Žπ΄π‘ (𝑇𝑠 βˆ’ π‘‡βˆž) π‘Š As : Surface Area π‘š2

Heat Radiation emitted ideally by a blackbody surface has a surface emissive power: 𝐸𝑏 = 𝜎 𝑇𝑠4 π‘Š

π‘š2

Heat Flux emitted : 𝐸 = πœ€πœŽπ‘‡π‘ 4 π‘Š

π‘š2 where Ξ΅ is the emissivity with range of 0 ≀ πœ€ ≀ 1

and 𝜎 = 5.67 Γ— 10βˆ’8 π‘Šπ‘š2𝐾4 is the Stefan-Boltzmann constant

Irradiation: πΊπ‘Žπ‘π‘  = 𝛼𝐺 but we assume small body in a large enclosure with πœ€ = 𝛼 so that 𝐺 = πœ€ 𝜎 𝑇𝑠𝑠𝑠4

Net Radiation heat flux from surface: π‘žπ‘ π‘Žπ‘‘β€²β€² = π‘ž

𝐴= πœ€πΈπ‘(𝑇𝑠) βˆ’ 𝛼𝐺 = πœ€πœŽ(𝑇𝑠

4 βˆ’ 𝑇𝑠𝑠𝑠4 )

Net radiation heat exchange rate: π‘žπ‘ π‘Žπ‘‘ = πœ€πœŽπ΄π‘ (𝑇𝑠4 βˆ’ 𝑇𝑠𝑠𝑠

4 ) where for a real surface 0 ≀ πœ€ ≀ 1

This can ALSO be expressed as: π‘žπ‘ π‘Žπ‘‘ = β„Žπ‘ π΄(𝑇𝑠 βˆ’ 𝑇𝑠𝑠𝑠) depending on the application

where β„Žπ‘  is the radiation heat transfer coefficient which is: β„Žπ‘  = πœ€πœŽ(𝑇𝑠 + 𝑇𝑠𝑠𝑠)(𝑇𝑠2 + 𝑇𝑠𝑠𝑠

2 ) π‘Šπ‘š2βˆ™πΎ

TOTAL heat transfer from a surface: π‘ž = π‘žπ‘π‘π‘π‘ + π‘žπ‘ π‘Žπ‘‘ = β„Žπ΄π‘ (𝑇𝑠 βˆ’ π‘‡βˆž) + πœ€πœŽπ΄π‘ (𝑇𝑠4 βˆ’ 𝑇𝑠𝑠𝑠

4 ) π‘Š

Conservation of Energy (Energy Balance)

�̇�𝑖𝑐 + �̇�𝑔 βˆ’ οΏ½Μ‡οΏ½π‘π‘ π‘œ = οΏ½Μ‡οΏ½π‘ π‘œ (Control Volume Balance) ; �̇�𝑖𝑐 βˆ’ οΏ½Μ‡οΏ½π‘π‘ π‘œ = 0 (Control Surface Balance)

where �̇�𝑔 is the conversion of internal energy (chemical, nuclear, electrical) to thermal or mechanical energy, and

οΏ½Μ‡οΏ½π‘ π‘œ = 0 for steady-state conditions. If not steady-state (i.e., transient) then οΏ½Μ‡οΏ½π‘ π‘œ = πœŒπœŒπ‘π‘π‘‘π‘‘π‘‘π‘œ

Heat Equation (used to find the temperature distribution)

Heat Equation (Cartesian): πœ•

πœ•π‘₯οΏ½π‘˜ πœ•π‘‘

πœ•π‘₯οΏ½ + πœ•

πœ•πœ•οΏ½π‘˜ πœ•π‘‘

πœ•πœ•οΏ½ + πœ•

πœ•πœ•οΏ½π‘˜ πœ•π‘‘

πœ•πœ•οΏ½ + οΏ½Μ‡οΏ½ = πœŒπ‘π‘

πœ•π‘‘πœ•π‘œ

If π‘˜ is constant then the above simplifies to: πœ•2π‘‘πœ•π‘₯2 + πœ•2𝑑

πœ•πœ•2 + πœ•2π‘‘πœ•πœ•2 + οΏ½Μ‡οΏ½

π‘˜= 1

π›Όπœ•π‘‘πœ•π‘œ

where 𝛼 = π‘˜πœŒπ‘π‘

is the thermal diffusivity

Heat Equation (Cylindrical): 1𝑠

πœ•πœ•π‘ 

οΏ½π‘˜π‘˜ πœ•π‘‘πœ•π‘ 

οΏ½ + 1𝑠2

πœ•πœ•πœ•

οΏ½π‘˜ πœ•π‘‘πœ•πœ•

οΏ½ + πœ•πœ•πœ•

οΏ½π‘˜ πœ•π‘‘πœ•πœ•

οΏ½ + οΏ½Μ‡οΏ½ = πœŒπ‘π‘πœ•π‘‘πœ•π‘œ

Heat Eqn. (Spherical): 1

𝑠2πœ•

πœ•π‘ οΏ½π‘˜π‘˜2 πœ•π‘‘

πœ•π‘ οΏ½ + 1

𝑠2 sin πœƒ2πœ•

πœ•πœ•οΏ½π‘˜ πœ•π‘‘

πœ•πœ•οΏ½ + 1

𝑠2 sin πœƒ πœ•πœ•πœƒ

οΏ½π‘˜ sin πœƒ πœ•π‘‘πœ•πœƒ

οΏ½ + οΏ½Μ‡οΏ½ = πœŒπ‘π‘πœ•π‘‘πœ•π‘œ

Thermal Circuits

Plane Wall: π‘…π‘œ,𝑐𝑐𝑐𝑑 = πΏπ‘˜π΄

Cylinder: π‘…π‘œ,𝑐𝑐𝑐𝑑 =lnοΏ½π‘Ÿ2

π‘Ÿ1οΏ½

2πœ‹π‘˜πΏ Sphere: π‘…π‘œ,𝑐𝑐𝑐𝑑 =

( 1r1

βˆ’ 1r2

)

4πœ‹π‘˜

Page 2: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

2 π‘…π‘œ,𝑐𝑐𝑐𝑐 = 1

β„Žπ΄ π‘…π‘œ,π‘ π‘Žπ‘‘ = 1

β„Žπ‘Ÿπ΄

_____________________________________________________________________________________________________________

General Lumped Capacitance Analysis

π‘žπ‘ β€²β€²π΄π‘ ,β„Ž + 𝐸�̇� βˆ’ [β„Ž(𝑇 βˆ’ π‘‡βˆž) + πœ€πœŽ(𝑇4 βˆ’ 𝑇𝑠𝑠𝑠

4 )]𝐴𝑠(𝑐,𝑠) = πœŒπœŒπ‘π‘‘π‘‡π‘‘π‘‘

Radiation Only Equation

𝑑 = πœŒπœŒπ‘4 πœ€ 𝐴𝑠,π‘Ÿ 𝜎 π‘‘π‘ π‘ π‘Ÿ

3 οΏ½ln οΏ½π‘‘π‘ π‘ π‘Ÿ+π‘‘π‘‘π‘ π‘ π‘Ÿβˆ’π‘‘

οΏ½ βˆ’ ln οΏ½π‘‘π‘ π‘ π‘Ÿ+π‘‘π‘–π‘‘π‘ π‘ π‘Ÿβˆ’π‘‘π‘–

οΏ½ + 2 οΏ½tanβˆ’1 οΏ½ π‘‘π‘‘π‘ π‘ π‘Ÿ

οΏ½ βˆ’ tanβˆ’1 οΏ½ π‘‘π‘–π‘‘π‘ π‘ π‘Ÿ

οΏ½οΏ½οΏ½

Heat Flux, Energy Generation, Convection, and No Radiation Equation

π‘‘βˆ’π‘‘βˆžβˆ’ οΏ½π‘π‘ŽοΏ½

π‘‘π‘–βˆ’ π‘‘βˆžβˆ’ οΏ½π‘π‘ŽοΏ½

= exp(βˆ’π‘Žπ‘‘) ; where π‘Ž = οΏ½β„Žπ΄π‘ ,𝑐

πœŒπœŒπ‘οΏ½ and 𝑏 = π‘žπ‘ 

′′𝐴𝑠,β„Ž+ �̇�𝑔

πœŒπœŒπ‘

Convection Only Equation

πœƒπœƒπ‘–

=𝑇 βˆ’ π‘‡βˆž

𝑇𝑖 βˆ’ π‘‡βˆž= exp οΏ½βˆ’ οΏ½

β„Žπ΄π‘ 

πœŒπœŒπ‘οΏ½ 𝑑�

πœπ‘œ = οΏ½ 1β„Žπ΄π‘ 

οΏ½ (πœŒπœŒπ‘) = π‘…π‘œπΆπ‘œ ; 𝑄 = πœŒπœŒπ‘ πœƒπ‘– οΏ½1 βˆ’ exp οΏ½βˆ’ π‘œπœπ‘‘

οΏ½οΏ½ ; π‘„π‘šπ‘Žπ‘₯ = πœŒπœŒπ‘ πœƒπ‘–

𝐡𝐡 = β„ŽπΏπ‘π‘˜

If there is an additional resistance either in series or in parallel, then replace β„Ž with π‘ˆ in all the above lumped capacitance

equations, where

π‘ˆ = 1𝑅𝑑𝐴𝑠

οΏ½ π‘Šπ‘š2βˆ™πΎ

οΏ½ ; π‘ˆ = overall heat transfer coefficient, π‘…π‘œ = total resistance, 𝐴𝑠 = surface area.

Convection Heat Transfer

𝑅𝑅 = πœŒπœŒπΏπ‘πœ‡

= πœŒπΏπ‘πœˆ

[Reynolds Number] ; 𝑁𝑁���� = β„ŽοΏ½πΏπ‘π‘˜π‘“

[Average Nusselt Number]

where 𝜌 is the density, 𝜌 is the velocity, 𝐿𝑐 is the characteristic length, πœ‡ is the dynamic viscosity, 𝜈 is the kinematic viscosity, οΏ½Μ‡οΏ½ is the mass flow

rate, β„ŽοΏ½ is the average convection coefficient, and π‘˜π‘“ is the fluid thermal conductivity.

Page 3: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

3 Internal Flow

𝑅𝑅 = 4 οΏ½Μ‡οΏ½πœ‹πœ‹πœ‡

[For Internal Flow in a Pipe of Diameter D]

For Constant Heat Flux [π‘žπ‘ ΚΊ = π‘π‘π‘π‘π‘‘π‘Žπ‘π‘‘]: π‘žπ‘π‘π‘π‘ = π‘žπ‘ 

ΚΊ(𝑃 βˆ™ 𝐿) ; where P = Perimeter, L = Length

π‘‡π‘š(π‘₯) = π‘‡π‘š,𝑖 +π‘žπ‘ 

ΚΊ Β· 𝑃�̇� βˆ™ 𝑐𝑝

π‘₯

For Constant Surface Temperature [𝑇𝑠 = π‘π‘π‘π‘π‘‘π‘Žπ‘π‘‘]:

If there is only convection between the surface temperature, 𝑇𝑠, and the mean fluid temperature, π‘‡π‘š, use

π‘‘π‘ βˆ’π‘‘π‘š(π‘₯)π‘‘π‘ βˆ’π‘‘π‘š,𝑖

= 𝑅π‘₯𝑒 οΏ½βˆ’ π‘ƒβˆ™π‘₯οΏ½Μ‡οΏ½βˆ™π‘π‘

β„ŽοΏ½οΏ½

If there are multiple resistances between the outermost temperature, π‘‡βˆž, and the mean fluid temperature, π‘‡π‘š, use

π‘‡βˆž βˆ’ π‘‡π‘š(π‘₯)π‘‡βˆž βˆ’ π‘‡π‘š,𝑖

= 𝑅π‘₯𝑒 οΏ½βˆ’π‘ƒ βˆ™ π‘₯

οΏ½Μ‡οΏ½ βˆ™ π‘π‘π‘ˆοΏ½ = 𝑅π‘₯𝑒 οΏ½βˆ’

1οΏ½Μ‡οΏ½ βˆ™ 𝑐𝑝 βˆ™ π‘…π‘œ

οΏ½

Total heat transfer rate over the entire tube length:

π‘žπ‘œ = οΏ½Μ‡οΏ½ βˆ™ 𝑐𝑝 βˆ™ οΏ½π‘‡π‘š,𝑐 βˆ’ π‘‡π‘š,𝑖� = β„ŽοΏ½ βˆ™ 𝐴𝑠 βˆ™ βˆ†π‘‡π‘™π‘š π‘π‘˜ π‘ˆ βˆ™ 𝐴𝑠 βˆ™ βˆ†π‘‡π‘™π‘š ; 𝑇𝑠 = π‘π‘π‘π‘π‘‘π‘Žπ‘π‘‘

Log mean temperature difference: βˆ†π‘‡π‘™π‘š = βˆ†π‘‘π‘œβˆ’βˆ†π‘‘π‘–

lnοΏ½βˆ†π‘‡π‘œβˆ†π‘‡π‘–

οΏ½ ; βˆ†π‘‡π‘ = 𝑇𝑠 βˆ’ π‘‡π‘š,𝑐 ; βˆ†π‘‡π‘– = 𝑇𝑠 βˆ’ π‘‡π‘š,𝑖

Free Convection Heat Transfer

πΊπ‘˜πΏ = 𝑔𝑔(π‘‘π‘ βˆ’π‘‘βˆž)𝐿𝑐3

𝜈2 [Grashof Number]

π‘…π‘ŽπΏ = 𝑔𝑔(π‘‘π‘ βˆ’π‘‘βˆž)𝐿𝑐3

πœˆπ›Ό [Rayleigh Number]

Vertical Plates: 𝑁𝑁����𝐿 = οΏ½0.825 + 0.387 π‘…π‘ŽπΏ1/6

οΏ½1+οΏ½0.492π‘ƒπ‘Ÿ οΏ½

9/16οΏ½

8/27οΏ½

2

; [Entire range of RaL; properties evaluated at Tf]

- For better accuracy for Laminar Flow: 𝑁𝑁����𝐿 = 0.68 + 0.670 π‘…π‘ŽπΏ1/4

οΏ½1+οΏ½0.492π‘ƒπ‘Ÿ οΏ½

9/16οΏ½

4/9 ; π‘…π‘ŽπΏ ≲ 109 [Properties evaluated at Tf]

Inclined Plates: for the top and bottom surfaces of cooled and heated inclined plates, respectively, the equations of the vertical

plate can be used by replacing (g) with (𝑔 cos πœƒ) in RaL for 0 ≀ πœƒ ≀ 60Β°.

Horizontal Plates: use the following correlations with 𝐿 = 𝐴𝑠𝑃

where As = Surface Area and P = Perimeter

- Upper surface of Hot Plate or Lower Surface of Cold Plate:

𝑁𝑁����𝐿 = 0.54 π‘…π‘ŽπΏ1/4 (104 ≀ π‘…π‘ŽπΏ ≀ 107) ; 𝑁𝑁����𝐿 = 0.15 π‘…π‘ŽπΏ

1/3 (107 ≀ π‘…π‘ŽπΏ ≀ 1011) - Lower Surface of Hot Plate or Upper Surface of Cold Plate:

𝑁𝑁����𝐿 = 0.27 π‘…π‘ŽπΏ1/4 (105 ≀ π‘…π‘ŽπΏ ≀ 1010)

Page 4: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

4 Vertical Cylinders: the equations for the Vertical Plate can be applied to vertical cylinders of height L if the following criterion is

met: πœ‹πΏ

β‰₯ 35

𝐺𝑠𝐿1/4

Long Horizontal Cylinders: π‘π‘οΏ½οΏ½οΏ½οΏ½πœ‹ = οΏ½0.60 + 0.387 π‘…π‘Žπ·1/6

οΏ½1+οΏ½0.559π‘ƒπ‘Ÿ οΏ½

9/16οΏ½

8/27οΏ½

2

; π‘…π‘Žπœ‹ ≲ 1012 [Properties evaluated at Tf]

Spheres: π‘π‘οΏ½οΏ½οΏ½οΏ½πœ‹ = 2 + 0.589 π‘…π‘Žπ·1/4

οΏ½1+οΏ½0.469π‘ƒπ‘Ÿ οΏ½

9/16οΏ½

4/9 ; π‘…π‘Žπœ‹ ≲ 1011 ; π‘ƒπ‘˜ β‰₯ 0.7 [Properties evaluated at Tf]

Heat Exchangers

Heat Gain/Loss Equations: π‘ž = οΏ½Μ‡οΏ½ 𝑐𝑝(𝑇𝑐 βˆ’ 𝑇𝑖) = π‘ˆπ΄π‘  βˆ†π‘‡π‘™π‘š ; where π‘ˆ is the overall heat transfer coefficient

Log-Mean Temperature Difference: βˆ†π‘‡π‘™π‘š,𝑃𝑃 = οΏ½π‘‘β„Ž,π‘–βˆ’π‘‘π‘,π‘–οΏ½βˆ’οΏ½π‘‘β„Ž,π‘œβˆ’π‘‘π‘,π‘œοΏ½

lnοΏ½οΏ½π‘‡β„Ž,π‘–βˆ’π‘‡π‘,𝑖�

οΏ½π‘‡β„Ž,π‘œβˆ’π‘‡π‘,π‘œοΏ½οΏ½

[Parallel-Flow Heat Exchanger]

Log-Mean Temperature Difference: βˆ†π‘‡π‘™π‘š,𝐢𝑃 = οΏ½π‘‘β„Ž,π‘–βˆ’π‘‘π‘,π‘œοΏ½βˆ’οΏ½π‘‘β„Ž,π‘œβˆ’π‘‘π‘,𝑖�

lnοΏ½οΏ½π‘‡β„Ž,π‘–βˆ’π‘‡π‘,π‘œοΏ½

οΏ½π‘‡β„Ž,π‘œβˆ’π‘‡π‘,𝑖��

[Counter-Flow Heat Exchanger]

For Cross-Flow and Shell-and-Tube Heat Exchangers: βˆ†π‘‡π‘™π‘š = 𝐹 βˆ†π‘‡π‘™π‘š,𝐢𝑃 ; where 𝐹 is a correction factor

Number of Transfer Units (NTU): π‘π‘‡π‘ˆ = π‘ˆπ΄πΆπ‘šπ‘–π‘š

; where πΆπ‘šπ‘–π‘ is the minimum heat capacity rate in [W/K]

Heat Capacity Rates: 𝐢𝑐 = �̇�𝑐 𝑐𝑝,𝑐 [Cold Fluid] ; πΆβ„Ž = οΏ½Μ‡οΏ½β„Ž 𝑐𝑝,β„Ž [Hot Fluid] ; 𝐢𝑠 = πΆπ‘šπ‘–π‘šπΆπ‘šπ‘Žπ‘š

[Heat Capacity Ratio]

Note: The condensation or evaporation side of the heat exchanger is associated with πΆπ‘šπ‘Žπ‘₯ = ∞

Page 5: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

5

If Pr ≀ 10 β†’ n = 0.37 If Pr β‰₯ 10 β†’ n = 0.36

Page 6: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

6

Page 7: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

7

Page 8: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

8

Page 9: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

9

Page 10: HEAT TRANSFER EQUATION SHEET - UTRGV Faculty Web Transfer...Β Β· 1 HEAT TRANSFER EQUATION SHEET Heat Conduction Rate Equations (Fourier's Law) Heat Flux : π‘ž. π‘₯β€²β€² = βˆ’π‘˜.

10


Recommended