+ All Categories
Home > Documents > Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and...

Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and...

Date post: 15-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
42
Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University of Perpigan Via Domitia SFERA II 2014-2017, Summer School, June 25-27 2014
Transcript
Page 1: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Heat Transfer Fluids and

Thermal Energy Storage for CSP

Pr Xavier Py PROMES laboratory UPR 8521 CNRS University of Perpigan Via Domitia

SFERA II 2014-2017, Summer School, June 25-27 2014

Page 2: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Thermal Energy Storage : one of the major distinctive advantage of CSP before other Renewable Energies

MW 50

40

30

20

10

0 0 2 4 6 8 10 12 14 16 18 20 22 24

Toward storage

Solar

direct

Backup or storage

storage

- ditpatchability - process optimization -process protection To resume: HTF and TES are the interface between the solar E input and the PB

Interest for TES in CSP

Allows:

Page 3: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

HTF and TES : some of the current worldwide key priorities for CSP

Page 4: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

HTF and TES : some of the current worldwide key priorities for CSP

Page 5: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Financial issues

Effects of TES on financial issues: Increase in investment costs by the added TES and the increased size of the solar field The whole energy cost changes only marginally. The main merit of the TES: Not to reduce the cost ofelectricity But increase in plant capacity factor and yearly electrical output Supply of base-load power competing with fossil-fuel plants

Herrmann 2004 50 MW Andasol CSP Oil / molten salt

!

Page 6: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Environmental issues

J. J. Burkhardt, G. a Heath, and C. S. Turchi, Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environmental science & technology, vol. 45, no. 6, pp. 2457–64, Mar. 2011.

12

1.7

10

0.12

2.1

26

21%

23%

8%

38%

22%

1%

15%

1.6%

24%

32%

GHG HTF 5.36 (20.6%) TES 5.01 (19.3%) CED HTF 0.092 (23%) TES 0.072 (18%)

0.19

0.028

0.17

0.0019

0.0098

0.4

27%

19.5%

6.4%

36%

23%

9.4%

14%

1.5%

2.5%

89.8%

ANDASOL like Trough CSP 103 MW HTF: Therminol VP1 Solutia 6.3 h TES : Mined nitrate salt

Cumulative Energy demand

Green House Gaz Emissions

Water consumptions

Page 7: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Raw materials availability

Phil E., Kushnir D., Sanden B., Johnsson F. Material constraints for concentrating solar thermal power. Energy 44 (2012) 944-954. Burkhardt J.J., Heath G.A., Turchi C.S. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and the Impacts of Key Design Alternatives. Env. Sci&Tech. 45 (2011) 2457-64.

About 60% of the solar salt are from mined nitrates from Chile, others are from chemical industry Use of synthetic salt only increases the TES GHG content by 52%

Page 8: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Needs in analysis of the State of the art HTF and TES for identification of bottlenecks and possible innovative approaches. LETS go Through Historical HTF and TES in CSP… Some illustrative exemples ….

Page 9: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

History : first French Tower-CSP pilot

First Historical CSP molten salt techno. : Thémis France

Stockage

Héliostats

Bloc électrique

Bac

froid

Tour

Bac

chaud

Générateur

de vapeur

Captage Stockage

Héliostats

Bloc électrique

Bac

froid

Tour

Bac

chaud

Générateur

de vapeur

Captage

Targasonne France 1982 1985 2.5 MWe 560°C 550tons of molten salt as HTS and TESM 40 MWh 5h

201 heliostats 53.7 m²

443,5 110 m² 9.000 kWth Te 250°C Ts 450°C

100 m 80 m 30°

40%NaNO2

7% NaNO3

53% KNO3

Tm 142°C Cp 1300 J/(kg K) r 1900 kg m-3

2.500 kW 28% Tv 430°C Pv 40 bars

Direct and active TES

Molten Salt: Atm pressure Highly stable High operating T Afordable Mature techno but rather high solid. T

Page 10: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Solar One USA: direct steam generation DSG tower CSP 1982 - 1988 Steam as primary HTF TES using oil as HTF and a natural filler (rocks) TESM in the tank

TES mode : indirect and passive Heat exchanger steam/oil In the thermocline TES unit: thermal oil 4230 m3

4120 tons granit particles 2060 tons sand 244°C-304°C Discharge through a steam producing unit gives steam at 274°C Major failures at the receiver due to DSG

Thermocline approach: One unique stratified tank instead of two 30% in cost reduction before two-tank salt Extensively studied by Sandia lab.

History : first USA Tower-CSP pilot

Page 11: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Efficiencies :

receiver : 88%

storage: 97%

steam cycle: 34%

whole efficiency: 13.5%

SOLAR TWO 12.4 Mwel From Solar One 1996-1999 Barstow Californie Molten salt : NaNO3/KNO3 Higher solid. T

42 MWth 430 kW/m2

24 panels of 32 tubes Tubes : 316 stainless steel 2.1 cm diam 1.2 mm wall Pyromark paint 95%abs

History : first USA Tower-CSP pilot, second step

TES mode : Direct and active

Page 12: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

834 m3 897 m3

+ 325 kWe soaked heating elements

Insulation : 46 cm rockwool fibers + 5 cm glass fibers + Alu covers

Insulation : 30 cm rockwool fibers + 5 cm glass fibers + Alu covers

TES is not only a TESM but also : Tanks Pumps Tubings Heating elements Insulations Fundations

Page 13: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Molten salt inventory

16 days needed for first melting

History : first USA Tower-CSP pilot, second step

TES is also concerned by material Handling and pretreatments

Page 14: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Oil as heat transfer fluid and TESM

1999 at SEGS I II

SEGS I Daggett California 14 MWe – 1985 Trough CSP with mineral oil Caloria TES : 3h direct and active mode Two-Tank, oil only cold 240°C 4160 m3/hot 307°C 4540 m3 Invest. cost 25 USD/kWhth (24% tanks, 42%oil) Major fire and the end of oil based TES

SEGS I-II

Oil: High operating P Limiting highest T Flammable

History : in USA Trough-CSP industrial Plant

Page 15: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

50 MWe 625 collecteurs (12m long, 6m ouverture) 260 millions euros 195 hectares 152 000 tonnes CO2/an

50 MWe - 7.5 h storage (28 000 t molten salt binary nitrate) 625 collectors (12m lenght, 6m aperture) HTF solar oil A mix between SEGS and Themis/Solar Two

ANDASOL Granada Spain 2009 : today’s « standard » for trough CSP

15/12/2009

Today : in solar trough CSP

TES mode: indirect and active

Oil: High operating P Limiting highest T Flammable

Page 16: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Today : the first industrial Solar CSP Tower

Storage capacity 50 mn at 50% : 25 MWh steam 40 bars 250°C

Steam buffer storage

20-30 kWh/m3

100 €/kWh

PS10 Sevilla 11 MWe

PS10 (Sevilla)

TES mode: Direct and active Mature but low capacity expensive

Page 17: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Gemasolar 2011: 15h of TES 20 Mwe Tmax 565°C Next Crescent Dune USA 110 MWe

Today : the first industrial 24h/day Solar CSP Tower

Page 18: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Limitations, alternatives and perspectives

For both HTF and TESM Increasing T limits in both low and high T Maximizing heat transfer properties Enhancing compatibility between HTF/TESM and containing materials Increasing life time expectency under thermal cycling Reducing LCA impacts Reducing investment costs NEEDS in NEW HTF Low vapor pressure avoiding expensive pressure-rated tanks Exploring new fluid approaches (with nanoparticles, dense gas/particle suspensions,…) NEEDS in NEW TESM Exploring other TES technos. (Latent heat, thermochemical, compressed air) Reducing investment costs Reducing LCA impacts NUMEROUS issues … only some illustrative exemples for today in the following slides

Page 19: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Alternative fluids : Water steam in SF Eco-friendly oil (organic) Other molten salt Gaz (hot air, CO2) Enhanced molten salt (nanoparticles,…) Dense gaz-particle suspensions DLR air/sand concept

Air-sand heat exchanger for high-T storage. ES2009-90274 Proceeding of ES2009 July 19-23, 2009, San Francisco, California USA/

J.F. Hoffmann AQYLON PROMES

Page 20: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

today 0.8 Mt

About 800 €/t

Before CSP needs :

9 to 21 Mt/year

of nitrates !

The Natural Nitrates from Chile to keep as HTF but not as TESM

133 Mm3 wastes 417 km² polluted surface > 100 ghost plants (P. Marr 2007)

Raw Material availability : the nitrate salt

Page 21: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Air as HTF in solar trough CSP and TES on packed bed of rocks

Alternative TESM: rocks as TESM

ETH Zurich, plant Morroco

Page 22: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Thermal Analysis (DSC): Setsys Cetaram

Si2O5Al2(OH)4 Kaolinite

desh

ydra

tati

on

hem

atit

e

desh

ydro

xyl

atio

n

500 -600°C Al2O3.2 SiO2

MetaKaolonite

980°C Al2O4Si Spinel

3Al2O3.2 SiO2 Mullite

1400°C Melting

Thermal behaviour of natural minerals Needs in stabilization

Page 23: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Developped by the DLR Advantages Low cost of the TESM, Easy manufacturing, High availability, Modular and simple system, High potential with PCM for DSG plants Drawbacks Limited operating temperature Life time expectency First heating step (water departure) Embodied Heat Transfer Exchanger

Sensible heat TES over solid media: concrete for CSP

Page 24: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Sensible heat TES over solid media: concrete for CSP

Page 25: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

~ 300 m

~ 100 m

storage unit

storage unit

storage unit

storage unit

Photo: Solar Millenium AG

Simulation ANDASOL 50 MWe

Sensible heat TES over solid media: concrete for CSP

Page 26: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

COAL-FIRED POWER PLANTS FLY ASHE

METALURGIC SLAGS

750 Mt/y World EU(15) 42 Mt/year

MUNICIPAL SOLID WASTES INCINERATORS FLY ASHE EU(15) : 1.6 Mt/year

ASBESTOS Containing Wastes (ACW) : 174 Mt of Asbestos used during the XX century worldwide

Steel > 411 Mt/y World Copper > 25 Mt/y

French approach developed at PROMES Sensible heat TES Solid media

Page 27: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Commercial price : 8-10 euros/tonne

Possible moulding

glass

ceramics

Cost of treatment : 1200 euros/t paid by the ACW owner Landfill disposal : 150 to 750 euros/t Embodied E & GHG payback: one year of new use in CSP

1400°C

Asbestos Containing Wastes (ACW) and Fly Ashes Wastes (FAW)

glass

ceramics

Asbestos Containing Wastes

Fly Ashe Wastes

Sensible heat TES Solid media

Page 28: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

70% pyroxènes 30% Wollastonite - Akermanite

THERMAL

BEHAVIOURS

ACW

(same for CFA) from glass

from ceramics

Page 29: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

0

200

400

600

800

1000

1200

0 250 500 750 1000

Cp

(J

/kg

K)

T (°C)

0

200

400

600

800

1000

1200

0 250 500 750 1000

Cp

(J

(Kg

K)

T (°C)

ACW ceramics

FAW ceramics

r = 2975 kg/m3

800 - 1034

785 - 1072

STORAGE

CAPACITIES

r = 3100 kg/m3

Page 30: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

THERMAL

CONDUCTIVITIES

ACW ceramics

FAW ceramics

0

0,5

1

1,5

2

2,5

0 250 500 750 1000

lam

bd

a (

W/(

m K

))

T (°C)

0

0,5

1

1,5

2

2,5

0 250 500 750 1000

Lam

bd

a (

W/m

K)

T (°C) l 1.5 W/(m K)

Page 31: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Process Lowest T °C Highest T °C Daily cycle Nb Ee/Em ratio Payback Nb cycle

CSP trough 250 390 1 49 261 × 3

CSP air tower 400 800 1 153 84 × 3

A CAES 60 650 3 625 61 × 3

EMBODIED ENERGY PAY-BACK TIME

Mass yield: 14-26% E efficiency: 35-56%

1.64×103 J/g

DHind = 33.5 MJ/kg

Pay-back time: 2 months to 2 years PB efficiency: 33%

from electricity consumption to electricty production)

Page 32: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Sensible Heat

Thermal Energy Storage Materials

for CSP

Page 33: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

0

200

400

600

800

1000

0 20 40 60 80 100 120

0

200

400

600

800

1000

0 20 40 60 80

Time (min)

Te

mp

era

ture

(°C

)

0

200

400

600

800

1000

0 2 4 6 8 10 12

Time (min)

Te

mp

era

ture

(°C

)

dT/dt = 100 °C/min

dT/dt = 300 °C/min

dT/dt = 2500 °C/min

under air

500 – 1000°C

100 – 2500°C/min

2 kW

Surface T

10 mm

25 mm

40 mm

Fatigue tests

Thermal shocks

a measurements

d= 25 mm L= 200 mm

Thermal fatigue and thermal shocks

Page 34: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

REFRACTORY BEHAVIOR : Ultrasonic echography study

GEMH Limoges

ACW Ceramique

Page 35: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Compatibility with CSP HTF

Thermal cycling under air 30 bars 610°C, 2500h On ACW ceramic and CFA ceramic

In molten salts: High compatibility of all recycled ceramics and nitrate No compatibility with other salt (sulfate, carbonate, phosphate)

Page 36: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

Sensible heat

L/S domain

L

S

Latent heat

T (°C)

t (s)

Variance

W = 1

Phase rule : w = C – r + 2 – j

C number of components, r number of reaction, j nomber of involved phases

W = 2 W = 2

TES based on Latent Heat (PCM)

Page 37: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

TES based on Latent Heat (PCM)

Numerous PCMs In the T Range of CSP

Page 38: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

t (s)

T (°C)

melting

solidification

Cp solid

Cp liquid

End of

melting

Tmelting

Tsolidification

Sub cooling

Q

W/g

Thermal effect delayed by thermal diffusion

(1) High storage capacity

(2) Self regulated temperature

(3) Modular system

(4) Wide possible working temperature range

(1) Subcooling phenomena

(2) Thermal conductivity

(3) Corrosion

(4) Thermique and chemical stability

(5) Toxicity

(6) Inflammability

(7) Price

(8) Disponibility

Main advantages

Main disavantages

TES based on Latent Heat (PCM)

Page 39: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

?

10-50 MWe 100 kW/m2

< 400 °C (oil)

Stockage chaleur Latente L/S

- Inorganic PCM - graphite /salt composites

50-500 kWh/m3 (DT≈ 0°C ! ) ~ 30 €/kWh

hth-el ~ 30-40%

0 5 10 15 20 25 30 35

graphite content (%wt)

0

5

10

15

20

25

30

35

Th

erm

al

co

nd

ucti

vit

y (

W m

-1 K

-1)

220°C

targuet

raw salt

NaNO3/KNO3

TES based on Latent Heat (PCM)

Page 40: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

TES based on Latent Heat (PCM)

Page 41: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

T °C

HTF and TES for CSP Conclusions

Numerous innovative approaches but few mature ones High potential of CSP enhancement High potential of research and business

But : Costly R&D tasks Few involved people Difficulties to find funding for large scale pilot

Page 42: Heat Transfer Fluids and Thermal Energy Storage for CSP · 2014-07-02 · Heat Transfer Fluids and Thermal Energy Storage for CSP Pr Xavier Py PROMES laboratory UPR 8521 CNRS University

HTF and TES for CSP A wide and wonderful research and industrial world

with still so much work to achieve !!!

Then, PhD students, we need you !

SFERA II 2014-2017, Summer School, June 25-27 2014


Recommended