+ All Categories
Home > Documents > Heat Transfer for Infrastructural Development · the use of sophisticated and computationally...

Heat Transfer for Infrastructural Development · the use of sophisticated and computationally...

Date post: 21-Apr-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
140
Heat Transfer for Infrastructural Development Bachelor of Science National University of Singapore Koh Jun Hao Supervisor: Dr Koh Wee Shing 2019
Transcript
Page 1: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Heat Transfer for Infrastructural

Development

Bachelor of Science

National University of Singapore

Koh Jun Hao

Supervisor: Dr Koh Wee Shing

2019

Page 2: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

2

Page 3: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Abstract

Thermal load on buildings is the net accumulation of heat from the Sun, sky and

surrounding surfaces in the built environment. This includes energy balance through

radiation, convection and conduction on the surface of the buildings. In this study,

a simplified heat transfer model was developed to provide an overview of the vari-

ation in surface temperature of conventional and high performance facade used by

industrial estates in Singapore. Singapore experience a tropical climate condition

all year round, characterized by strong solar irradiance and light wind condition on

the surface level. The model demonstrates good agreement with the overall trend

of the measured surface temperatures throughout a day for two different industrial

buildings. An accurate prediction of the surface temperature will enable an accurate

prediction of thermal comfort metric, such as mean radiant temperature (MRT), and

expected impact of radiative thermal loading for different facade technologies in the

tropical outdoor environment. A full simulation on heat transfer was conducted us-

ing the simplified heat transfer model in a container yard setting. Features of heat

transfer within the street canyon was demonstrated with indication of urban heat

island effect observed during the evening period.

I

Page 4: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Dedication

Dedicating this piece of work to my hardworking Dad and Mum, for always being

supportive and understanding, always contributing in one way or another just to

allow me to have smooth University days.

II

Page 5: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Acknowledgments

I want to thank Dr Koh for accepting me to be his FYP student, giving me this op-

portunity to learn more about computational physics and also improving my coding

skills through my 9 months journey. I also like to thank Dr Lai for his patience in

teaching me the basics of heat transfer and also giving me tips to complete my task,

and also helping out in the some of the coding works. Like to thank my grammar

editors for helping check for grammar mistakes for works that was presented.

Sincerely thank JTC for making the information available to be used in this work.

And also thank Mr Muhammad Shah Al-Faisal Bin Rosley for his measurement data

that was used in this study

III

Page 6: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Publication

1. IPS Poster Award 2019 (Poster 12 - Simplified Surface Temperature Mod-

elling)

2. 2nd author for Journal Paper “Effectively modeling surface thermal load and

evaluating mean radiant temperature in tropical industrial environments”(Po-

Yen Lai, 2019) [submitted]. Assisted in determination of appropriate surface

material used for rooftop and comparison of simulation using the simplified

heat transfer model.

IV

Page 7: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Contents

1 Introduction 1

1.1 Heat Transfer Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Heat Transfer in Built-Environment . . . . . . . . . . . . . . . . . . . 3

1.3 Singapore’s Typical Weather and Urban Environment . . . . . . . . . 4

1.4 Outline of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Simplified Heat Transfer Model 7

2.1 1D Conduction Equation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Radiative Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Solar Radiation Geometry . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Perez Sky Model . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Radiative Heat transfer between Surfaces . . . . . . . . . . . . 11

2.2.4 Sky View Factor . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Longwave radiation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Simplified Convection model . . . . . . . . . . . . . . . . . . . . . . . 14

V

Page 8: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

2.4 1D Time-dependent Heat Balance Model . . . . . . . . . . . . . . . . 15

3 Heat Transfer in Industrial Estates 17

3.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Facade Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Implementation of Simulation . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Horizontal Surface . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Vertical Surfaces Fitting . . . . . . . . . . . . . . . . . . . . . 32

3.4.4 Implementation of Facade technology at TIB . . . . . . . . . . 36

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Heat Transfer in Container Yard 40

4.1 Heat Transfer in the system . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Mean Radiant Temperature . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 3D Temperature Map . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Non-Canyon Facing Walls . . . . . . . . . . . . . . . . . . . . 51

4.4.3 Micro-Climate Condition in Street Canyon . . . . . . . . . . . 53

VI

Page 9: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

4.4.4 Mean Radiant Temperature Calculation . . . . . . . . . . . . 58

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusion 61

Bibliography 65

A Appendix

A.1 View factor Calculation . . . . . . . . . . . . . . . . . . . . . . . . . .

A.2 Script for Container Simulation . . . . . . . . . . . . . . . . . . . . .

VII

Page 10: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Chapter 1

Introduction

Energy presents itself in many different forms, allowing people to harness it to do

useful work. Heat or thermal energy, is a form of thermal energy that we often

experience in our daily lives. Heat transfer describes the rate at which heat is

being transferred from a system with a higher temperature to another system of

lower temperature. Heat can be transferred via the three main mechanisms namely,

Radiation, Convection and Conduction.

1.1 Heat Transfer Mechanisms

Use of radiometry is key in the study of radiative heat transfer in an urban system.

For a radiant flux incident onto the surface, the Irradiance I [W/m2] describes the

radiant flux received by the surface per unit area. Radiative heat transfer is the

main mode of surface heating in urban systems. It consist of three main components:

Solar Shortwave radiation, atmospheric Longwave radiation and emitted Longwave

radiation from urban surfaces. Shortwave radiation is a band of highly radiant

energy in the spectral limits of 250nm to 2500nm, which often presents itself in the

ultraviolet (UV), visible and near-infrared (NIR) region. Longwave radiation consist

of low radiant energy light in the wavelength range of 2,500nm to 50,000nm, which

1

Page 11: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

is also known as thermal radiation emitted by bodies at finite temperature [1].

As Earth’s primary heat source, Earth’s surface and atmospheric temperature is

heavily dependent on the solar energy emitted by the Sun incident on Earth. The

majority of its radiant energy emitted is in the form of shortwave radiation. Solar

shortwave radiation that reaches the Earth’s surface can be classified into direct and

diffused components. Total, or global radiation comprises of both direct and diffused

radiation. Direct solar shortwave radiation that reaches Earth’s surface without

getting scattered or absorbed by gas particulates present in the atmosphere. On the

other hand, diffused shortwave radiation reaches Earth’s surface via scattering upon

interaction with the atmosphere.

Atmospheric longwave radiation has significant contribution in keeping Earth’s tem-

perature stable. A fraction of solar radiant energy incident on Earth is absorbed

by the atmosphere and re-emitted as longwave radiation towards space and Earth’s

surface. The presence of greenhouse gases is responsible in trapping longwave radi-

ation in the atmosphere, which have a estimated dependency on humidity level and

air temperature.

Convective heat transfer occurs when there is a transfer of heat from one body via

the movement of fluids. Convective heat transfer can be classified into two different

components, namely, natural and forced convection. For natural convection, fluid

surrounding a heat source absorbs energy, causing it to undergo thermal expansion,

and therefore rises. The density differences caused by temperature difference result

in buoyancy force causing the surrounding cooler fluid to fall and replace the warmer

fluid. Forced convection occurs when fluid flows across a solid body generated by

an external source.

Conduction is the main mode of heat transfer for bulk materials. This is done

through thermal vibration in the microscopic level, where molecules in bulk material

vibrate about its position colliding with neighbouring molecules. The transfer of

heat energy through conduction is highly dependent on the temperature gradient,

2

Page 12: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

cross-sectional area, the length and physical properties of the material.

1.2 Heat Transfer in Built-Environment

Urbanisation around the world has seen rapid development of buildings for housing,

commercial and industrial purposes. Urban landscape covered with buildings and

roads are often made of materials that absorb and retain heat, which greatly increase

the thermal load accumulated in urban areas. The increased presence and density of

buildings increases the heat trapped within the built environment [2]. Thus, creating

the well-known Urban Heat Island effect. The increased heat exchange within the

urban landscape contributes greatly to the thermal stress, which has an adverse

impact on the public’s health and thermal comfort level.

The study of heat transfer is important in the effort to reduce energy consumption.

Radiative energy absorbed by the facade is transferred into the building through

conduction, resulting in accumulation of thermal load in the building. To cool the

interior environment, usage of air-conditioning will be required to reduce the interior

temperature of the building.

However, heat exchanges within such systems are not easily mapped out as there is

heat interaction within the micro-climate in the system, as well as heat interaction

between the facade and the interior environment of the building. This will require

the use of sophisticated and computationally exhaustive methods such as Compu-

tational Fluid Dynamics (CFD), ray tracing and finite volume method to describe

radiation, convection and conduction occurring in the system. Furthermore, mete-

orological and building data will be required to develop a model that can describe

the heat exchanges accurately. Hence, such approach to develop an accurate model

to describe heat exchange may not be feasible and efficient to implement for further

applications.

3

Page 13: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

1.3 Singapore’s Typical Weather and Urban En-

vironment

Singapore, an island city-state located near the equator, experiences a tropical cli-

mate with high annual mean temperature (27.89oC) and rainfall (2165.9mm). There

are distinct seasonal wet and dry periods, characterized by the monsoon seasons,

with the Northeast monsoon occurring from December and March and the South-

west monsoon from June to September [3]. NE monsoon is characterized with higher

monthly precipitation and surface wind while SW monsoon brings about drier con-

dition with occasional showers/thunderstorms. Owing to the equatorial climate,

Singapore experiences long sunshine hour, with February and March having the

longest sunshine hours, and November and December having the least. The amount

of sunshine hour experienced in an area is heavily dependent on cloud covers. On an

average day, cumulus clouds occupy 3-4 oktas (one okta is equivalent to one eighth

of the sky) in mid day, the amount of solar irradiance incident onto a surface could

vary greatly throughout a day.

With a city-sized space, urban planning has to be carefully done to meet Singapore’s

growing infrastructural and housing needs. This transformed Singapore’s physical

landscape to an ”Urban-scape” filled with high-rise buildings dedicated for various

purposes across the island. Conscientious effort by urban planners has ensured the

presence of flora in the dense urban environment, creating a form of respite for city

dwellers. However, the increase in built-environment that brings along commercial

activities was highlighted to have intensified heat exchanges due to possible contri-

bution of anthropogenic heat into the environment as highlighted in a study of urban

heat island effect on Singapore [4]. Hence, to effectively model heat exchange in the

built environment in Singapore, meteorological, urban geometry and anthropogenic

factors have to be taken into account.

4

Page 14: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

1.4 Outline of this Work

In this work, a simplified heat transfer model was developed to investigate heat

transfer in two different infrastructural settings, namely, industrial estates and a

container yard. The infrastructural settings can be characterized by distance be-

tween adjacent objects, where buildings in industrial estates have a wider separation

as compared to the adjacent containers in a container yard, which present a different

degree of heat interaction within the setting. The model utilizes 1D time-dependent

energy balance equation, Perez-sky model to estimate the diffused sky shortwave

radiation, convective term H calibration, and simplified view-factor model, to sim-

ulate the change in surface temperature. Quick and efficient estimation of surface

temperature was demonstrated through the use of the simplified heat transfer model

for both infrastructural settings.

The model aims to simulate surface temperature of industrial estates in Singapore

based on meteorological and surface temperature measurements of the corresponding

days [5]. A full simulation of surface temperature of a container yard was conducted

based on meteorological data for Typical Meteorological Year (TMY) during sum-

mer solstice (21st June). Through the study of the simplified heat transfer model,

the efficiency of the model allows further studies by engineers and researchers to

conduct virtual performance evaluation of facade technologies at various sites, as

well as human thermal comfort level through the study of Mean Radiant tempera-

ture. However, some simplification works were done to increase the efficiency of the

model. Further studies can be conducted to validate and improve the use of such

simplification works.

5

Page 15: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 1.1: Schematic overview of urban-landscape and heat interaction between

buildings through various heat exchange mechanisms.

6

Page 16: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Chapter 2

Simplified Heat Transfer Model

A simplified heat transfer model needs to be able to determine surface temperatures

for both horizontal and vertical surface orientations. This is due to the differences in

meteorological and surrounding surface elements experienced by surfaces of the two

configurations. For a built-environment, horizontal surface (ground) and vertical

surface (wall) are usually made using a slab of material with considerable thickness.

Hence, this sets the starting point in the development of a simplified heat transfer

model with the use of one dimensional conduction equation.

2.1 1D Conduction Equation

Heat balance equation of a solid material can be described with the use of conser-

vation of energy and Fourier’s law which describes the rate of conduction flow in

relation to the temperature gradient in the material. For a plane wall on the outer

facade, heat conduction through the material can be described as one dimensional

as heat propagation is dominant in one direction [6]. The transient one-dimensional

heat conduction equation in a plane wall is given as such:

κ∂2T

∂x2+ Q = Cpρd

∂T

∂t(2.1)

7

Page 17: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

where κ is the thermal conductivity of the material, Q is the rate of heat generation

on one end of the slab, Cp is the specific heat capacity of the material, ρ is the mass

density and d is the thickness of the slab. With a steady heat diffusion into the wall,

equation 2.1 can be linearized:

κ

d(Tindoor − Tsurf) + Q = Cpρd

∂Tsurf

∂t(2.2)

2.2 Radiative Heat Transfer

In determining heat transfer in any environment, surface heating by solar radiation

must be accurately described because Singapore experiences long sunshine hours

throughout the year. Global radiation received by horizontal and vertical surfaces

follows a certain set of geometrical relations with the sun and the sky. The use of

solar radiation geometric angles is needed to calculate the amount of solar radia-

tion incident on any given surface with its corresponding orientation, which can be

expressed by:

Itotal = (1− α)Idirect cos θ + IdiffusedRd (2.3)

where θ is the angle between the normal of the surface and the angle of incidence of

the direct sun rays, α is surface albedo and Rd is the diffused transposition factor

for diffused sky component, which will be discussed later.

2.2.1 Solar Radiation Geometry

For horizontal surface (β = 0o), angle θ correspond to the zenith angle θz. For a

vertical surface (β = 90o), it requires knowledge of the location’s latitude angle φ,

the Sun’s declination angle δ of the day, surface azimuth angle γ and also the hour

angle w at the particular timing [7].

Sun’s declination δ follows a sinusoidal pattern throughout a year, which can be

8

Page 18: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 2.1: Solar geometric angles between the sun and the surface of different tilt

angles

expressed in a simple relationship:

δ(o) = 23.45 sin[(360/365)(284 + n)] (2.4)

where n is the day of the year. Surface azimuth angle γ is the angle on the horizontal

plane between the line due south and the projection of the surface’s normal onto the

horizontal plane. γ vary from -180o to 180o. γ is considered positive if the surface

normal is in the southeast direction, and negative in the southwest direction. Lastly,

the hour angle w is the angle Earth must turn to bring the Meridian of a point

directly in line with the sun’s rays. w varies from -180o to 180o, where it is positive

in the morning and negative in the afternoon with 0o occurring during solar noon.

For a vertical plane surface, cos θ in equation 2.3 becomes:

cos θ = sinφ cos δ cos γ cosw − cosφ sin δ cos γ + cos δ sin γ sinw (2.5)

9

Page 19: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

2.2.2 Perez Sky Model

Diffused shortwave radiation plays an important role in conditions where direct solar

shortwave radiation is absence due to possible cloud cover or shadowing by surround-

ing buildings. To describe Singapore’s diffused shortwave component, the Perez Sky

model was introduced. The Perez Sky model [8] is a mathematical model that de-

scribes the relative sky luminance distribution of the sky hemisphere. Perez sky

model separates diffused sky irradiance into three different zones, namely isotropic

sky zone, circumsolar zone and horizon band zone, giving a realistic anistropic illu-

minance of the diffused sky component.

Figure 2.2: Schematic description of hemispherical sky illuminance distribution by

Perez sky model

The diffuse transposition factor Rd that describes the amount of diffused irradiance

on a tilted surface can be expressed with:

Rd =[1

2(1− F1)(1 + cos β) + F1

a

b+ F2 sin β

](2.6)

where F1 and F2 are circumsolar and horizon brightness coefficients and β is the tilt

angle between the surface and horizontal. Coefficients a and b are functions of the

incidence angle of the Sun. Determination of the coefficients is stated in Appendix

A.

10

Page 20: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

2.2.3 Radiative Heat transfer between Surfaces

In urban environment, radiative heat transfer between surfaces comprise of two main

components, namely, longwave radiation transfer and shortwave reflection.

Longwave radiation emitted by surfaces can be described by the fourth power of

its absolute temperature expressed with Stefan-Boltzmann Law weighted by the

material’s emissivity for a greybody.

Q = εσT 4s (2.7)

Q: Heat transferred per unit time [W/m2]

ε: Emissivity of material [0− 1]

σ: Stefan-Boltzmann Constant 5.67×10−8 [Wm−2K−4]

A: Area of Surface [m2]

Ts: Temperature of surface [K]

To account for radiative heat transfer between surfaces, view factor is needed for

radiative heat transfer between surfaces present in the environment. View factor Fij

is the fraction of energy exiting diffused surface i intercepted by surface j (surface

of interest), which can be used to describe the amount of longwave radiation and

shortwave reflection that is intercepted by another body. The emitting surface must

be Lambertian to describe a perfect diffuser for emission and reflection.

Using the basic definition of view factor, the mathematical expression relating two

infinitesimal area dA can be given as:

F12 =1

A1

∫A1

(∫A2

cos β1 cos β2

πr212

dA2

)dA1 (2.8)

11

Page 21: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 2.3: View-factor definition for infinitesimal area

Hence, total radiative heat transfer from surrounding surfaces to a targeted surface

can be given as follows:

Q =n∑

i=1

(αiIdirect,i + FijεiσT4i ) (2.9)

where n is the total number of surrounding surfaces, Idirect,i, αi and εi is the direct

shortwave irradiance, albedo and emissivity of the corresponding surfaces.

2.2.4 Sky View Factor

Amount of atmospheric Longwave radiation received by surfaces in built-environment

depends greatly on the fraction of sky visible to the surface (e.g building facade, roof

and ground), otherwise known as sky view factor (SVF). This would correspond to

the ratio of radiation received by the planar surface to the radiation emitted by the

entire hemispheric sky [9], which holds a dimensionless value between zero and one,

with zero being a completely obstructed sky view and one representing a full unob-

structed sky view. This would mean that for a system within a built-environment,

radiative heat exchange encompasses both the sky and surfaces present within the

system.

Similar to the definition of view-factor, Sky view-factor is defined as the fraction

of radiant flux leaving a surface element dA intercepted by a hemispherical surface

12

Page 22: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

element that represents the visible sky. For a surface element with finite wall sur-

rounding it, the view factor of the wall by the surface element is calculated with the

wall projected onto the hemisphere. However, in the simplified heat balance model,

the sky view-factor utilizes only the non-projected view-factor of the wall given in

the previous section. Hence, the sky view-factor for a horizontal surface is given as

such:

Ψsky,i = 1−n∑

j=0

Fi→j (2.10)

where n is the total number of walls surrounding the surface element. For a vertical

wall, the maximum sky view-factor is given to be 0.5 since its able to observe half

of the hemisphere. Using similar treatment, the sky view-factor for a vertical wall

is given to be:

Ψsky,i = 0.5−n∑

j=0

Fi→j (2.11)

2.2.5 Longwave radiation

Atmospheric downward longwave radiation Isky longwave varies greatly with different

amount of greenhouse gases present in the atmosphere. Pyrgeometer is used to mea-

sure Isky longwave on Earth’s surface, which is expensive and sensitive as compared

to pyranometer that is used to measure shortwave irradiance. Various models have

been developed to estimate the amount of Isky longwave where there is no pyrgeome-

ter present [10], where such models make use of local surface observation, such as

humidity level.

For longwave radiation incident onto a surface, the amount of radiant energy ab-

sorbed by the surface can be described to by Kirchhoff’s law [6], which states that

the emissivity of the object in thermal equilibrium with its surrounding is equal

to the absorptivity of the object. Hence, the amount of radiative heat transferred

through longwave radiation is given to be:

13

Page 23: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Q = εj(ΨskyISky Longwave +n∑

i=1

εiFijT4i ) (2.12)

where εj is the emissivity of the receiving surface.

2.3 Simplified Convection model

Convective heat exchange plays an important role in affecting the surface tempera-

ture of a slab of material. Heat transfer through convection can be described using

Newton’s law of cooling given to be:

Q = HdT (2.13)

Q: Heat transferred per unit time [W/m2]

H: Convective heat transfer coefficient [Wm−2K−1]

A: Area of Surface [m2]

dT: Temperature difference between surface and fluid [K]

Convective term H can be separated in 2 different forms, namely, the natural con-

vection Hnatural and forced convection Hforced. The local Hforced coefficient for a flat

plane with a known wind velocity profile can be determined using the Blasius solu-

tion 0.332Re0.5Pr1/3Kair/L. This can be used when the airflow across the surface

has a low wind velocity (< 6m/s). A mixture of forced and natural convection

happening on a flat plane give rise to a modified Blasius solution [11]. The overall

convective term H is given to be:

Hconvection = 5.6︸︷︷︸Natural Convection

+ 0.332Re0.5Pr1/3κair/L︸ ︷︷ ︸Forced Convection

(2.14)

where κair = 0.027 W/(m K) with Prandtl number Pr is given to be 0.7 and char-

acteristic length L =Vbody/Asurface

14

Page 24: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Reynold number Re is:

Re =vL

µ(2.15)

where v is the local wind velocity, µ is the kinematic viscosity of air given to be

1.608×10−5m2s−1 at 30oC.

Singapore experiences low surface wind speed throughout the year (1.3 − 2.8 m/s)

with occasional gust occurring at approximately 20 m/s. The simplified convective

model is applicable to Singapore’s climate due to low surface windspeed and strong

solar irradiance. The low windspeed corresponds to a small convective coefficient

H, in presence of strong solar irradiance, the overall heat balance equation will

be dominated by net absorption of solar radiant energy, making heat transfer via

convection to be small. The model forms an approximate study for convective heat

transfer occurring on surfaces in absence of information that describes the local

windspeed at any particular moment. Furthermore, the model provides a non-

negligible convection on the surface to describe the large difference in surface and

air temperature during mid day where there is an absence of wind.

2.4 1D Time-dependent Heat Balance Model

In this heat balance model, 1D time-dependent heat balance equation and simplified

convective model was used to simplify and account for the lack in information to

describe convective coefficient H accurately. However, efforts were placed in provid-

ing an accurate description of heat transfer through radiation. Hence, the overall

1D time-dependent heat balance equation is given as follows:

CpρddTsurfdt

= Itotal︸︷︷︸Total

Radiation

Absorbed

− εσT 4surf︸ ︷︷ ︸

Thermal Loss

through

Radiation

d

(TIndoor − Tsurf

)︸ ︷︷ ︸Thermal

Conduction

into Body

+H(Tair − Tsurf

)︸ ︷︷ ︸Convective

term

(2.16)

15

Page 25: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Itotal = ξIDirect︸ ︷︷ ︸(1-α)Isun cos θ

+ IDiffused sky︸ ︷︷ ︸(1-α)IDiffusedRd

+ΨskyεjISky Longwave+n∑

i=1

( IReflection︸ ︷︷ ︸Fij αiIdirect,i

+ IEmitted︸ ︷︷ ︸εjFij εiσT

4i

)

(2.17)

where ξ is a boolean value value that provides information on the presence (1) or

absence (0) of direct solar irradiance on the surface of interest due to shadowing

effect of surrounding buildings or the sight of sun by vertical surface at different

timing during the day, α and ε is the albedo and emissivity of the surface.

The 1D time-dependent heat balance model sets the basis in providing a computa-

tionally efficient method to understand the workings of heat transfer present in a

complex environment when considering many-body configuration in built environ-

ments.

16

Page 26: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Chapter 3

Heat Transfer in Industrial Estates

The simplified heat transfer model that was developed aims to provide a quick and

efficient method to simulate surface temperature in the environment with known

measurements of meteorological and environmental data in the system. In this study,

the model aims to simulate surface temperature of industrial estates in Singapore

using measurement data [5].

3.1 Study Area

Singapore, a tropical island state located between 1o09’N and 1o09’N, 103o36’E and

104o25’N, experiences light wind condition throughout the year (< 2.5 m/s) except

during the Northeast Monsoon season with mean speeds reaching up to 10m/s.

Singapore experience long sunshine hours throughout the year, receiving up to an

average of 1,580 kWh/m2 of solar irradiance annually.

In the aforementioned study, two industrial estates in Singapore were chosen and

surveyed. The chosen industrial estates have distinct characteristics based on the

designs and construction materials used by the buildings during the period of con-

struction. The buildings that were surveyed at their respective sites can be classi-

17

Page 27: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

fied as either Traditional Industrial Building (TIB) and Modern Industrial Building

(MIB). TIBs were built in the 1980s, constructed using building materials and ar-

chitecture designs common in that period. The MIBs surveyed were constructed in

early 2010, adopting the use of green building designs to achieve energy savings.

Field measurements were conducted for TIB on 6th February 2018 and MIBs on

20th February 2018 from 0700hr to 2300hr local time. Measurements of local solar

irradiance, ambient air temperature and humidity were collected on the rooftops at

both industrial estates. Thermal imagers were used to measure surface temperature

of the rooftop, the facade around the building of designated walls, as well as the

peripheral elements.

(a) Industrial estate A

(b) Industrial estate B

Figure 3.1: Schematic view of the surveyed industrial buildings with the main pe-

ripheral elements (e.g Trees, roads and slope) surrounding the buildings. The build-

ing shown in industrial estate A is a form of TIB, where for estate B, MIBs are

presented.

18

Page 28: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

For the TIB in industrial estate A, it is located in an urban setting where there

are other buildings present. As for industrial estate B, it is in a semi-isolated estate

where there are no high rise buildings in close proximity (100m radius) to the estate.

Hence, objects in immediate sight of the building’s facade were considered to account

for possible shading, shortwave reflection and thermal heat transfer onto the surface

of interest.

Field measurements of the local humidity and air temperature were used to model

the atmospheric longwave radiation for the day based on the Kruk model [12].

As such, the meteorological measurements (Isun, Idiffused and ISky Longwave) collected

throughout the day are averaged hourly, which will be utilised in the simplified heat

transfer model to calculate the hourly surface temperature.

19

Page 29: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(a) Time-averaged data for industrial Estate A

(b) Time-averaged data for industrial Estate B

Figure 3.2: Irradiance data collected together with the surface temperature and

ambient air temperature on the rooftop of industrial estate A and B

From the meteorological data collected, the day of measurement for industrial estate

B was a warmer day as compared to estate A due to higher solar irradiance and air

temperature measured. Data collected on the rooftop will be utilized in the simula-

tion of the vertical surfaces on the outer facade. For temperature measurements on

the building’s facade, the measured points are located several meters off the ground,

with the points chosen on different facades of the buildings.

20

Page 30: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(a) Top view of Industrial Estate A (b) Top view of Industrial Estate B

Figure 3.3: The marked positions on the building’s facade are the points where

surface temperature was measured.

Industrial Estate A Industrial Estate B

Day of Measurement 6th Feb 2018 Day of Measurement 21st Feb 2018

δ = -16.1o δ = -11.6o

φ = 1.35o φ = 1.35o

γA = 18.7o, γB = -73.5o γA ≈ -90o, γB ≈ 0o

γC = -161o,γD = 107.5o γC = 7o

Table 3.1: Solar geometry angles for the day of measurement and the respective

facades. Determination of γ was carried out with the use of trigonometry and

“Google maps”

21

Page 31: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(a) Industrial Estate A (b) Industrial Estate B

Figure 3.4: Sample surface being measured for both locations. Industrial estate A

makes use of a single colour wall whereas industrial estate B makes use of different

colored panels as its facade

3.2 Facade Technology

For both industrial estates, it can be observed that the TIB and MIBs adopt different

architectural designs and material selections for their respective facades. For TIB,

the outer facade is formed by covering the inner building structure with concrete

plaster. On the other hand, a high performance facade is used in building one for

industrial estate B. It is made of aluminum composite panels with perforated holes,

with an air gap separating the inner wall and the panels; thus providing a form

of natural ventilation. The composite aluminum panels are made by sandwiching

the polyethylene core between aluminum sheets [13]. For building two, aluminum

composite panels are used as a form of surface cladding that has a smaller air gap

and an absence of perforated holes.

22

Page 32: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 3.5: Different forms of facade used, with conventional concrete plaster (left)

used for TIB, high performance facade (middle) and surface cladding (right) used

in MIBs.

Concrete Plaster High Performance

Facade

Surface

Cladding

Material Concrete Aluminum Aluminum

Conductivity (W/mK

)

0.71 180 180

Emissivity 0.9 0.85 0.85

Heat capacity (J/kg-

K)

880 900 900

Density (Kg/m3) 1790 2800 2800

Thickness (m) 0.0949 0.003 0.003

Table 3.2: Thermal properties of the facade materials used for TIB and MIBs [14,

15].

3.3 Implementation of Simulation

Scripting of the simulation was done on the ”Matlab” software with the use of

its in-built Ordinary Differential Equation (ODE) solver to determine the time-

evolution of the surface temperature. The ODE solver make use of fourth order

Runge Kutta, where each time step was set at 1 second, and runs 3600 steps perhour.

23

Page 33: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

The calculation was initialized based on the surface temperature measured in the

morning with boundary value of Tindoor set based on the known indoor condition of

the building.

Simple surface configuration were used to provide a simple representation for the pe-

ripheral elements surrounding the buildings. The surfaces are treated to be opaque,

isotherm and diffused to fulfill the necessary conditions needed to make use of view-

factor in determining radiative heat transfer between different surfaces. View-factor

calculation can be done by solving equation 2.8 and obtaining the expression in the

Cartesian coordinate system. However, determining the analytical solution is highly

non-trivial. As such, Monte Carlo integration [16] was used to compute view-factor

numerically, and thus equation 2.8 can be re-expressed as such:

F12 =A2

N

N∑i=1

cos β1 cos β2

πr212

∣∣∣i

(3.1)

For both estates, the buildings are surrounded by a driveway as well as trees provid-

ing interlocking canopy. To model these peripheral elements, a horizontal rectangu-

lar surface adjacent to a vertical rectangular surface was used to model a driveway.

For the interlocking canopy, a parallel rectangular surface was used. Inclusion of

such a view factor model takes into account the radiative heat energy being trans-

ferred onto the wall, thus providing a more accurate representation of heat exchange

in such infrastructural settings.

Figure 3.6: Surface configuration to describe the interface between the building’s

facade and the peripheral elements.

Surface thermal properties presented in table 3.2 were included in the heat balance

24

Page 34: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

equation for the respective facades of TIB and MIBs. As both high performance

facade and surface cladding make use of thin aluminum panels, conductivity of

aluminum is assumed to be zero in the implementation. Its assumed that both the

outer and inner surface temperature equilibrate in a short time-span due to the high

conductivity and small thickness of the panels used. Hence, the conduction term in

the heat balance equation will be ignored.

Statistical criteria such as root mean square error (RMSE) and mean absolute error

(MAE) are used to compare surface temperature estimated by the simplified heat

transfer model and the measurement data in the calibration exercise to determine

the convective coefficient H throughout the whole day. It also sets a gauge on the

performance of the model compared to the measured surface data.

RMSE =

√√√√ 1

n

n∑i=1

(Tsim,i − Tmea,i)2 (3.2)

MAE =1

n

n∑i=1

∣∣∣Tsim,i − Tmea,i

∣∣∣ (3.3)

where Tsim,i represent the estimated surface temperature and Tmea,i is the measured

surface temperature in the ith hour

25

Page 35: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

3.4 Results

Using the simplified heat transfer model that was developed, validation of model was

carried out in two phases, namely, calibration of convective coefficient H term for

horizontal surface (rooftop) and vertical surface fitting on the industrial buildings

outer facade.

3.4.1 Parametric Study

A parametric study was conducted on the Simplified heat Balance Equation (time-

dependent and steady-state) to gain a deeper insight on possible simplification work

that can be done.

CpρddTsurfdt

= Itotal − εσT 4surf +

κ

d

(TIndoor − Tsurf

)+H

(Tair − Tsurf

)A steady-state version of heat balance equation can be obtained by setting the

time-evolution term to zero:

0 = Itotal − εσT 4surf +

κ

d

(TIndoor − Tsurf

)+H

(Tair − Tsurf

)(3.4)

To determine hourly change in Tsurf, root-finding scheme can be employed to solve

the 4th degree polynomial by having an hourly update on the heat generation terms.

The parametric study was done through varying of key parameters and comparing

the results between time-dependent and steady-state version of the heat balance

equation. Data from Typical Meteorological Year (TMY) for 21st June 2018 (Sum-

mer Solstice) was used to conduct the parametric study. In this study, thickness of

material and convective coefficient H was varied because such data are not easily

determined by field measurements.

26

Page 36: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 3.7: 3D surface plot of the change in surface temperature by varying both

thickness while H = 0 W/m2

By varying thickness d, result has shown that steady-state heat balance equation

follows a different trend as compared to its time-dependent counterpart. Steady-

state equation generates surface temperature that increases almost linearly with

increasing surface thickness. On the other hand, surface temperature generated

by time-dependent solver is observed to follow a non-linear trend with increasing

thickness with a maximum turning point at d = 0.03m. For both solvers, they fol-

lowed a similar trend before deviating at the maximum point of the time-dependent

solver. This can be attributed to thickness d attached to the differential term of

the time-dependent solver. Hence, as d → 0, the time-dependent equation can be

approximated to form equation 3.4.

27

Page 37: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 3.8: 3D surface plot of the change in surface temperature by varying both

thickness and H (0-5W/m2)

For the change in convective term H, surface temperature generated by steady-

state solver has shown to decrease significantly with increasing H. However, surface

temperature obtained through time-dependent solver did not show drastic variation

in surface temperature. Hence, surface cooling effect caused by convection greatly

affects steady state equation.

Parametric study conducted on the heat balance equation has shown that further

simplification can be achieved through the use of steady-state equation when the

surface of interest has a small thickness d. Use of steady-state equation in the imple-

mentation presents a quicker and efficient method to determine surface temperature

since only root finding scheme is required as compared to the time-dependent equa-

tion, where more time is needed for the propagation of time-step. Further validation

of steady-state equation needs to be carried out using field measurements to ensure

that it’s able to describe heat exchanges within a system.

3.4.2 Horizontal Surface

As part of the simplified heat transfer model, calibration of convective term H was

done for both industrial estates on the rooftop based on the measurement collected

28

Page 38: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

for both sites. This was done in replacement of a full CFD simulation which is

needed to determine a local H value during the period of measurement. With the

calibrated convective coefficient, the values will be used for vertical surface fitting as

it is assumed that the convective coefficient for possible downdraft of wind caused

by the building is the same for vertical surface.

Figure 3.9: Downdraft of wind caused by man-made structure due to prevailing

wind.

Calibration was done based on hourly update of varied H term and computing

the surface based on the given meteorological measurements. The H values were

determined by comparing the Root-Mean-Square Error (RMSE) between simulated

surface temperature and the measured surface temperature, choosing the H value

that gives the smallest RMSE. Using the H results obtained from the fitting, it will

be used in the steady-state solver for validation. Such calibration procedure can

be used to determine the most probable surface thickness that may result in the

overall change in temperature throughout the day as such information is not easily

available.

Furthermore, exact composition of concrete used for layering of the rooftop cannot be

easily known due to different mixture composition used in the construction process.

29

Page 39: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

However, it was known that the rooftop possess waterproofing feature that prevents

leakage of water from the rooftop into the building. Hence, concrete with known

waterproofing feature [15], SF-20% and SF-30% were surveyed to determine the

most probable type of concrete that was used on the rooftop. SF-20% and SF-30%

are known to contain silica fumes in replacement of cement in 20% and 30% weight,

allowing the concrete to have waterproofing feature.

Figure 3.10: Fitted rooftop temperature for Estate A obtained using time-dependent

and steady-state equation with its calibrated H values throughout the day using

material SF-20%

Figure 3.11: Fitted rooftop temperature for Estate A obtained using time-dependent

and steady-state equation with its calibrated H values throughout the day using a

different material SF-30%

For SF-20%, the surface temperature obtained using time-dependent and steady-

30

Page 40: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

state equation was found to have RSME of 4.37◦C and 5.92◦C respectively. As

for SF-30%, the RMSE obtained for whole-day fitting was found to be 4.12◦C and

5.92◦C for time-dependent and steady-state equation respectively. The calibrated H

values throughout the day can be observed to fluctuate greatly in the early morning

and evening period, reaching a maximum of 30 W/m2. Using the modified Blasius

solution, the wind speed was found to be approximately 23 m/s.

Figure 3.12: Fitted rooftop temperature for Estate B obtained using time-dependent

and steady-state equation with its calibrated H values throughout the day using SF-

30% concrete

Applying the same procedure at estate B using SF-30% concrete, RMSE obtained

using time-dependent and steady-state equation was found at 1.81◦C and 7.51◦C

respectively. The maximum convective coefficient H was given to be 30 W/m2 in

the evening period.

Through the calibration of H values on the rooftop based on meteorological data

collected for both days, it can be observed that high H values were used for short

period (1 hour timescale), which may correspond to possible presence of high wind

speed experienced during the days of measurement.

In the validation exercise for steady-state equation, it can be seen that the result

obtained for Estate A has good agreement with the measured surface temperature

between 0600hr to 1300hr. In comparison, Estate B has some slight deviations

31

Page 41: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

from the measured surface temperature, with a higher RSME value calculated for

the whole-day fitting. Results based from steady-state equation was found to vary

significantly with the change in H values for that particular hour. This can be

observed from the sharp drop or suppression in the rise of surface temperature. As

steady-state equation churns out result based on the given hourly-averaged data

input, use of steady-state equation may not provide a realistic representation in the

temporal variation in surface temperature throughout the whole day as compared

to the time-dependent form. Hence, use of steady-state heat balance equation will

be omitted in the implementation of the simplified heat transfer model for vertical

surfaces.

Use of time-dependent heat balance equation has shown to be in good agreement for

whole-day fitting at Estate B. As for Estate A, time-dependent equation produces

results which are in good agreement with measured data from 1300hr to 2200hr.

This could be due to higher irradiance data collected throughout the day for Estate

B and in the afternoon period for Estate A. Hence, it is noteworthy to highlight

that the time-dependent equation has a better performance when there is strong

solar irradiance and light wind condition during the afternoon period.

3.4.3 Vertical Surfaces Fitting

In the calculation of vertical surfaces temperature, H values obtained from the cali-

bration phase will be used in the time-dependent equation to determine the temper-

ature of the building’s facade. Surface temperature and corresponding view factor

for the peripheral elements are included to account for the heat that is being transfer

onto the facades.

32

Page 42: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 3.13: Simulated surface temperature of the respective facade of TIB at Es-

tate A using the simplified heat transfer model. The direct shortwave irradiance

measured on the rooftop is plotted to set as a reference for the change in surface

temperature on the different facades caused by direct solar radiation throughout the

day.

Site A Site B Site C Site D

RMSE (◦C) 1.529 2.076 1.255 0.932

MAE (◦C) 1.125 1.952 1.192 0.782

Table 3.3: RMSE and MAE calculated for different sites at industrial estate A.

From the calculated RMSE and MAE, surface temperature determined using the

simplified heat transfer model on the facades of TIB at industrial estate A has

shown to be in good agreement with the measured surface temperature throughout

the day. For site B, the simulated surface temperature has shown to have a negative

33

Page 43: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

bias as compared to the measured data. This can be attributed to lack of physical

data of the surface temperature of the grass slope opposite site B which result in the

general “under-calculation” by the model. From the simulated surface temperature,

slow rate of heat dissipation was being observed when there’s an absence of direct

solar irradiance for East-facing wall at site A and D in the afternoon. This could be

due to the insulating properties of asphalt as well as concrete , which causes a slow

rate of heat dissipation in the system.

Figure 3.14: Simulated surface temperature of the respective facade of MIBs at

Estate B. Albedo values were varied to produce the optimized simulated surface

temperature.

Site A Site B Site C

RMSE (◦C) 3.097 2.372 2.5543

MAE (◦C) 2.240 1.795 1.813

Table 3.4: RMSE and MAE calculated for different sites at industrial estate B

34

Page 44: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

As aluminum panels were used as the facade of the building, simulated surface

temperature obtained has shown a general higher surface temperature as compared

to the concrete facade of TIB. Result obtained from the simplified heat exchange

model has shown good agreement with the measured data for site B and C between

1000hr to 2200hr. For site A, the simulated surface temperature has shown good

agreement for the whole day.

By comparing the south wall of building one and two, the simulated results have

shown to produce a similar trend. In the implementation of the model, even though

building one and two make use of different facade technology, aluminum was the

main material used on the outer facade. Deployment of facade technology that

helps to reduce the thermal load of the building depends heavily on the material

used for the facade as the rate of heating or cooling determines the amount of

radiation transferred from the facade into the building.

35

Page 45: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

3.4.4 Implementation of Facade technology at TIB

With the simplified heat transfer model being calibrated for TIB at Industrial Estate

A, different facade technology can be implemented to learn about its performance

if retrofitting work are to done on TIBs. In this work, convective coefficient was set

to the minimum (H = 5.6 W/m2) to find out the change in surface temperature for

the worst case scenario where there is an absence of wind throughout the whole day.

(a) Site A

(b) Site B

36

Page 46: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(c) Site D

Figure 3.15: Simulated surface temperature of the facade technology plotted to-

gether with the measured surface temperature of the concrete facade at different

locations of the TIB.

Due to the high conductivity of aluminum, high surface temperature (> 55 ◦C) can

be observed from the simulation at site A and D. The high rate of heat dissipation

observed was due to absence of direct solar irradiance experienced by the East-

facing facades in the early afternoon. High surface temperature observed in the

afternoon can potentially increase the amount of heat absorption by the building,

which reduces the ability of the facade technology in reducing the thermal load of

the building. However, it can be observed that the simulated surfaces are being

cooled to a temperature lower than the measured concrete surface at night, with the

simulated surface temperature reaching approximately 25◦C by 2200hr. Due to high

heat dissipation, possible reduction in urban heat island effect could be observed if

TIBs are retrofitted with such facade technology. The heat capacity of the facade

plays a contributing factor [17] as the ability of the facade to trap heat is limited

by the thickness of the panels. With a quicker rate of cooling, this could potentially

reduce the amount of heat trapped in an urban environment.

Using a calibrated simplified heat transfer model, it could present as a useful tool

for engineers and architects to have a quick virtual performance evaluation of facade

technology that are considered for retrofitting work on TIB. Through the use of the

37

Page 47: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

simplified heat transfer model, further studies on human thermal comfort level along

the perimeters of the building can be conducted by determining the mean radiant

temperature once the surface temperature of the facades can be estimated.

3.5 Discussion

The simplified heat transfer model has demonstrated its ability to estimate surface

temperature in a quick and efficient manner. However, certain results have shown

to deviate from the measured surface temperature. In figure 3.10 and 3.11, results

obtained using the time-dependent heat balance equation have shown to deviate from

the measured surface temperature from 0700hr to 1200hr. This can be attributed

to a few factors, namely, the exact concrete composition used for the layering of the

roof top and over-measurement of surface temperature by the thermal imager.

For TIBs, exact concrete’s thermal properties may not be available in literature due

to the difference in mixture composition that was used during the construction phase

of the building. Even though there were prior knowledge about the roof’s water-

proofing feature, this does not grant exact knowledge on the class of concrete that

was used and its corresponding thermal properties. Secondly, there may be uncer-

tainty in the measurement of surface temperature using the thermal imager, where

it may not be measuring the actual surface temperature due to possible reflected

solar irradiance into the thermal imager. As a result, the measured data may not be

the “true” representation of the surface temperature. Hence, it is important to note

that measurement of surface temperature using thermal imager has to be in absence

of direct solar irradiance in order to determine the actual surface temperature.

Next, the calibrated H coefficient obtained for the rooftop may not be representative

for all the facades of the building due to the difference in the direction of the incoming

wind incident to the building. This can be observed in figure 3.14 that shows a drop

in the simulated surface temperature for site A at 1500hr, where the measured

38

Page 48: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

surface temperature continued to increase. Further study using CFD simulation

and compare the calibrated H coefficient to find the criterion in its usage.

39

Page 49: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Chapter 4

Heat Transfer in Container Yard

The simplified heat transfer model that was developed has shown to provide a quick

and efficient method to predict surface temperature using meteorological and surface

temperature data. The model will be extended to simulate surface temperature in

a container yard using TMY data between 0100hr to 2300hr for 21st June (summer

solstice).

Dry containers are manufactured using aluminum and steel, with international rec-

ognized dimensions designed to carry dry goods over long distances through sea

freight. In this simulation, surface temperature in the container yard will be pre-

dicted using the heat simplified heat transfer model. The containers are made of

aluminum wall of thickness d = 3cm, located on asphalt ground thickness d = 10cm.

The containers that are stacked together can be assumed to form a giant container

having a single volume with its dimension given to be 31.34×318.54×18.2m, sepa-

rated by 10.2m apart from one another. The system can be treated to be isolated,

where there are no other buildings or objects present, hence ignoring possible inter-

ference by surrounding buildings.

40

Page 50: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 4.1: Schematic view of the container stacks

Figure 4.2: Dimensions of the container stacks

TMY data for summer solstice in Singapore was used in the full heat transfer simula-

tion of container yard. The total shortwave radiation received is heavily dominated

by diffused shortwave component as compared to direct component. Downward

longwave radiation is approximately stable throughout the day, ranging between

406W/m2 to 440W/m2.

41

Page 51: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 4.3: TMY data for 21st June (summer solstice) as meteorological data input

in the simulation.

To account for the temperature change on the surface of the container stacks, this

involves coupling of air temperature in the container, inner surface and outer surface

temperature. The governing heat balance equations will be modified as follows:

Cp,iρidi2

dTout,idt

= (1−αi)QS↓+εiQL↓−εiσT 4out,i+

λidi

(Tin,i−Tout,i

)+Hout

(Tair,out−Tout,i

)(4.1)

Cp,iρidi2

dTair,indt

=λidi

(Tout,i − Tin,i

)+Hin

(Tair,in − Tin,i

)(4.2)

Cp,airρairVindTair,indt

=∑i

HinAi

(Tin,i − Tair,in

)(4.3)

where Tin/out,i denotes the inner and outer surface temperature of surface i, Tair,in/out

denotes the air temperature inside/outside the container, Hin/out is the convective

coefficient inside/outside of the container, Vair is the volume of the container and

Ai is the area of the ith surface area.

42

Page 52: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

In the model, it is assumed that there is negligible radiative heat transfer within the

container as inner surfaces have almost similar surface temperature throughout the

whole day, where the net gain in radiative heat transfer by the inner surface is equal

to the rate of heat loss through radiation. Hence, convection is the only mechanism

of thermal heat transfer present within the containers. To account for the “no wind”

condition (worst case scenario), Hin/out wass set at 5.6 W/m2, using the minimum

value given in the simplified convective model, where natural convection dominates

in the system.

4.1 Heat Transfer in the system

To properly account for the shading effect caused by the container stack on the

adjacent container stacks and the ground, the hourly height and length of shadow

can be calculated using trigonometry.

(a) Shadow on adjacent container (b) Shadow on ground

Figure 4.4: Cross-sectional view of the container stacks with its corresponding panel

length. Shadow formed on the container and ground during different period of the

day forms the corresponding panels for surface temperature calculation.

43

Page 53: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

As the model uses 1D time-dependent heat balance equation, the faces in between

the container stacks are segmented according to the height of shadow formed on the

face, similarly for the ground, where they form panels along the face of the container

and ground. For example, panel one gets heated up by direct solar irradiance at

0700hr where as panel four gets heated up at 1000hr. In this simplified model, its

assumed that there will not be any conduction occurring between the panels as this

will require the use of 2D time-dependent heat balance equation which increases the

computational complexity.

To account the full heat transfer (shortwave reflection and surface longwave) between

the panels in the street canyon, angular factor was used instead of view factor due

to geometric symmetry of the container stacks. To make use of angular factor, the

panels have to be isothermal, and the emitting component will be midpoint of the

panels. After accounting angular factors for all panels, its corresponding sky view

factor can be determined.

Figure 4.5: Angle factor shown for between paneli and panelj

Fji =θ

180◦(4.4)

44

Page 54: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

4.2 Numerical Method

In this extended simplfied heat transfer model, forward euler method was used

in the prediction of the Tout/in as well as Tair,in. Each time step to update the

temperature is five seconds, where the solver will iterate throughout an hour. TMY

data Idirect, Idiffused and Tair,out will be updated hourly to compute the change in

surface temperatures throughout the hour. The initial temperature of the system

Tout/in as well as Tair,in, Tground will be set to the air temperature at 0100hr in the

TMY data. The boundary condition of this system will be the inner temperature of

the asphalt ground, where it will be set to be 298K throughout the day.

4.3 Mean Radiant Temperature

Mean Radiant Temperature (Tmrt) is one key matrix component in determining

human thermal comfort in outdoor urban environment. Tmrt is defined as “Uniform

temperature of an imaginary enclosure in which radiant heat transfer from the body

equals the radiant heat transfer in the actual non-uniform enclosure” [18]. Tmrt can

be evaluated by summing up the shortwave and longwave radiation fluxes, which

includes direct and reflected shortwave radiation that a human is exposed to. This

longwave radiation from the sky as well as the surrounding surfaces. Hence, Tmrt

can be expressed as follows :

Tmrt = 4

√√√√ 1

σεp(αpFsol→pIsol + Fsky→pIlongwave +

n∑i=1

εiFi→pσT 4i )− 273.15 (4.5)

σ: Stephan-Boltzmann Constant (5.67−8 W/m2K4)

αp: Absorption coefficient of shortwave radiation for a person

Fsol→p: View factor between the shortwave sources to person

Fsky→p View factor between sky and person

εi Emissivity of urban surface i

Ti Temperature of urban surface i

45

Page 55: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Measurement of Tmrt can be done using a standard globe thermometer [19] . A

standard globe thermometer is a black-painted copper sphere with a diameter of

150 mm and a thickness of 0.4 mm, containing a thermometer at its centre. Various

methods of measuring Tmrt can be done [20], however, this requires instruments to

be set up on street-level, which needs large amount of resources if a city-wide study

is conducted.

With the use of simplified heat transfer model to predict surface temperature of

the container stacks, the final aim will be to determine Tmrt within the container

yard, especially in the street canyon of the container stack due to the heat exchanges

between the walls of the container stacks. In equation 4.5, αp is set to be 0.3 for

humans and εp for humans is assumed to be 0.9. Tmrt will be determined for a

person of 2m height, modeled in a cuboid shape, which is placed at the centre of

the system. View factor from direct solar shortwave radiation on a standing person

is a function of solar altitude angle and azimuth angle [21]:

Fdir→p = 0.0355 sin β + 2.33 cos β√

0.0213 cos2 α + 0.0091 sin2 α (4.6)

α= Solar azimuth angle (45◦ for standard person)

β= Solar altitude angle (degree)

Figure 4.6: Imaginary enclosure used to determine Tmrt with the modeled human

placed within the enclosure.

46

Page 56: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

In the calculation of Tmrt, an imaginary enclosure of 4×10.2×4m was used, where

angular factor can be calculated to determine the fraction of longwave radiation

incident onto the modeled human.

47

Page 57: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

4.4 Results

To study radiative heat transfer present in the system, surface temperature is one

of the key indicators to study the level of heat transfer in the micro-climate of the

street canyon between the container stacks.

4.4.1 3D Temperature Map

(a) Top (b) Side

48

Page 58: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(c) Front (d) Overall

Figure 4.7: Different views of 3D temperature map at 0100hr

As an initial study, the albedo value for the containers is set to 0.4 to simulate the

change in surface temperature throughout the whole day.

Figure 4.8: Cross-sectional view of the container yard, showing the change in surface

temperature from 0700hr to 1200hr.

49

Page 59: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 4.9: Cross-sectional view of the container yard, showing the change in surface

temperature from 1300hr to 1800hr.

Figure 4.10: Cross-sectional view of the container yard, showing the change in sur-

face temperature from 1900hr to 2300hr.

50

Page 60: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 4.8, 4.9 and 4.10 shows the change in temperature on the surfaces of the

containers, ground as well as the air in the containers between 0100hr to 2300hr.

Through the use of the extended simplified heat transfer model, shading effect can

be observed in the simulated system through the different rate of surface heating

and cooling on the ground and containers. It can be observed that the middle

section of the ground in the street canyon has a higher temperature than the section

beside it. This can be attributed to a higher sky view factor observed in the middle

section of the street canyon as compared to the section nearer to the container.

Furthermore, absence of a 2D heat conduction model result constant temperature

difference between the different ground panels.

Tair,in can be observed to increase gradually throughout the day as the surfaces

of the containers get heated up. The rate of heating and cooling for Tair,in can be

observed to be different for container one and two due to different position of the sun

throughout the day. The rate of cooling observed for the air in the container stacks

is slow as natural convection is the only heat transfer mechanism present within the

containers, resulting in the insulating property observed in the early evening.

4.4.2 Non-Canyon Facing Walls

Study of 3D temperature map provides a macroscopic overview of temperature

change of the surfaces simulated by the model. It can be observed that various

shading effect as well as radiative heat transfer between surfaces have been properly

accounted. Street canyon between the container stacks present the area where there

is great amount of heat exchanges taking place between the surfaces. Figure 4.11

and 4.12 shows the surface temperature of the walls (non-canyon facing) of container

one and two for condition where there is no shading on the walls.

51

Page 61: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 4.11: Temperature of the North, South, West and Top wall of container one

Figure 4.12: Temperature of the North, East, West and Top wall of container two

The simulated top walls have shown to have the highest temperature (46.03◦C) as

compared to the other face orientation, which is expected because sky view factor

for unobstructed horizontal surface is given to be one. It can be observed that,

the north facing walls has a higher rate of heating as compared to the south wall.

This is due to presence of direct solar shortwave radiation for the north-facing wall

during summer solstice. Furthermore, the surface temperature of north-facing wall

for container one and two has very slight difference. At 1600hr, the simulated

52

Page 62: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

surface temperature for north-facing wall of container one and two was determined

to be 40.55◦C and 42.6◦C respectively. Even though the procedure to determine the

north-facing wall’s temperature is the same, the slight difference could be caused

by Tair,in for the containers, where Tair,in for container two is always greater than

container one before 1600hr. As the west-facing wall of container one experiences

heating during the afternoon period, this causes its Tair,in to be higher in the evening

period.

Figure 4.13: Tair,in for container one and two throughout the day.

4.4.3 Micro-Climate Condition in Street Canyon

With the determination of surface temperature of the non-canyon facing walls, this

provides a gauge for the expected temperature in the street canyon. Due to shad-

ing effect caused by adjacent buildings, this reduces the effective number of hours

the surfaces in the street canyon are exposed to direct solar shortwave radiation,

resulting in the maximum simulated temperature to be lower than the sides with no

obstruction.

53

Page 63: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Figure 4.14: Surface temperature of the different panels of the East-facing wall of

container one from 0100hr to 2300hr.

Figure 4.15: Surface temperature of the different panels of the West-facing wall of

container two from 0100hr to 2300hr.

From figure 4.14 and 4.15, it can be seen that the surface temperature decreases

gradually to a minimum of 23.3◦C at 0800hr before the temperature increases due

to the presence of shortwave radiation. For the East wall of container one, the

maximum simulated temperature due to direct shortwave radiation was found to be

30.25◦C at 1200hr. For the Wast wall of container two, the maximum simulated

temperature was found to be 36.70◦C at 1600hr. Both were the top panel of the

54

Page 64: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

container stacks due to higher effective irradiated hours as compared to the panels

within the street canyon.

Figure 4.16: Surface temperature of the different panels of the East-facing wall of

container one from 0600hr to 2100hr.

Figure 4.17: Surface temperature of the different panels of the West-facing wall of

container two from 0600hr to 2100hr.

On a closer look, it can be seen for East wall of container one, instead of observ-

ing an abrupt drop in simulated temperature, the surface temperature was found

to increase between 1300hr to 1500hr before staying approximately constant from

1500hr to 1900. For the bottom-most panel, the temperature continued to increase

55

Page 65: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

to a maximum of 35.09◦C at 1700hr. On the other hand, the temperature of west

wall of container two increases gradually between 0900hr to 1200hr before being ex-

posed to direct shortwave radiation. Solar geometrical angle relation cos θ between

the surface and the sun at 1200hr was calculated to be zero. As a result, the west

wall of container two not being irradiated by direct shortwave radiation between

1200hr to 1300hr. It can be observed that the bottom most panel was heated to a

maximum of 35.31◦C, which is slightly higher than panel 3 even though there is an

absence of direct solar irradiance after 1300hr due to shading effect, its surface tem-

perature continued to increase from 1300hr to 1500hr. Cooling of the street canyon

is observable from 1900hrs onwards, where temperature reached approximately 26◦C

at 2300hr for both container stacks.

Figure 4.18: Ground temperature in the street canyon, where “left” represents the

ground segment nearer to container one, “mid” represent the middle segment and

“right” represent the the segment nearer to container two

With the full surface temperature in the street canyon being mapped out, it can be

observed that radiative heat transfer has bolstered the temperature of the East wall

of container one, where the temperature continued to increase, where the bottom-

most panel eventually having the highest temperature. Similarly for container two,

the temperature of the bottom-most panel continued to increase in absence of direct

solar shortwave irradiance, where its temperature rises slightly higher than panel 3,

56

Page 66: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

which is directly above it. It can be suggested that radiative heat was “trickled”

down to ground level of the street canyon due to specular refection and longwave

radiation emitted by the surface. Relatively high surface temperatures within the

canyon in the evening (1900hr - 2100hr) could be an indication of urban heat island

effect being demonstrated. Furthermore, the strong diffused sky shortwave radia-

tion throughout the day could have caused the surface temperature of the top few

panels to have a stable increase throughout the day. From the simulated ground

temperature in the street canyon, it can be observed that the segment of the ground

nearer to the containers has temperature greater than the bottom-most panel from

1200hr to 1500hr. Due to boundary condition set for the inner temperature of the

asphalt ground, cooling of the surface can be observed once there is an absence of

direct solar irradiance on the corresponding surfaces.

Effect of varying surface albedo of all the panels in the street canyon can be observed

through the use of the simplified heat transfer model.

(a) 1700hr (b) 2100hr

Figure 4.19: Surface temperature at 1700hr and 2100hr for the bottom-most panel

of West wall of container one and East wall of container two in the street canyon.

Surface temperature of the bottom-most panel of West wall of container one and East

wall have shown to decrease with increasing albedo value for 1700hr and 2100hr. It

can be observed that a difference of approximately 7◦C can be observed between the

use of albedo value of 0.2 and 0.65 at 1700hr, and difference of approximately 3◦C at

57

Page 67: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

2100hr. Ways to mitigate possible urban heat island effect includes increasing albedo

of urban surfaces [22]. Hence, the simplified heat transfer model has demonstrated

the reduction in surface temperature in a street canyon, which helps to reduce

possible urban heat island effect.

4.4.4 Mean Radiant Temperature Calculation

After simulating the temperature of the surfaces within the street canyon, Tmrt can

be finally be determined with the use of equation 4.5.

Figure 4.20: Simulated Tmrt from 0600hr to 2200hr.

The modeled human was placed in the middle of the street canyon, above the mid-

dle ground. It can be easily be observed that Tmrt is heavily dominated by solar

shortwave when the modeled human was exposed to direct solar irradiance between

1000hr and 1400hr, with the maximum simulated Tmrt of 62.32◦C at 1300hr. It

can also be observed that radiative heat transfer from the surfaces of the walls

and ground in the street canyon as well as diffused solar irradiance have kept Tmrt

fairly constant between 1400hr and 1500hr, before the street canyon starts cooling.

With the temperature of container yard properly mapped out, Tmrt within the street

canyon can be determined.

58

Page 68: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(a) 1m away from East wall of container one (b) 1m away from West wall of container two

Figure 4.21: Tmrt for different positions along the street canyon

Tmrt along the street canyon can be determined and can be observed to be lower

than in the middle of the canyon due to possible lesser number of hours exposed

to direct solar irradiance and also smaller sky view factor. However, there could be

an overestimation of simulated Tmrt as the surface temperature in the morning was

shown to be lesser than the Tmrt.

4.5 Discussion

The simplified heat transfer model has demonstrated that it’s capable of simulating

heat transfer in a container yard setting with only meteorological data as its pri-

mary input. The use of 1D heat transfer equation has presented its limitations in

figure 4.18, where different ground panels having abrupt differences in the simulated

surface temperature. Furthermore, the simplified model allows simulation of surface

temperature at the centre of the street canyon. Since panels were used to describe

the shadowing effect of containers, it assumes a homogeneous temperature through-

out the length of the canyon. Also, angular factor was used to describe the amount

of radiative heat transfer between the panels on the containers and also sky view

factor. This may not hold true for the surfaces nearer to the ends of street canyon

where there could be a differences in the amount of downward longwave radiation

59

Page 69: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

incident at the ends of the canyon due to difference in sky view factor. Hence, the

use of such panel segmentation can only describe the heat transfer deep within the

street canyon. As such, further validation of model can be done through actual site

measurements in a real container yard.

60

Page 70: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Chapter 5

Conclusion

In conclusion, the simplified heat transfer model that was developed based on 1D

time-dependent heat balance equation, was able to simulate surface temperature for

TIB and MIBs, which was found to be in good agreement with the measured surface

temperature, with RMSE of less than 6◦C from measured surface temperature. The

simplified heat transfer model presents a methodology that reduces the need for

computationally expensive CFD simulation, that increases the efficiency of the model

to determine the variation of local convective term H throughout the day. Using the

calibrated model, virtual thermal performance evaluation can be conducted using

different facade technology to gain a deeper understanding on the thermal load of the

building and possible thermal stress outside the building. However, the assumption

and calibration method used in the model is only applicable in condition when there

is a strong solar irradiance and light windspeed, which is a general climate condition

experienced in Singapore. Further studies such as CFD simulation are required to

validate the use of such calibration method.

The model was extended to simulate heat transfer in a container yard and it presents

a quick and efficient method to simulate heat exchanges within a street canyon,

where heat exchanges was observed through the determination of surface temper-

ature as its key indicator. This allows estimation of Tmrt to be conducted after

61

Page 71: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

mapping out the surface temperatures within the street canyon. However, some

simplification works and assumptions were made to improve the efficiency of the

model. Hence, field measurements will be needed to validate the assumptions that

were made in the model.

62

Page 72: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Bibliography

[1] J. Brownson. 3.2. basic rules of light quantification. URL https://www.

e-education.psu.edu/eme810/node/455.

[2] Tim R Oke. City size and the urban heat island. Atmospheric Environment

(1967), 7(8):769–779, 1973.

[3] Meteorological Service Singapore. Climate of singapore, N.D. URL http://

www.weather.gov.sg/climate-climate-of-singapore/. Accessed = 2019-

4-2.

[4] Winston TL Chow and Matthias Roth. Temporal dynamics of the urban heat

island of singapore. International Journal of climatology, 26(15):2243–2260,

2006.

[5] Muhammad Shah Al-Faisal Bin Rosley. A study of urban heat island manage-

ment at industrial areas. Honours Year Thesis, 2018.

[6] Yunus A Cengel, Sanford Klein, and William Beckman. Heat transfer: a prac-

tical approach, volume 141. McGraw-Hill New York, 1998.

[7] D Mukherjee. Fundamentals of renewable energy systems. New Age Interna-

tional, 2004.

[8] RSRACSR Perez, R Stewart, C Arbogast, R Seals, and J Scott. An anisotropic

hourly diffuse radiation model for sloping surfaces: description, performance

validation, site dependency evaluation. Solar energy, 36(6):481–497, 1986.

63

Page 73: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

[9] ID Watson and GT Johnson. Graphical estimation of sky view-factors in urban

environments. Journal of climatology, 7(2):193–197, 1987.

[10] Carlos Antonio Costa dos Santos, Bernardo Barbosa da Silva, Tantravahi

Venkata Ramana Rao, Prakki Satyamurty, and Antonio Ocimar Manzi. Down-

ward longwave radiation estimates for clear-sky conditions over northeast brazil.

Revista Brasileira de Meteorologia, 26(3):443–450, 2011.

[11] Yinghong Qin and Jacob E Hiller. Ways of formulating wind speed in heat

convection significantly influencing pavement temperature prediction. Heat and

Mass Transfer, 49(5):745–752, 2013.

[12] Nadiane Smaha Kruk, Iria Fernades Vendrame, Humberto Ribeiro Da Rocha,

Sin Chan Chou, and Osvaldo Cabral. Downward longwave radiation estimates

for clear and all-sky conditions in the sertaozinho region of sao paulo, brazil.

Theoretical and Applied Climatology, 99(1-2):115–123, 2010.

[13] Priyanka Mohaney and Gaurav Soni. Aluminium composite panel as a facade

material. International Journal of Engineering Trends and Technology, 55(2):

7580, 2018. doi: 10.14445/22315381/ijett-v55p215.

[14] Material properties database. URL http://www.makeitfrom.com/.

[15] Iman Asadi, Payam Shafigh, Zahiruddin Fitri Bin Abu Hassan, and Norhay-

ati Binti Mahyuddin. Thermal conductivity of concrete-a review. Journal of

Building Engineering, 2018.

[16] John R Howell. A catalog of radiation heat transfer configuration factors, 1982.

URL http://www.thermalradiation.net/tablecon.html.

[17] A Bhargava, S Lakmini, and S Bhargava. Urban heat island effect: Its relevance

in urban planning. J. Biodivers. Endanger. Species, 5:5–187, 2017.

[18] ASHRAE Handbook. Fundamentals 2001. ASHRAE, Atlanta, USA, 2001.

64

Page 74: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

[19] HM Vernon et al. The measurement of radiant heat in relation to human

comfort. Journal of Industrial Hygiene, 14:95–111, 1932.

[20] Sofia Thorsson, Fredrik Lindberg, Ingegard Eliasson, and Bjorn Holmer. Differ-

ent methods for estimating the mean radiant temperature in an outdoor urban

setting. International journal of climatology, 27(14):1983–1993, 2007.

[21] Jianxiang Huang, Jose Guillermo Cedeno-Laurent, and John D Spengler. City-

comfort+: A simulation-based method for predicting mean radiant temperature

in dense urban areas. Building and Environment, 80:84–95, 2014.

[22] Haider Taha. Urban climates and heat islands: albedo, evapotranspiration, and

anthropogenic heat. Energy and buildings, 25(2):99–103, 1997.

65

Page 75: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

Appendix A

Appendix

A.1 View factor Calculation

For surface interface for parallel panel configuration is given to be:

F12 =A2

N

N∑i=1

1

π

x2

(x2 + (y1 − y2)2 + (z1 − z2)2)2

∣∣∣i

(A.1)

Code for View factor Calculation:

%vv2(3.5,4,1,4,2 )

W=2; L=1; H=2;

% vv1(W,L,H)

function F = vv1(W,L,H)

N=3000; M = 500;

for j=1:M

%f= @(z,y1,x,y2) (1/pi)*(x+3).*(y2-x*tan(20*pi/180))./((3+x).^2+z.^2+...

%(y2-x*tan(20*pi/180)).^2).^2; %Defines the function

f= @(z,y1,x,y2) (1/pi)*(x+0).*(z+0)./((x+0).^2+(z+0).^2+((y2)-y1).^2).^2;

for i=1:N fi(i)=f(rand*H, rand*L, rand*W, rand*L);end; %Computes its values

F12(j) =(H*L/N)*sum(fi); %View factor estimation

end

F = sum(F12)/M;

Page 76: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

end

function F = vv2(x,y1,y2,z1,z2)

N=3000; M = 100;

for j=1:M

%%%%%% Rectangle Configuration %%%%%%%%%%%%%%

f= @(z1,z2,y1,y2) (1/pi)*((x.^2 )./(x.^2+((y1)-(y2+1.5)).^2 +...

((z1)-(z2)).^2).^2);

for i=1:N fi(i)=f(rand*z1, rand*z2, rand*y1, rand*y2);end; %Computes its values

F12(j) =(y2*z2/N)*sum(fi); %View factor estimation

end

F = sum(F12)/M;

end

Page 77: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

A.2 Script for Container Simulation

%%%%% Update Log Assignment 5 %%%%%%%%%

%1.0 - Re-do code to calculate and feeding of data in a loop for an hour

%1.1 - Updated code for East works

%1.2 - Updated code for North Sout East West Top

%1.3 - Completed code for all surfaces and Inner air Temp

%2.0 - Replaced ODE solver using Finite Difference method

%3.0 - Included radiation from ground + changed the dimension of the

%4.0 - Included Shadow effect on East Wall

%4.5 - Shadow effect for container 2 not completed

%4.6 - Some problem with surftemp_out_east_1

%4.7 - Debugged error Fully operational (Yet to be included: ground to wall and wall to wall)

%container

%5.0 - Included Shading on ground in between containers

%5.1 - Sky View Factor for longwave included (Graph looks weird)

%5.2 - Ground conduction included in sectors (removed)

%5.3 - Included panel to panel radiation transfer

%5.4 - Heat Transfer between surfaces completed

%6.0 - Mean Radiant Calculation (Created function)

%6.1 - Angular Factor Included, fina

%6.0 - Mean Radiant Calculation (Created function)

%6.1 - Angular Factor Included, fina

clear all ; close all;

%---Coefficients of Perez Sky Model --------------------------------------

table = [-0.008 0.588 -0.062 -0.06 0.072 -0.022;...

0.13 0.683 -0.151 -0.019 0.066 -0.029;...

0.33 0.487 -0.221 0.055 -0.064 -0.026;...

0.568 0.187 -0.295 0.109 -0.152 -0.014;...

0.873 -0.392 -0.362 0.226 -0.462 0.001;...

1.132 -1.237 -0.412 0.288 -0.823 0.056;...

1.06 -1.6 -0.359 0.264 -1.127 0.131;...

0.678 -0.327 -0.25 0.156 -1.377 0.251];

%---Zenith Angle ---------------------------------------------------------

theta_Z = [

0

0

0

0

0

102.13755

87.41707

72.72049

58.09897

Page 78: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

43.65479

29.6828

17.48998

13.29128

21.77158

34.98012

49.19961

63.73493

78.39891

93.11721

107.84695

122.54743

137.1502

0];

%-------------------------------------------------------------------------

%---Air temperature

Tair = [

28

27.5

27

27

27.6

27

27

27.7

29

30

29.5

30

31

31.5

31

31

31.3

30

29

28.7

28

28

27.8

];

Tair = Tair + 273.15;

%-------------------------------------------------------------------------

%---Direct shortwave radiaiton [W/m2]

Page 79: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

IsunSW = [

0

0

0

0

0

0

0

0

59

105

96

107

192

193

109

82

85

65

0

0

0

0

0

];

%-------------------------------------------------------------------------

%---Global diffused shortwave radiaiton [W/m2]

IskySW = [

0

0

0

0

0

0

0

22

129

246

372

451

421

424

463

403

Page 80: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

283

153

39

0

0

0

0

];

%-------------------------------------------------------------------------

%---Sky longwave radiation [W/m2]

IskyLW = [

406

403

405

409

416

413

413

418

424

435

431

433

440

442

434

425

423

425

428

430

422

415

404

];

%-------------------------------------------------------------------------

%---Measured Ground surface temperature [C]

Tground = [

25.3

25.53333

27.43333

29.83333

32.73333

36.83333

40.66667

Page 81: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

42.1

41.4

40.4

38.3

35.96667

33.43333

31.63333

29.96667

29.43333

28.76667];

%-------------------------------------------------------------------------

%---Measured surface temperature [C]

Tsurf = [

23.36667

25.13333

30.5

34.93333

37.56667

39.46667

41.46667

41.06667

39.53333

39.53333

37.76667

34.8

31.53333

27.9

26.6

25.93333

25.5];

%-------------------------------------------------------------------------

%---useful coefficients (MKS unit)

thickness = 0.03; %[m]

emissivity = 0.9; %=(0,1)

conductivity = 180; %[W/(m K)]

SBconst = 5.67e-8; %[W/(m2 K4)]

HeatCapacity = 900; %[J/(Kg K)]

MassDensity = 2800; %[Kg/(m3)]

albedo = 0.5;

%albedo_detailed(:,1)=linspace(0.1,0.7,100);

Page 82: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

alum = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 10], [0 10], [0 0], Tsurf(1)+273.15);

mat = alum;

mat_north_south = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 31.34], [0 0], [0 18.2], Tsurf(1)+273.15);

mat_east_west = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 0], [0 318.54], [0 18.2], Tsurf(1)+273.15);

mat_top_bot = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 31.34], [0 318.54], [0 0], Tsurf(1)+273.15);

mat_east_west_1 = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 0], [0 318.54], [0 2.73], Tsurf(1)+273.15);

mat_east_west_2 = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 0], [0 318.54], [0 3.17], Tsurf(1)+273.15);

mat_east_west_3 = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 0], [0 318.54], [0 4.3], Tsurf(1)+273.15);

mat_east_west_4 = sur(0.9, conductivity, albedo,HeatCapacity,thickness, MassDensity, [0 0], [0 318.54], [0 8], Tsurf(1)+273.15);

%--- Solar Radiation Geometry --------

phi = 1.35*pi/180;

delta = 23.43*pi/180;

IskyLWabs = alum.emissivity()*IskyLW;

IskySWabs = (1-alum.albedo())*IskySW;

IsunSWabs = (1-alum.albedo())*IsunSW;

h = 5;

LW = 0.5;

%---Surface/Air Properties ------------------

asphalt_ground = sur(0.93,0.75, 0.16,920,0.1, 2360, [0 10], [0 10], [0 0], 25+273.15);

asphalt_ground_1 = sur(0.93,0.75, 0.16,920,0.5, 2360, [0 10], [0 10], [0 0], 25+273.15);

C_air = 1000;

Massdensity_air = 1.225;

C_air = 1000;

Massdensity_air = 1.225;

Volume = are(mat_north_south) * mat_east_west.width();

%-------------------------------------------------------------------------

%---Data fitting loop initialization

w = 165*pi/180;

T_air(1) = 28;

t0 =28 +273.15;

%%%%%%%%%%%%%%%%%%% First Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

T_air(1) = 28 +273.15 ;

surftemp_out_east(1,1) = t0 - 273.15; surftemp_in_east(1,1) = t0 - 273.15;

surftemp_out_east_1(1,1) = t0 - 273.15; surftemp_in_east_1(1,1) = t0 - 273.15;

surftemp_out_east_2(1,1) = t0 - 273.15; surftemp_in_east_2(1,1) = t0 - 273.15;

surftemp_out_east_3(1,1) = t0 - 273.15; surftemp_in_east_3(1,1) = t0 - 273.15;

surftemp_out_east_4(1,1) = t0 - 273.15; surftemp_in_east_4(1,1) = t0 - 273.15;

surftemp_out_north(1,1) = t0 - 273.15; surftemp_in_north(1,1) = t0 - 273.15;

Page 83: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

surftemp_out_west(1,1) = t0 - 273.15; surftemp_in_west(1,1) = t0 - 273.15;

surftemp_out_south(1,1) = t0 - 273.15; surftemp_in_south(1,1) = t0 - 273.15;

surftemp_out_top(1,1) = t0 - 273.15; surftemp_in_top(1,1) = t0 - 273.15;

surftemp_ground(1,1) = 28 ;

surftemp_out_bot(1,1) = t0-273.15;surftemp_in_bot(1,1) = t0-273.15 ;

t0_east = t0; t0_in_east = t0;

t0_east_1 = t0; t0_in_east_1 = t0;

t0_east_2 = t0; t0_in_east_2 = t0;

t0_east_3 = t0; t0_in_east_3 = t0;

t0_east_4 = t0; t0_in_east_4 = t0;

t0_north = t0; t0_in_north = t0;

t0_west = t0; t0_in_west = t0;

t0_south = t0; t0_in_south = t0;

t0_top = t0; t0_in_top = t0;

t0_bot = t0;t0_in_bot = t0;

t0_ground = 28+273.15;

t0_in_ground = 28+273.15;

t0_air = 28+273.15;

%%%%%%%%%%%%%%%%%%% Second Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

T_air_1(1) = 28+273.15 ;

S_surftemp_out_east_1(1,1) = t0 - 273.15; S_surftemp_in_east_1(1,1) = t0 - 273.15;

surftemp_out_west_1_1(1,1) = t0 - 273.15; surftemp_in_west_1_1(1,1) = t0 - 273.15;

surftemp_out_west_1_2(1,1) = t0 - 273.15; surftemp_in_west_1_2(1,1) = t0 - 273.15;

surftemp_out_west_1_3(1,1) = t0 - 273.15; surftemp_in_west_1_3(1,1) = t0 - 273.15;

surftemp_out_west_1_4(1,1) = t0 - 273.15; surftemp_in_west_1_4(1,1) = t0 - 273.15;

surftemp_out_north_1(1,1) = t0 - 273.15; surftemp_in_north_1(1,1) = t0 - 273.15;

surftemp_out_west_1(1,1) = t0 - 273.15; surftemp_in_west_1(1,1) = t0 - 273.15;

surftemp_out_south_1(1,1) = t0 - 273.15; surftemp_in_south_1(1,1) = t0 - 273.15;

surftemp_out_top_1(1,1) = t0 - 273.15; surftemp_in_top_1(1,1) = t0 - 273.15;

surftemp_ground_1(1,1) = 28 ;

surftemp_out_bot_1(1,1) = t0 -273.15; surftemp_in_bot_1(1,1) = t0-273.15 ;

S_t0_east_1 = t0; S_t0_in_east_1 = t0;

t0_north_1 = t0; t0_in_north_1 = t0;

t0_west_1 = t0; t0_in_west_1 = t0;

t0_west_1_1 = t0; t0_in_west_1_1 = t0;

t0_west_1_2 = t0; t0_in_west_1_2 = t0;

t0_west_1_3 = t0; t0_in_west_1_3 = t0;

t0_west_1_4 = t0; t0_in_west_1_4 = t0;

Page 84: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

t0_south_1 = t0; t0_in_south_1 = t0;

t0_top_1 = t0; t0_in_top_1 = t0;

t0_bot_1 = t0;t0_in_bot_1 = t0;

t0_ground_1 = 28+273.15;

t0_in_ground_1 = 28+273.15;

t0_air_1 = 28+273.15;

t0_road = 28;

%%%%%%%%%%%%%%%%%%%%% Ground %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

surftemp_out_floor(1,1) = t0_road; surftemp_in_floor(1,1) = t0_road;

surftemp_out_floor(1,2) =t0_road; surftemp_in_floor(1,2) = t0_road;

surftemp_out_floor(1,3) = t0_road; surftemp_in_floor(1,3) = t0_road;

surftemp_out_floor(1,4) = t0_road; surftemp_in_floor(1,4) = t0_road;

surftemp_out_floor_right(1,1) = 28; surftemp_in_floor_right(1,1) = 28;

surftemp_out_floor_right(1,2) =28 ; surftemp_in_floor_right(1,2) = 28 ;

surftemp_out_floor_right(1,3) = 28 ; surftemp_in_floor_right(1,3) = 28;

surftemp_out_floor_right(1,4) = 28 ; surftemp_in_floor_right(1,4) = 28 ;

surftemp_out_floor_left(1,1) = 28; surftemp_in_floor_left(1,1) = 28;

surftemp_out_floor_left(1,2) =28 ; surftemp_in_floor_left(1,2) = 28 ;

surftemp_out_floor_left(1,3) = 28 ; surftemp_in_floor_left(1,3) = 28;

surftemp_out_floor_left(1,4) = 28 ; surftemp_in_floor_left(1,4) = 28;

t0_floor(1) = t0_road+273.15; t0_floor(2) = t0_road+273.15;

t0_floor(3) = t0_road+273.15; t0_floor(4) = t0_road+273.15;

t0_floor_in(1) = t0_road+273.15; t0_floor_in(2) = t0_road+273.15;

t0_floor_in(3) = t0_road+273.15; t0_floor_in(4) =t0_road+273.15;

t0_floor_right(1) = 28+273.15;t0_floor_right(2) = 28+273.15;

t0_floor_right(3) = 28+273.15; t0_floor_right(4) = 28+273.15;

t0_floor_right_in(1) =28+273.15; t0_floor_right_in(2) = 28+273.15;

t0_floor_right_in(3) = 28+273.15; t0_floor_right_in(4) =28+273.15;

t0_floor_left(1) = 28+273.15;t0_floor_left(2) = 28+273.15;

t0_floor_left(3) = 28+273.15; t0_floor_left(4) =28+273.15;

t0_floor_left_in(1) = 28+273.15; t0_floor_left_in(2) = 28+273.15;

t0_floor_left_in(3) = 28+273.15; t0_floor_left_in(4) =28+273.15;

x = 0:h:3600;

%%%%%%%%%%%%% Looping over all hours %%%%%%%%%%%%%%%%

for i = 1:(length(Tair) - 1)

R_d(i) = fun(theta_Z(i), IsunSW(i), IskySW(i), table);

Page 85: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

East %%%

gamma_east = 90*pi/180;

theta_in_east(i) = sin(phi)*cos(delta)*cos(gamma_east)*cos(w) -...

cos(phi)*sin(delta)*cos(gamma_east)+...

cos(delta)*sin(gamma_east)*sin(w);

North %%%

gamma_north = 180*pi/180;

theta_in_north(i) = sin(phi)*cos(delta)*cos(gamma_north)*cos(w) - ...

cos(phi)*sin(delta)*cos(gamma_north)+...

cos(delta)*sin(gamma_north)*sin(w);

West %%%

gamma_west = -90*pi/180;

theta_in_west(i) = sin(phi)*cos(delta)*cos(gamma_west)*cos(w) - ...

cos(phi)*sin(delta)*cos(gamma_west)+...

cos(delta)*sin(gamma_west)*sin(w);

South Wall

gamma_south = 0*pi/180;

theta_in_south(i) = sin(phi)*cos(delta)*cos(gamma_south)*cos(w) -...

cos(phi)*sin(delta)*cos(gamma_south)+...

cos(delta)*sin(gamma_south)*sin(w);

if theta_in_north(i) < 0

theta_in_north(i) = 0;

else

theta_in_north(i) = theta_in_north(i);

end

if theta_in_south(i) < 0

theta_in_south(i) = 0;

else

theta_in_south(i) = theta_in_south(i);

end

%%%%%%%%%%%%%%%%%%% First Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Page 86: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

if i <=12

for aa=1:(length(x)-1)

t_diff_east = t0_ground^4 - t0_east^4;

t_diff_west = t0_ground^4 - t0_west^4;

t_diff_north = t0_ground^4 - t0_north^4;

t_diff_south = t0_ground^4 - t0_south^4;

t_diff_wall_wall = t0_east_1^4 - t0_west_1_1^4;

L_reflected_east = 0.218*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) + ...

IsunSW(i));

L_reflected_north = 0.162*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) +...

IsunSW(i));

L_reflected_south = 0.162*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) +...

IsunSW(i));

L_reflected_west = 0.218*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) );

if t_diff_east > 0,

t_diff_east = t_diff_east;

else

t_diff_east = 0;

end

if t_diff_west > 0

t_diff_west = t_diff_west;

else

t_diff_west = 0;

end

if t_diff_north > 0

t_diff_north = t_diff_north;

else

t_diff_north = 0;

end

if t_diff_south > 0

t_diff_south = t_diff_south;

else

t_diff_south = 0;

end

if t_diff_wall_wall >0

t_diff_wall_wall = t_diff_wall_wall;

else

t_diff_wall_wall = 0;

end

if i >= 7

b = 1;

else

b = 0;

end

Page 87: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

if i >= 8

bb = 1;

else

bb = 0;

end

if i >= 9

bbb = 1;

else

bbb = 0;

end

if i >= 10

bbbb = 1;

else

bbbb = 0;

end

if i >= 12

bcbc = 1;

else

bcbc = 0;

end

%%%%%%%%%%%%%%%%%% Thermal radiation wall-wall %%%%%%%%%%%%%%%%%%%%%%%%%%%

L_west_east_1_1 = 0.0847*(mat.emissivity()*SBconst*t0_west_1_1^4 );

L_west_east_1_2 = 0.0783*(mat.emissivity()*SBconst*t0_west_1_1^4);

L_west_east_1_3 = 0.0605*(mat.emissivity()*SBconst*t0_west_1_1^4);

L_west_east_1_4 = 0.03294*(mat.emissivity()*SBconst*t0_west_1_1^4);

L_west_east_2_1 = 0.0908*(mat.emissivity()*SBconst*t0_west_1_2^4);

L_west_east_2_2 = 0.0981*(mat.emissivity()*SBconst*t0_west_1_2^4 );

L_west_east_2_3 = 0.0877*(mat.emissivity()*SBconst*t0_west_1_2^4);

L_west_east_2_4 = 0.0517*(mat.emissivity()*SBconst*t0_west_1_2^4);

L_west_east_3_1 = 0.0941*(mat.emissivity()*SBconst*t0_west_1_3^4 );

L_west_east_3_2 = 0.110*(mat.emissivity()*SBconst*t0_west_1_3^4);

L_west_east_3_3 = 0.123*(mat.emissivity()*SBconst*t0_west_1_3^4 );

L_west_east_3_4 = 0.0983*(mat.emissivity()*SBconst*t0_west_1_3^4 );

L_west_east_4_1 = 0.0994*(mat.emissivity()*SBconst*t0_west_1_4^4);

L_west_east_4_2 = 0.1356*(mat.emissivity()*SBconst*t0_west_1_4^4);

L_west_east_4_3 = 0.214*(mat.emissivity()*SBconst*t0_west_1_4^4);

L_west_east_4_4 = 0.237*(mat.emissivity()*SBconst*t0_west_1_4^4);

L_east_west_1_1 = 0.0847*(mat.emissivity()*SBconst*t0_east_1^4 );

L_east_west_1_2 = 0.0783*( mat.emissivity()*SBconst*t0_east_1^4);

Page 88: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

L_east_west_1_3 = 0.0605*(mat.emissivity()*SBconst*t0_east_1^4);

L_east_west_1_4 = 0.03294*(mat.emissivity()*SBconst*t0_east_1^4);

L_east_west_2_1 = 0.0908*(mat.emissivity()*SBconst*t0_east_2^4);

L_east_west_2_2 = 0.0981*(mat.emissivity()*SBconst*t0_east_2^4 );

L_east_west_2_3 = 0.0877*(mat.emissivity()*SBconst*t0_east_2^4);

L_east_west_2_4 = 0.0517*(mat.emissivity()*SBconst*t0_east_2^4);

L_east_west_3_1 = 0.0941*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_3_2 = 0.110*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_3_3 = 0.123*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_3_4 = 0.0983*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_4_1 = 0.0994*(mat.emissivity()*SBconst*t0_east_4^4);

L_east_west_4_2 = 0.1356*(mat.emissivity()*SBconst*t0_east_4^4);

L_east_west_4_3 = 0.214*(mat.emissivity()*SBconst*t0_east_4^4);

L_east_west_4_4 = 0.237*(mat.emissivity()*SBconst*t0_east_4^4 );

%%%%%%%%%%%%%%%%%% Reflected Solar irradiance %%%%%%%%%%%%%%%%%%%%%%%%%%%

L_reflected_east_west_1 = 0.0847*(mat.albedo()*b*theta_in_east(i)*IsunSWabs(i)) +...

0.0908*1*mat.albedo()*bb*theta_in_east(i)*IsunSWabs(i)+...

0.0941*mat.albedo()*bbb*theta_in_east(i)*IsunSWabs(i)+...

0.0994*mat.albedo()*bbbb*theta_in_east(i)*IsunSWabs(i);

L_reflected_east_west_2 = 0.0783*( b*mat.albedo()*theta_in_east(i)*IsunSWabs(i))+...

0.0981*(mat.albedo()*bb*theta_in_east(i)*IsunSWabs(i))+...

0.110*mat.albedo()*bbb*theta_in_east(i)*IsunSWabs(i)+...

0.1356*mat.albedo()*bbbb*theta_in_east(i)*IsunSWabs(i);

L_reflected_east_west_3 =0.0877*mat.albedo()*bb*theta_in_east(i)*IsunSWabs(i) +...

0.0605*(b*mat.albedo()*theta_in_east(i)*IsunSWabs(i))+...

0.123*1*(mat.albedo()*bbb*theta_in_east(i)*IsunSWabs(i))+...

0.214*mat.albedo()*bbbb*theta_in_east(i)*IsunSWabs(i);

L_reflected_east_west_4= 0.237*(mat.albedo()*bbbb*theta_in_east(i)*IsunSWabs(i))+...

0.0983*mat.albedo()*bbb*theta_in_east(i)*IsunSWabs(i)+...

+0.0517*mat.albedo()*bb*theta_in_east(i)*IsunSWabs(i)+...

0.03294*(b*mat.albedo()*theta_in_east(i)*IsunSWabs(i));

L_ground_to_4_east = (0.281*SBconst*t0_floor(1)^4+0.0139*SBconst*t0_floor(2)^4+...

0.0859*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_3_east = (0.1227*SBconst*t0_floor(1)^4+0.0103*SBconst*t0_floor(2)^4+...

0.0911*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_2_east = (0.109*SBconst*t0_floor(1)^4 +0.00956*SBconst*t0_floor(2)^4 +...

0.086*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_1_east = (0.0896*SBconst*t0_floor(1)^4 + 0.00798*SBconst*t0_floor(2)^4+...

Page 89: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

0.0758*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_4_west = (0.281*SBconst*t0_floor(4)^4+0.0139*SBconst*t0_floor(2)^4+...

0.0859*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_ground_to_3_west = (0.1227*SBconst*t0_floor(4)^4+0.0103*SBconst*t0_floor(2)^4+...

0.0911*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_ground_to_2_west = (0.109*SBconst*t0_floor(4)^4 +0.00956*SBconst*t0_floor(2)^4 +...

0.086*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_ground_to_1_west = (0.0896*SBconst*t0_floor(4)^4 +...

0.00798*SBconst*t0_floor(2)^4+0.0758*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_east_1 = (L_ground_to_1_east+ L_west_east_2_1 +L_west_east_3_1 +L_west_east_4_1 +...

L_west_east_1_1) +0.458*IskyLW(i); %(1/0.3463)*

L_east_2 = (L_ground_to_2_east+ L_west_east_3_2+L_west_east_4_2+ ...

L_west_east_1_2+L_west_east_2_2) +0.373*IskyLW(i) ; %(1/0.4599)*

L_east_3 = (L_ground_to_3_east+L_west_east_4_3 + L_west_east_3_3+...

L_west_east_1_3+L_west_east_2_3)+0.29*IskyLW(i); %(1/0.6109)*

L_east_4 = (L_ground_to_4_west+L_west_east_4_4 + L_west_east_1_4 +...

L_west_east_2_4 +L_west_east_3_4) +0.199*IskyLW(i); %(1/0.8116)*

L_west_1 = (L_ground_to_1_west+ L_east_west_2_1 +L_east_west_3_1 +...

L_east_west_4_1+L_east_west_1_1) +0.458*IskyLW(i); %%(1/0.3463)*

L_west_2 = (L_ground_to_2_west+L_east_west_3_2 +L_east_west_4_2 +...

L_east_west_1_2+ L_east_west_2_2)+0.373*IskyLW(i);%(1/0.4599)*

L_west_3 = (L_ground_to_3_west+L_east_west_4_3+L_east_west_3_3+...

L_east_west_1_3+L_east_west_2_3) + 0.29*IskyLW(i); %(1/0.6109)*

L_west_4 = (L_ground_to_4_west+L_east_west_4_4+L_east_west_1_4+...

L_east_west_2_4+L_east_west_3_4) +0.199*IskyLW(i); %(1/0.8116)*

L_ground_wall_1 = ((mat.emissivity()*SBconst*(0.25*t0_west_1_4^4 +...

0.066*t0_west_1_3^4 +0.0274*t0_west_1_2^4 +0.0234*t0_west_1_1^4 +...

0.326*t0_east_4^4+0.0318*t0_east_3^4 +0.0111*t0_east_2^4 +...

0.00879*t0_east_1^4 ) + 0.2635*IskyLW(i)));

L_ground_wall_2 = ( mat.emissivity()*SBconst*( 0.0144*(t0_west_1_1^4+...

t0_east_1^4) +...

0.0242*(t0_west_1_2^4+t0_east_2^4) +...

0.0556*(t0_west_1_3^4 + t0_east_3^4) +...

0.32*(t0_west_1_4^4+ t0_east_4^4)) + ...

+0.2886*IskyLW(i));

L_ground_wall_3 = (mat.emissivity()*SBconst*( 0.0144*(t0_west_1_1^4+...

t0_east_1^4) +...

0.0242*(t0_west_1_2^4+t0_east_2^4) + 0.0556*(t0_west_1_3^4 + ...

t0_east_3^4) +...

Page 90: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

0.32*(t0_west_1_4^4+ t0_east_4^4)) + ...

+0.2886*IskyLW(i));

L_ground_wall_4 = (mat.emissivity()*SBconst*(0.25*t0_east_4^4 +...

0.066*t0_east_3^4 +...

0.0274*t0_east_2^4 +0.0234*t0_east_1^4 +...

0.326*t0_west_1_4^4 +0.0318*t0_west_1_3^4 +0.0111*t0_west_1_2^4 +...

0.00879*t0_west_1_1^4) + 0.2635*IskyLW(i));

%%%%%%%%%%%%%%%%% First Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

params_out_east = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

IskyLWabs(i)+...

theta_in_east(i)*IsunSWabs(i)+...

0.45*asphalt_ground.emissivity()*SBconst*t_diff_east+...

L_reflected_east+...

(mat.conductivity()/mat.thickness()*t0_in_east)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

b*theta_in_east(i)*IsunSWabs(i)+...

mat.emissivity()*L_east_1+...

(mat.conductivity()/mat.thickness()*t0_in_east_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_1)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_east_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_east_2+...

bb*theta_in_east(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_east_2)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

Page 91: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

mat.emissivity()*SBconst];

params_in_east_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_2)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_east_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_east_3+...

bbb*theta_in_east(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_east_3)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_3)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_east_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_east_4+...

bbbb*theta_in_east(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_east_4)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_4)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_north = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_north(i)*IsunSWabs(i)+...

L_reflected_north+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_north)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_north = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

Page 92: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(mat.conductivity()/mat.thickness()*t0_north)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

0*theta_in_west(i)*IsunSWabs(i)+...

L_reflected_west+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_floor_left(4)^4+...

(mat.conductivity()/mat.thickness()*t0_in_west) + 5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_south = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_south(i)*IsunSWabs(i)+...

L_reflected_south+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_south)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_south = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_south)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_top = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

IskySWabs(i)+...

IskyLWabs(i)+...

cos(theta_Z(i)*pi/180)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_top)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_top = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_top)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

Page 93: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

0];

params_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW(i)+...

0.5*asphalt_ground.emissivity()*IskyLW(i)+...

cos(theta_Z(i)*pi/180)*(1-asphalt_ground.albedo())*IsunSW(i)+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair(i),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_ground),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_bot = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_in_bot)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_in_bot = [asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_bot_1),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_air = [C_air*Massdensity_air*Volume, ...

(5.6*are(mat_east_west_1)*t0_in_east_1 + 5.6*are(mat_east_west_2)*t0_in_east_2+...

5.6*are(mat_east_west_3)*t0_in_east_3+...

5.6*are(mat_east_west_4)*t0_in_east_4+...

are(mat_north_south)*5.6*t0_in_north +...

5.6*are(mat_east_west)*t0_in_west +are(mat_north_south)*5.6*t0_in_south+...

5.6*are(mat_top_bot)*t0_in_top +5.6*are(mat_top_bot)*t0_bot),...

(5.6)*(are(mat_east_west) + 2*are(mat_top_bot) + 2*are(mat_north_south)+...

are(mat_east_west_1)+are(mat_east_west_2)+are(mat_east_west_3)+are(mat_east_west_4)),...

0];

%%%%%%%%%%%%%%%%% Second Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S_params_out_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_east(i)*IsunSWabs(i)+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_floor_right(1)^4+...

0*L_reflected_east+...

(mat.conductivity()/mat.thickness()*S_t0_in_east_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

Page 94: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

S_params_in_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*S_t0_east_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_1+...

(1-mat.albedo())*L_reflected_east_west_1+...

bcbc*theta_in_west(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_2+...

(1-mat.albedo())*L_reflected_east_west_2+...

bcbc*theta_in_west(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_2)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_2)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_3+...

(1-mat.albedo())*L_reflected_east_west_3+...

bcbc*theta_in_east(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_3)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_3)+5.6*t0_air_1,...

Page 95: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_4+...

bcbc*theta_in_west(i)*IsunSWabs(i)+...

(1-mat.albedo())*L_reflected_east_west_4+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_4)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_4)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_north_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_north(i)*IsunSWabs(i)+...

L_reflected_north+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_north_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_north_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_north_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

IskyLWabs(i)+...

0*theta_in_west(i)*IsunSWabs(i)+...

L_reflected_west+...

(mat.conductivity()/mat.thickness()*t0_in_west_1) + 5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

Page 96: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

params_out_south_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_south(i)*IsunSWabs(i)+...

L_reflected_south+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_south_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_south_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_south_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_top_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

IskySWabs(i)+...

IskyLWabs(i)+...

cos(theta_Z(i)*pi/180)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_top_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_top_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_top)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW(i)+...

0.5*asphalt_ground.emissivity()*IskyLW(i)+...

cos(theta_Z(i)*pi/180)*(1-asphalt_ground.albedo())*IsunSW(i)+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_in_ground_1)+5.6*Tair(i),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_ground_1),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_bot_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(),...

(mat.conductivity()/mat.thickness()*t0_in_bot_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

Page 97: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

params_in_bot_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_bot_1),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_air_1 = [C_air*Massdensity_air*Volume, ...

(5.6*are(mat_east_west_1)*t0_in_west_1_1 + 5.6*are(mat_east_west_2)*t0_in_west_1_2+...

5.6*are(mat_east_west_3)*t0_in_west_1_3+...

5.6*are(mat_east_west_4)*t0_in_west_1_4+...

are(mat_north_south)*5.6*t0_in_north_1 +...

5.6*are(mat_east_west)*S_t0_in_east_1 +are(mat_north_south)*5.6*t0_in_south_1+...

5.6*are(mat_top_bot)*t0_in_top_1 +5.6*are(mat_top_bot)*t0_bot_1),...

(5.6)*(are(mat_east_west) + 2*are(mat_top_bot) + 2*are(mat_north_south)+...

are(mat_east_west_3)+are(mat_east_west_2)+are(mat_east_west_4)+are(mat_east_west_1)),...

0];

%%%%%%%%%%%%%%%%%% First Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[t0_east,t0_in_east] = runge(params_out_east, params_in_east, t0_east, t0_in_east, h);

[t0_east_1,t0_in_east_1] = runge(params_out_east_1, params_in_east_1, t0_east_1, t0_in_east_1, h);

[t0_east_2,t0_in_east_2] = runge(params_out_east_2, params_in_east_2, t0_east_2, t0_in_east_2, h);

[t0_east_3,t0_in_east_3] = runge(params_out_east_3, params_in_east_3, t0_east_3, t0_in_east_3, h);

[t0_east_4,t0_in_east_4] = runge(params_out_east_4, params_in_east_4, t0_east_4, t0_in_east_4, h);

[t0_west,t0_in_west] = runge(params_out_west, params_in_west, t0_west, t0_in_west, h);

[t0_north,t0_in_north] = runge(params_out_north, params_in_north, t0_north, t0_in_north, h);

[t0_south,t0_in_south] = runge(params_out_south, params_in_south, t0_south, t0_in_south, h);

[t0_top,t0_in_top] = runge(params_out_top, params_in_top, t0_top, t0_in_top, h);

[t0_ground,t0_in_ground] = runge(params_ground, params_ground, t0_ground, t0_in_ground, h);

[t0_bot, t0_in_bot] = runge(params_bot, params_in_bot,t0_bot, t0_in_bot, h);

t0_air = forward_air(params_air,t0_air,h);

%%%%%%%%%%%%%%%% Second Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[S_t0_east_1,S_t0_in_east_1] = runge(S_params_out_east_1,...

Page 98: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

S_params_in_east_1, S_t0_east_1, S_t0_in_east_1, h);

[t0_west_1_1,t0_in_west_1_1] = runge(params_out_west_1_1,...

params_in_west_1_1, t0_west_1_1, t0_in_west_1_1, h);

[t0_west_1_2,t0_in_west_1_2] = runge(params_out_west_1_2, ...

params_in_west_1_2, t0_west_1_2, t0_in_west_1_2, h);

[t0_west_1_3,t0_in_west_1_3] = runge(params_out_west_1_3,...

params_in_west_1_3, t0_west_1_3, t0_in_west_1_3, h);

[t0_west_1_4,t0_in_west_1_4] = runge(params_out_west_1_4,...

params_in_west_1_4, t0_west_1_4, t0_in_west_1_4, h);

[t0_west_1,t0_in_west_1] = runge(params_out_west_1, params_in_west_1, t0_west_1, t0_in_west_1, h);

[t0_north_1,t0_in_north_1] = runge(params_out_north_1, params_in_north_1, t0_north_1, t0_in_north_1, h);

[t0_south_1,t0_in_south_1] = runge(params_out_south_1, params_in_south_1, t0_south_1, t0_in_south_1, h);

[t0_top_1,t0_in_top_1] = runge(params_out_top_1, params_in_top_1, t0_top_1, t0_in_top_1, h);

[t0_ground_1,t0_in_ground_1] = runge(params_ground_1, params_ground_1, t0_ground_1, t0_in_ground_1, h);

[t0_bot_1, t0_in_bot_1] = runge(params_bot_1, params_in_bot_1,t0_bot_1, t0_in_bot_1, h);

t0_air_1 = forward_air(params_air,t0_air_1,h);

%%%%%%%%%%%%%%%% Ground %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[t0_floor(1), t0_floor_in(1),t0_floor(2), ...

t0_floor_in(2),t0_floor(3), t0_floor_in(3),t0_floor(4), t0_floor_in(4)]=...

ground_floor_1(t0_floor(1),t0_floor_in(1), t0_floor(2),t0_floor_in(2),...

t0_floor(3),t0_floor_in(3), t0_floor(4),t0_floor_in(4),h,IskySW(i),...

IskyLW(i),theta_Z(i),IsunSW(i),Tair(i),L_ground_wall_1,L_ground_wall_2,L_ground_wall_4,i);

[t0_floor_right(1), t0_floor_right_in(1),t0_floor_right(2),...

t0_floor_right_in(2),t0_floor_right(3), t0_floor_right_in(3),t0_floor_right(4),...

t0_floor_right_in(4)]=ground_floor_right(t0_floor_right(1),t0_floor_right_in(1),...

t0_floor_right(2),t0_floor_right_in(2),...

t0_floor_right(3),t0_floor_right_in(3), t0_floor_right(4),...

t0_floor_right_in(4),h,IskySW(i),IskyLW(i),theta_Z(i),IsunSW(i),Tair(i),i);

[t0_floor_left(1), t0_floor_left_in(1),t0_floor_left(2),...

t0_floor_left_in(2),t0_floor_left(3), t0_floor_left_in(3),...

Page 99: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

t0_floor_left(4), t0_floor_left_in(4)]=ground_floor_left(t0_floor_left(1),...

t0_floor_left_in(1), t0_floor_left(2),t0_floor_left_in(2),...

t0_floor_left(3),t0_floor_left_in(3), t0_floor_left(4),...

t0_floor_left_in(4),h,IskySW(i),IskyLW(i),theta_Z(i),IsunSW(i),Tair(i),i);

end

else

for aa=1:(length(x)-1) % calculation loop

t_diff_east = t0_ground^4 - t0_east^4;

t_diff_west = t0_ground^4 - t0_west^4;

t_diff_north = t0_ground^4 - t0_north^4;

t_diff_south = t0_ground^4 - t0_south^4;

t_diff_wall_wall = t0_west_1_1^4 - t0_east_1^4;

L_reflected_east =...

0.218*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) );

L_reflected_north =...

0.162*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) + IsunSW(i));

L_reflected_south = ...

0.162*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) + IsunSW(i));

L_reflected_west =...

0.218*(1-alum.albedo())*asphalt_ground.albedo()*(0.5*IskySW(i) +IsunSW(i));

if t_diff_east > 0

t_diff_east = t_diff_east;

else

t_diff_east = 0;

end

if t_diff_west > 0

t_diff_west = t_diff_west;

else

t_diff_west = 0;

end

if t_diff_north > 0

t_diff_north = t_diff_north;

else

t_diff_north = 0;

end

if t_diff_south > 0

t_diff_south = t_diff_south;

else

t_diff_south = 0;

end

if t_diff_wall_wall >0

t_diff_wall_wall = t_diff_wall_wall;

Page 100: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

else

t_diff_wall_wall = 0;

end

if i >= 13

q = 0;

else

q = 1;

end

if i >= 14

qq = 0;

else

qq = 1;

end

if i >= 15

qqq = 0;

else

qqq = 1;

end

if i >= 16

qqqq = 0;

else

qqqq = 1;

end

%%%%%%%%%% Thermal radiation emitted wall-wall %%%%%%%%%%%%%%%%

L_west_east_1_1 = 0.0847*(mat.emissivity()*SBconst*t0_west_1_1^4 );

L_west_east_1_2 = 0.0783*(mat.emissivity()*SBconst*t0_west_1_1^4);

L_west_east_1_3 = 0.0605*(mat.emissivity()*SBconst*t0_west_1_1^4);

L_west_east_1_4 = 0.03294*(mat.emissivity()*SBconst*t0_west_1_1^4);

L_west_east_2_1 = 0.0908*(mat.emissivity()*SBconst*t0_west_1_2^4);

L_west_east_2_2 = 0.0981*(mat.emissivity()*SBconst*t0_west_1_2^4 );

L_west_east_2_3 = 0.0877*(mat.emissivity()*SBconst*t0_west_1_2^4);

L_west_east_2_4 = 0.0517*(mat.emissivity()*SBconst*t0_west_1_2^4);

L_west_east_3_1 = 0.0941*(mat.emissivity()*SBconst*t0_west_1_3^4 );

L_west_east_3_2 = 0.110*(mat.emissivity()*SBconst*t0_west_1_3^4);

L_west_east_3_3 = 0.123*(mat.emissivity()*SBconst*t0_west_1_3^4 );

L_west_east_3_4 = 0.0983*(mat.emissivity()*SBconst*t0_west_1_3^4 );

L_west_east_4_1 = 0.0994*(mat.emissivity()*SBconst*t0_west_1_4^4);

L_west_east_4_2 = 0.1356*(mat.emissivity()*SBconst*t0_west_1_4^4);

L_west_east_4_3 = 0.214*(mat.emissivity()*SBconst*t0_west_1_4^4);

L_west_east_4_4 = 0.237*(mat.emissivity()*SBconst*t0_west_1_4^4);

Page 101: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

L_east_west_1_1 = 0.0847*(mat.emissivity()*SBconst*t0_east_1^4 );

L_east_west_1_2 = 0.0783*( mat.emissivity()*SBconst*t0_east_1^4);

L_east_west_1_3 = 0.0605*(mat.emissivity()*SBconst*t0_east_1^4);

L_east_west_1_4 = 0.03294*(mat.emissivity()*SBconst*t0_east_1^4);

L_east_west_2_1 = 0.0908*(mat.emissivity()*SBconst*t0_east_2^4);

L_east_west_2_2 = 0.0981*(mat.emissivity()*SBconst*t0_east_2^4 );

L_east_west_2_3 = 0.0877*(mat.emissivity()*SBconst*t0_east_2^4);

L_east_west_2_4 = 0.0517*(mat.emissivity()*SBconst*t0_east_2^4);

L_east_west_3_1 = 0.0941*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_3_2 = 0.110*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_3_3 = 0.123*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_3_4 = 0.0983*(mat.emissivity()*SBconst*t0_east_3^4 );

L_east_west_4_1 = 0.0994*(mat.emissivity()*SBconst*t0_east_4^4);

L_east_west_4_2 = 0.1356*(mat.emissivity()*SBconst*t0_east_4^4);

L_east_west_4_3 = 0.214*(mat.emissivity()*SBconst*t0_east_4^4);

L_east_west_4_4 = 0.237*(mat.emissivity()*SBconst*t0_east_4^4 );

%%%%%%%%%% Reflected solar irradiance %%%%%%%%%%%%%%%%%%%%%%%

L_reflected_west_east_1 = 0.0847*mat.albedo()*qqqq*theta_in_west(i)*IsunSWabs(i)+...

0.0908*mat.albedo()*qqq*theta_in_west(i)*IsunSWabs(i)+0.0941*mat.albedo()*qq*theta_in_east(i)*IsunSWabs(i)+...

0.0994*mat.albedo()*(q*theta_in_west(i)*IsunSWabs(i));

L_reflected_west_east_2 = 0.0783*mat.albedo()*qqqq*theta_in_west(i)*IsunSWabs(i)+...

0.0981*mat.albedo()*qqq*theta_in_west(i)*IsunSWabs(i)+...

0.110*mat.albedo()*qq*theta_in_east(i)*IsunSWabs(i) +...

0.1356*mat.albedo()*q*theta_in_west(i)*IsunSWabs(i);

L_reflected_west_east_3 =0.0605*mat.albedo()*qqqq*theta_in_west(i)*IsunSWabs(i)+...

0.0877*mat.albedo()*qqq*theta_in_west(i)*IsunSWabs(i)+...

0.123*mat.albedo()*qq*theta_in_east(i)*IsunSWabs(i) +...

0.214*mat.albedo()*q*theta_in_west(i)*IsunSWabs(i);

L_reflected_west_east_4 =0.03294*mat.albedo()*qqqq*theta_in_west(i)*IsunSWabs(i)+...

0.0517*mat.albedo()*qqq*theta_in_west(i)*IsunSWabs(i)+...

0.0983*mat.albedo()*qq*theta_in_east(i)*IsunSWabs(i)+...

0.237*q*theta_in_west(i)*IsunSWabs(i);

Page 102: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

L_ground_to_4_east = (0.281*SBconst*t0_floor(1)^4+0.0139*SBconst*t0_floor(2)^4+...

0.0859*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_3_east = (0.1227*SBconst*t0_floor(1)^4+0.0103*SBconst*t0_floor(2)^4+ ...

0.0911*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_2_east = (0.109*SBconst*t0_floor(1)^4 +0.00956*SBconst*t0_floor(2)^4 +...

0.086*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_1_east = (0.0896*SBconst*t0_floor(1)^4 + 0.00798*SBconst*t0_floor(2)^4+...

0.0758*SBconst*t0_floor(4)^4)*asphalt_ground.emissivity();

L_ground_to_4_west = (0.281*SBconst*t0_floor(4)^4+...

0.0139*SBconst*t0_floor(2)^4+...

0.0859*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_ground_to_3_west = (0.1227*SBconst*t0_floor(4)^4+...

0.0103*SBconst*t0_floor(2)^4+...

0.0911*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_ground_to_2_west = (0.109*SBconst*t0_floor(4)^4 +...

0.00956*SBconst*t0_floor(2)^4 +...

0.086*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_ground_to_1_west = (0.0896*SBconst*t0_floor(4)^4 +...

0.00798*SBconst*t0_floor(2)^4+...

0.0758*SBconst*t0_floor(1)^4)*asphalt_ground.emissivity();

L_east_1 = (L_ground_to_1_east+ L_west_east_2_1 +L_west_east_3_1 +...

L_west_east_4_1 + L_west_east_1_1) +0.458*IskyLW(i); %(1/0.3463)*

L_east_2 = (L_ground_to_2_east+ L_west_east_3_2+L_west_east_4_2+ ...

L_west_east_1_2+L_west_east_2_2) +0.373*IskyLW(i); %(1/0.4599)*

L_east_3 = (L_ground_to_3_east+L_west_east_4_3 + L_west_east_3_3+...

L_west_east_1_3+L_west_east_2_3)+0.29*IskyLW(i); %(1/0.6109)*

L_east_4 = (L_ground_to_4_west+L_west_east_4_4 + L_west_east_1_4 +...

L_west_east_2_4 +L_west_east_3_4) +0.199*IskyLW(i); %(1/0.8116)*

L_west_1 = (L_ground_to_1_west+ L_east_west_2_1 +L_east_west_3_1 +...

L_east_west_4_1+L_east_west_1_1) +0.458*IskyLW(i); %%(1/0.3463)*

L_west_2 = (L_ground_to_2_west+L_east_west_3_2 +L_east_west_4_2 +...

L_east_west_1_2+ L_east_west_2_2)+0.373*IskyLW(i);%(1/0.4599)*

L_west_3 = (L_ground_to_3_west+L_east_west_4_3+L_east_west_3_3+...

L_east_west_1_3+L_east_west_2_3) + 0.29*IskyLW(i); %(1/0.6109)*

L_west_4 = (L_ground_to_4_west+L_east_west_4_4+L_east_west_1_4+...

L_east_west_2_4+L_east_west_3_4) +0.199*IskyLW(i); %(1/0.8116)*

L_ground_wall_1 = ((mat.emissivity()*SBconst*(0.25*t0_west_1_4^4 +...

0.066*t0_west_1_3^4 +0.0274*t0_west_1_2^4 +0.0234*t0_west_1_1^4 +...

0.326*t0_east_4^4+0.0318*t0_east_3^4 +...

0.0111*t0_east_2^4 +0.00879*t0_east_1^4 ) + 0.2635*IskyLW(i)));

Page 103: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

L_ground_wall_2 = ( mat.emissivity()*SBconst*( 0.0144*(t0_west_1_1^4+...

t0_east_1^4) + 0.0242*(t0_west_1_2^4+t0_east_2^4) +...

0.0556*(t0_west_1_3^4 + t0_east_3^4) +0.32*(t0_west_1_4^4+ t0_east_4^4))+ ...

+0.2886*IskyLW(i));

L_ground_wall_3 = (mat.emissivity()*SBconst*( 0.0144*(t0_west_1_1^4+...

t0_east_1^4) + 0.0242*(t0_west_1_2^4+t0_east_2^4) + 0.0556*(t0_west_1_3^4 +...

t0_east_3^4) +0.32*(t0_west_1_4^4+ t0_east_4^4)) + ...

+0.2886*IskyLW(i));

L_ground_wall_4 = (mat.emissivity()*SBconst*(0.25*t0_east_4^4 +...

0.066*t0_east_3^4 +0.0274*t0_east_2^4 +0.0234*t0_east_1^4 +...

0.326*t0_west_1_4^4 +0.0318*t0_west_1_3^4 +0.0111*t0_west_1_2^4 +...

0.00879*t0_west_1_1^4) + 0.2635*IskyLW(i));

%%%%%%%%%%%%%%%%%%%% Container 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

params_out_east = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

IskyLWabs(i)+...

0.1372*mat.emissivity()*SBconst*t_diff_wall_wall+...

0*theta_in_east(i)*IsunSWabs(i)+...

L_reflected_east+...

0.45*asphalt_ground.emissivity()*SBconst*t_diff_east+...

(mat.conductivity()/mat.thickness()*t0_in_east)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

L_reflected_west_east_1+...

mat.emissivity()*L_east_1+...

(mat.conductivity()/mat.thickness()*t0_in_east_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_1)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

Page 104: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

params_out_east_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

L_reflected_west_east_2+...

mat.emissivity()*L_east_2+...

(mat.conductivity()/mat.thickness()*t0_in_east_2)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_2)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_east_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_east_3+...

L_reflected_west_east_3+...

(mat.conductivity()/mat.thickness()*t0_in_east_3)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_3)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_east_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

L_reflected_west_east_4+...

mat.emissivity()*L_east_4+...

(mat.conductivity()/mat.thickness()*t0_in_east_4)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_east_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_east_4)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_north = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

Page 105: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

LW*IskyLWabs(i)+...

theta_in_north(i)*IsunSWabs(i)+...

L_reflected_north+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_north)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_north = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_north)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_west(i)*IsunSWabs(i)+...

L_reflected_west+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_floor_left(4)^4+...

(mat.conductivity()/mat.thickness()*t0_in_west) + 5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_south = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_south(i)*IsunSWabs(i)+...

L_reflected_south+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_south)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_south = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_south)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_top = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

IskySWabs(i)+...

Page 106: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

IskyLWabs(i)+...

cos(theta_Z(i)*pi/180)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_top)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_top = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_top)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_bot = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_in_bot)+5.6*t0_air,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_in_bot = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_bot_1),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW(i)+...

asphalt_ground.emissivity()*IskyLW(i)+...

0*cos(theta_Z(i)*pi/180)*(1-asphalt_ground.albedo())*IsunSW(i)+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_in_ground)+5.6*Tair(i),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_ground),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_air = [C_air*Massdensity_air*Volume, ...

(5.6*are(mat_east_west_1)*t0_in_east_1 + 5.6*are(mat_east_west_2)*t0_in_east_2+...

5.6*are(mat_east_west_3)*t0_in_east_3+...

5.6*are(mat_east_west_4)*t0_in_east_4+...

are(mat_north_south)*5.6*t0_in_north +...

5.6*are(mat_east_west)*t0_in_west +are(mat_north_south)*5.6*t0_in_south+...

5.6*are(mat_top_bot)*t0_in_top +5.6*are(mat_top_bot)*t0_bot),...

(5.6)*(are(mat_east_west)+ are(mat_east_west_2)+...

are(mat_east_west_1)+are(mat_east_west_3)+...

are(mat_east_west_4)+ 2*are(mat_top_bot) + 2*are(mat_north_south)),...

0];

Page 107: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

%%%%%%%%%%%%%%%%% Second Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S_params_out_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

0*theta_in_east(i)*IsunSWabs(i)+...

0.45*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_floor_right(1)^4+...

0*L_reflected_east+...

(mat.conductivity()/mat.thickness()*S_t0_in_east_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

S_params_in_east_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*S_t0_east_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_1+...

qqqq*theta_in_west(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_2+...

qqq*theta_in_west(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_2)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_2 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_2)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_3+...

Page 108: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

qq*theta_in_west(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_3)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_3 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_3)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

mat.emissivity()*L_west_4+...

q*theta_in_west(i)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_west_1_4)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1_4 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1_4)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_north_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_north(i)*IsunSWabs(i)+...

L_reflected_north+...

0.5*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_north_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_north_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_north_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_west_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

IskyLWabs(i)+...

theta_in_west(i)*IsunSWabs(i)+...

L_reflected_west+...

0.45*asphalt_ground.emissivity()*SBconst*t_diff_west+...

Page 109: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(mat.conductivity()/mat.thickness()*t0_in_west_1) + 5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_west_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_west_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_south_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

R_d(i)*IskySWabs(i)+...

LW*IskyLWabs(i)+...

theta_in_south(i)*IsunSWabs(i)+...

L_reflected_south+...

0.5*mat.emissivity()*asphalt_ground.emissivity()*SBconst*t0_ground_1^4+...

(mat.conductivity()/mat.thickness()*t0_in_south_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_south_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_south_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_out_top_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

IskySWabs(i)+...

IskyLWabs(i)+...

cos(theta_Z(i)*pi/180)*IsunSWabs(i)+...

(mat.conductivity()/mat.thickness()*t0_in_top_1)+5.6*Tair(i),...

(mat.conductivity()/mat.thickness()+5.6),...

mat.emissivity()*SBconst];

params_in_top_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_top)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW(i)+...

asphalt_ground.emissivity()*IskyLW(i)+...

cos(theta_Z(i)*pi/180)*(1-asphalt_ground.albedo())*IsunSW(i)+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_in_ground_1)+5.6*Tair(i),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

Page 110: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_ground_1),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_bot_1 = [0.5*mat.heatcapacity()*mat.massdensity()*mat.thickness(), ...

(mat.conductivity()/mat.thickness()*t0_in_bot_1)+5.6*t0_air_1,...

(mat.conductivity()/mat.thickness()+5.6),...

0];

params_in_bot_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*t0_bot_1),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_air_1 = [C_air*Massdensity_air*Volume, ...

(5.6*are(mat_east_west_1)*t0_in_west_1_1 + 5.6*are(mat_east_west_2)*t0_in_west_1_2+...

5.6*are(mat_east_west_3)*t0_in_west_1_3+...

5.6*are(mat_east_west_4)*t0_in_west_1_4+...

are(mat_north_south)*5.6*t0_in_north_1 +...

5.6*are(mat_east_west)*S_t0_in_east_1 +are(mat_north_south)*5.6*t0_in_south_1+...

5.6*are(mat_top_bot)*t0_in_top_1 +5.6*are(mat_top_bot)*t0_bot_1),...

(5.6)*(are(mat_east_west) + 2*are(mat_top_bot) + 2*are(mat_north_south)+...

are(mat_east_west_3)+are(mat_east_west_2)+are(mat_east_west_4)+are(mat_east_west_1)),...

0];

%%%%%%%%%%%%%%%%%% Container 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[t0_east,t0_in_east] = runge(params_out_east, params_in_east, t0_east, t0_in_east, h);

[t0_east_1,t0_in_east_1] = runge(params_out_east_1, params_in_east_1, t0_east_1, t0_in_east_1, h);

[t0_east_2,t0_in_east_2] = runge(params_out_east_2, params_in_east_2, t0_east_2, t0_in_east_2, h);

[t0_east_3,t0_in_east_3] = runge(params_out_east_3, params_in_east_3, t0_east_3, t0_in_east_3, h);

[t0_east_4,t0_in_east_4] = runge(params_out_east_4, params_in_east_4, t0_east_4, t0_in_east_4, h);

[t0_west,t0_in_west] = runge(params_out_west, params_in_west, t0_west, t0_in_west, h);

[t0_north,t0_in_north] = runge(params_out_north, params_in_north, t0_north, t0_in_north, h);

[t0_south,t0_in_south] = runge(params_out_south, params_in_south, t0_south, t0_in_south, h);

[t0_top,t0_in_top] = runge(params_out_top, params_in_top, t0_top, t0_in_top, h);

[t0_ground,t0_in_ground] = runge(params_ground, params_in_ground, t0_ground, t0_in_ground, h);

Page 111: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

[t0_bot, t0_in_bot] = runge(params_bot, params_in_bot,t0_bot, t0_in_bot, h);

t0_air = forward_air(params_air,t0_air,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% Second Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[S_t0_east_1,S_t0_in_east_1] = runge(S_params_out_east_1, S_params_in_east_1, S_t0_east_1, S_t0_in_east_1, h);

[t0_west_1_1,t0_in_west_1_1] = runge(params_out_west_1_1, params_in_west_1_1, t0_west_1_1, t0_in_west_1_1, h);

[t0_west_1_2,t0_in_west_1_2] = runge(params_out_west_1_2, params_in_west_1_2, t0_west_1_2, t0_in_west_1_2, h);

[t0_west_1_3,t0_in_west_1_3] = runge(params_out_west_1_3, params_in_west_1_3, t0_west_1_3, t0_in_west_1_3, h);

[t0_west_1_4,t0_in_west_1_4] = runge(params_out_west_1_4, params_in_west_1_4, t0_west_1_4, t0_in_west_1_4, h);

[t0_west_1,t0_in_west_1] = runge(params_out_west_1, params_in_west_1, t0_west_1, t0_in_west_1, h);

[t0_north_1,t0_in_north_1] = runge(params_out_north_1, params_in_north_1, t0_north_1, t0_in_north_1, h);

[t0_south_1,t0_in_south_1] = runge(params_out_south_1, params_in_south_1, t0_south_1, t0_in_south_1, h);

[t0_top_1,t0_in_top_1] = runge(params_out_top_1, params_in_top_1, t0_top_1, t0_in_top_1, h);

[t0_ground_1,t0_in_ground_1] = runge(params_ground_1, params_in_ground_1, t0_ground_1, t0_in_ground_1, h);

[t0_bot_1, t0_in_bot_1] = runge(params_bot_1, params_in_bot_1,t0_bot_1, t0_in_bot_1, h);

t0_air_1 = forward_air(params_air,t0_air_1,h);

%%%%%%%%%%%%%%%% Ground %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[t0_floor(1), t0_floor_in(1),t0_floor(2), t0_floor_in(2),t0_floor(3),...

t0_floor_in(3),t0_floor(4), t0_floor_in(4)]=ground_floor_2(t0_floor(1),...

t0_floor_in(1), t0_floor(2),t0_floor_in(2),...

t0_floor(3),t0_floor_in(3), t0_floor(4),t0_floor_in(4),h,IskySW(i),IskyLW(i),...

theta_Z(i),IsunSW(i),Tair(i),L_ground_wall_1,L_ground_wall_2,L_ground_wall_4,i);

[t0_floor_right(1), t0_floor_right_in(1),t0_floor_right(2), t0_floor_right_in(2),...

t0_floor_right(3), t0_floor_right_in(3),t0_floor_right(4), t0_floor_right_in(4)]=...

ground_floor_right(t0_floor_right(1),t0_floor_right_in(1), t0_floor_right(2),...

t0_floor_right_in(2),...

t0_floor_right(3),t0_floor_right_in(3), t0_floor_right(4),t0_floor_right_in(4),...

Page 112: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

h,IskySW(i),IskyLW(i),theta_Z(i),IsunSW(i),Tair(i),i);

[t0_floor_left(1), t0_floor_left_in(1),t0_floor_left(2), t0_floor_left_in(2),t0_floor_left(3), t0_floor_left_in(3),t0_floor_left(4), t0_floor_left_in(4)]=ground_floor_left(t0_floor_left(1),t0_floor_left_in(1), t0_floor_left(2),t0_floor_left_in(2),...

t0_floor_left(3),t0_floor_left_in(3), t0_floor_left(4),t0_floor_left_in(4),h,IskySW(i),IskyLW(i),theta_Z(i),IsunSW(i),Tair(i),i);

end

end

%%%%%%%%% Container 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ttt_out_east(i,1) = t0_east; ttt_in_east(i,1) = t0_in_east;

ttt_out_east_1(i,1) = t0_east_1; ttt_in_east_1(i,1) = t0_in_east_1;

ttt_out_east_2(i,1) = t0_east_2; ttt_in_east_2(i,1) = t0_in_east_2;

ttt_out_east_3(i,1) = t0_east_3; ttt_in_east_3(i,1) = t0_in_east_3;

ttt_out_east_4(i,1) = t0_east_4; ttt_in_east_4(i,1) = t0_in_east_4;

ttt_out_north(i,1) = t0_north; ttt_in_north(i,1) = t0_in_north;

ttt_out_west(i,1) = t0_west; ttt_in_west(i,1) = t0_in_west;

ttt_out_south(i,1) = t0_south; ttt_in_south(i,1) = t0_in_south;

ttt_out_top(i,1) = t0_top; ttt_in_top(i,1) = t0_in_top;

ttt_bot(i,1) = t0_bot;ttt_in_bot(i,1) = t0_in_bot;

ttt_ground(i,1) = t0_ground;

ttt_air(i,1) = t0_air;

%%%%%%%%% Container 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S_ttt_out_east_1(i,1) = S_t0_east_1; S_ttt_in_east_1(i,1) = S_t0_in_east_1;

ttt_out_west_1_1(i,1) = t0_west_1_1; ttt_in_west_1_1(i,1) = t0_in_west_1_1;

ttt_out_west_1_2(i,1) = t0_west_1_2; ttt_in_west_1_2(i,1) = t0_in_west_1_2;

ttt_out_west_1_3(i,1) = t0_west_1_3; ttt_in_west_1_3(i,1) = t0_in_west_1_3;

ttt_out_west_1_4(i,1) = t0_west_1_4; ttt_in_west_1_4(i,1) = t0_in_west_1_4;

surftemp_out_floor(i+1,1) = t0_floor(1);

surftemp_out_floor(i+1,2) = t0_floor(2);

surftemp_out_floor(i+1,3) = t0_floor(3);

surftemp_out_floor(i+1,4) = t0_floor(4);

Page 113: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

surftemp_out_floor_right(i+1,1) = t0_floor_right(1);

surftemp_out_floor_right(i+1,2) = t0_floor_right(2);

surftemp_out_floor_right(i+1,3) = t0_floor_right(3);

surftemp_out_floor_right(i+1,4) = t0_floor_right(4);

surftemp_out_floor_left(i+1,1) = t0_floor_left(1);

surftemp_out_floor_left(i+1,2) = t0_floor_left(2);

surftemp_out_floor_left(i+1,3) = t0_floor_left(3);

surftemp_out_floor_left(i+1,4) = t0_floor_left(4);

ttt_out_north_1(i,1) = t0_north_1; ttt_in_north_1(i,1) = t0_in_north_1;

ttt_out_west_1(i,1) = t0_west_1; ttt_in_west_1(i,1) = t0_in_west_1;

ttt_out_south_1(i,1) = t0_south_1; ttt_in_south_1(i,1) = t0_in_south_1;

ttt_out_top_1(i,1) = t0_top_1; ttt_in_top_1(i,1) = t0_in_top_1;

ttt_bot_1(i,1) = t0_bot_1; ttt_in_bot_1(i,1) = t0_in_bot_1;

ttt_ground_1(i,1) = t0_ground_1;

ttt_air_1(i,1) = t0_air_1;

w = w-(15*pi/180);

end

abc = 1:1:23;

%%%%%%%%%%%%%%%%%%% Container One %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

surftemp_out_east(2:23,1) = ttt_out_east(:,1)-273.15; surftemp_in_east(2:23,1) = ttt_in_east(:,1)-273.15;

surftemp_out_east_1(2:23,1) = ttt_out_east_1(:,1)-273.15; surftemp_in_east_1(2:23,1) = ttt_in_east_1(:,1)-273.15;

surftemp_out_east_2(2:23,1) = ttt_out_east_2(:,1)-273.15; surftemp_in_east_2(2:23,1) = ttt_in_east_2(:,1)-273.15;

surftemp_out_east_3(2:23,1) = ttt_out_east_3(:,1)-273.15; surftemp_in_east_3(2:23,1) = ttt_in_east_3(:,1)-273.15;

surftemp_out_east_4(2:23,1) = ttt_out_east_4(:,1)-273.15; surftemp_in_east_4(2:23,1) = ttt_in_east_4(:,1)-273.15;

surftemp_out_north(2:23,1) = ttt_out_north(:,1)-273.15; surftemp_in_north(2:23,1) = ttt_in_north(:,1)-273.15;

surftemp_out_west(2:23,1) = ttt_out_west(:,1)-273.15; surftemp_in_west(2:23,1) = ttt_in_west(:,1)-273.15;

surftemp_out_south(2:23,1) = ttt_out_south(:,1)-273.15; surftemp_in_south(2:23,1) = ttt_in_south(:,1)-273.15;

surftemp_out_top(2:23,1) = ttt_out_top(:,1)-273.15; surftemp_in_top(2:23,1) = ttt_in_top(:,1)-273.15;

surftemp_out_bot(2:23,1) = ttt_bot(:,1)-273.15; surftemp_in_bot(2:23,1) = ttt_in_bot(:,1)-273.15;

surftemp_ground(2:23,1) = ttt_ground(:,1)-273.15;

T_air(2:23,1) = ttt_air(:,1);

T_air = T_air - 273.15;

%%%%%%%%%%%%%%%%%%% Container two %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S_surftemp_out_east_1(2:23,1) = S_ttt_out_east_1(:,1)-273.15; S_surftemp_in_east_1(2:23,1) = S_ttt_in_east_1(:,1)-273.15;

surftemp_out_west_1_1(2:23,1) = ttt_out_west_1_1(:,1)-273.15; surftemp_in_west_1_1(2:23,1) = ttt_in_west_1_1(:,1)-273.15;

surftemp_out_west_1_2(2:23,1) = ttt_out_west_1_2(:,1)-273.15; surftemp_in_west_1_2(2:23,1) = ttt_in_west_1_2(:,1)-273.15;

surftemp_out_west_1_3(2:23,1) = ttt_out_west_1_3(:,1)-273.15; surftemp_in_west_1_3(2:23,1) = ttt_in_west_1_3(:,1)-273.15;

Page 114: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

surftemp_out_west_1_4(2:23,1) = ttt_out_west_1_4(:,1)-273.15; surftemp_in_west_1_4(2:23,1) = ttt_in_west_1_4(:,1)-273.15;

surftemp_out_north_1(2:23,1) = ttt_out_north_1(:,1)-273.15; surftemp_in_north_1(2:23,1) = ttt_in_north_1(:,1)-273.15;

surftemp_out_west_1(2:23,1) = ttt_out_west_1(:,1)-273.15; surftemp_in_west_1(2:23,1) = ttt_in_west_1(:,1)-273.15;

surftemp_out_south_1(2:23,1) = ttt_out_south_1(:,1)-273.15; surftemp_in_south_1(2:23,1) = ttt_in_south_1(:,1)-273.15;

surftemp_out_top_1(2:23,1) = ttt_out_top_1(:,1)-273.15; surftemp_in_top_1(2:23,1) = ttt_in_top_1(:,1)-273.15;

surftemp_out_bot_1(2:23,1) = ttt_bot_1(:,1)-273.15; surftemp_in_bot_1(2:23,1) = ttt_in_bot_1(:,1)-273.15;

surftemp_ground_1(2:23,1) = ttt_ground_1(:,1)-273.15;

T_air_1(2:23,1) = ttt_air_1(:,1);

T_air_1 = T_air_1 - 273.15;

surftemp_out_floor(2:end,1) = surftemp_out_floor(2:end,1) - 273.15;

surftemp_out_floor(2:end,2) = surftemp_out_floor(2:end,2)- 273.15;

surftemp_out_floor(2:end,3) = surftemp_out_floor(2:end,3)- 273.15;

surftemp_out_floor(2:end,4) = surftemp_out_floor(2:end,4)- 273.15;

surftemp_out_floor_right(2:end,1) = surftemp_out_floor_right(2:end,1) - 273.15;

surftemp_out_floor_right(2:end,2) = surftemp_out_floor_right(2:end,2)- 273.15;

surftemp_out_floor_right(2:end,3) = surftemp_out_floor_right(2:end,3)- 273.15;

surftemp_out_floor_right(2:end,4) = surftemp_out_floor_right(2:end,4)- 273.15;

surftemp_out_floor_left(2:end,1) = surftemp_out_floor_left(2:end,1) - 273.15;

surftemp_out_floor_left(2:end,2) = surftemp_out_floor_left(2:end,2)- 273.15;

surftemp_out_floor_left(2:end,3) = surftemp_out_floor_left(2:end,3)- 273.15;

surftemp_out_floor_left(2:end,4) = surftemp_out_floor_left(2:end,4)- 273.15;

%%%%%%%%%%%% First Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

east(:,1) = surftemp_out_east; east(:,2) = surftemp_in_east; east(:,3) = 1;

east_con(:,1) = surftemp_out_east; east_con(:,2) = surftemp_out_east_1; east_con(:,3) = surftemp_out_east_2;

east_con(:,4) = surftemp_out_east_3; east_con(:,5) = surftemp_out_east_4;

north(:,1) = surftemp_out_north ;north(:,2) = surftemp_in_north; north(:,3) =2;

west(:,1) = surftemp_out_west; west(:,2) = surftemp_in_west; west(:,3) =3;

south(:,1) = surftemp_out_south; south(:,2) = surftemp_out_south; south(:,3) =4;

top(:,1) = surftemp_out_top; top(:,2) = surftemp_in_top; top(:,3) = 5;

bot(:,1) = surftemp_out_bot; bot(:,2) = surftemp_in_bot; bot(:,3) = 6;

ground(:,1) = surftemp_ground ;

Tair = Tair - 273.15;

one = container(east_con, west,top,bot,north,south, T_air);

%%%%%%%%%%%% Second Container %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

east_1(:,1) = S_surftemp_out_east_1; east_1(:,2) = S_surftemp_in_east_1; east_1(:,3) = 1;

north_1(:,1) = surftemp_out_north_1 ;north_1(:,2) = surftemp_in_north_1; north_1(:,3) =2;

west_1(:,1) = surftemp_out_west_1; west_1(:,2) = surftemp_in_west_1; west_1(:,3) =3;

west_1_con(:,1) = surftemp_out_west_1; west_1_con(:,2) = surftemp_out_west_1_1; west_1_con(:,3) = surftemp_out_west_1_2;

west_1_con(:,4) = surftemp_out_west_1_3;west_1_con(:,5) = surftemp_out_west_1_4;

south_1(:,1) = surftemp_out_south_1; south(:,2) = surftemp_out_south_1; south_1(:,3) =4;

Page 115: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

top_1(:,1) = surftemp_out_top; top_1(:,2) = surftemp_in_top_1; top_1(:,3) = 5;

bot_1(:,1) = surftemp_out_bot; bot_1(:,2) = surftemp_in_bot_1; bot_1(:,3) = 6;

ground_1(:,1) = surftemp_ground_1 ;

two = container(east_1, west_1_con,top_1,bot_1,north_1,south_1,T_air_1);

%%%% container_1 - in top south north west east(bot, bot mid, top mid, top)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 3D Model Plotting %%%%%%%%

% for i =6:length(Tair)-1

% j =i-5;

% container_1 = one.get_container_one(i)+273.15 ;

% container_2 = two.get_container_two(i)+273.15;

% % plot33(surftemp_ground(i,1), Tair(i), container_1, container_2,surftemp_out_floor(i,:),surftemp_out_floor_left(i,:),...

% % surftemp_out_floor_right(i,:),150,i);

% MRT(i,1) = mean_radiant(IsunSW(i), IskySW(i), IskyLW(i), container_1, container_2,surftemp_out_floor(i,:),theta_Z(i), theta_in_east(i),theta_in_south(i),theta_in_north(i), theta_in_west(i),mat,asphalt_ground,R_d(i),j);

% txt = [’Time: ’ num2str(i) ];

% % title(txt)

% % pause(0.05)

%

% % fig = gcf;

% % filename = sprintf(’%d.png’,i);

% % saveas(fig, filename);

% % % G(i) = getframe(gcf)

% end

% ccd = 6:1:22;

% plot(ccd,MRT(6:22,1)-273.15,’linestyle’,’-’,’color’,’red’,’linewidth’,2)

% title("Mean Radiant Temperature")

% xlim([6 22]);

% ylim([10 70]);

% set(gca,’XTick’,[6:2:22]);

% set(gca,’YTick’,[10:10:70]);

% set(gca,’TickLength’,[0.02 0.02],’xminortick’,’off’,’yminortick’,’off’);

% set(gca,’FontSize’,20,’LineWidth’,3);

% ylabel(’Temperature(^oC)’);

% xlabel(’Hour’);

% video = VideoWriter(’myvid2’,’MPEG-4’);

% video.FrameRate = 2;

% open(video)

% writeVideo(video,G);

% close(video)

Page 116: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% Container Surface Plotting %%%%%%%%%%%%%%%%%%

% figure(1)

% plotwall( IsunSW,T_air, east)

% figure(2)

% plotwall( IsunSW,T_air, west)

% figure(3)

% plotwall( IsunSW,T_air, top)

% figure(4)

% plotwall( IsunSW,T_air, bot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = mean_radiant(direct_sun, diffused_sky, long_sky, cont_1,...

cont_2, ground,theta_Z, theta_east,theta_in_south,theta_in_north,...

theta_west,mat,mat_2,R_d,i)

if i >=6 & i <=8

aa = 1;

else

aa = 0;

end

if i>=5 &i<=7

bb= 1;

else

bb=0;

end

if i>=7 & i<=9

cc= 1;

else

cc=0;

end

SBconst = 5.67e-8;

top_radiance = (1-0.3)*(0.0355*sin(theta_Z*pi/180) +...

2.33*cos(theta_Z*pi/180)*0.123)*(aa*direct_sun) + 0.28*(diffused_sky+long_sky);

sides = (0.26*mat.emissivity()*SBconst*((cont_1(6))^4+...

cont_2(6)^4))+...

0.319*(mat_2.emissivity()*SBconst*(ground(1)^4 + ground(4)^4)) +...

0*(0.0945*mat.emissivity()*SBconst*((cont_1(6))^4+ cont_2(6)^4)) ;

front_back = 0.1388*(2*mat_2.emissivity()*SBconst*(ground(2)^4 )) ;

total = top_radiance + sides + front_back;

out = (total/(SBconst*0.90))^(1/4);

Page 117: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

end

function [pan_1,pan_1_in, pan_2,pan_2_in, pan_3,pan_3_in, pan_4,pan_4_in] = ...

ground_floor_left(panel_1,panel_1_in, panel_2,panel_2_in,...

panel_3, panel_3_in, panel_4, panel_4_in,h,IskySW,IskyLW,theta_Z,...

IsunSW,Tair,steps)

asphalt_ground = sur(0.93,0.75, 0.16,920,0.1, 2360, [0 10], [0 10], [0 0],...

25+273.15);

asphalt_ground_1 = sur(0.93,0.75, 0.16,920,0.5, 2360, [0 10],...

[0 10], [0 0], 25+273.15);

SBconst= 5.67e-8;

if steps ==10

params_ground_1 = ...

[0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*...

asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+...

5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

Page 118: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

asphalt_ground.emissivity()*SBconst];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

1*asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground, params_in_ground, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_1, params_in_ground_1, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_2, params_in_ground_2, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_3, params_in_ground_3, panel_4, panel_4_in, h);

elseif steps ==11

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

Page 119: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground = [0.5*asphalt_ground_1.heatcapacity()*asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground.thickness()),...

0];

params_in_ground_2 = [0.5*asphalt_ground_1.heatcapacity()*asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_3 = [0.5*asphalt_ground_1.heatcapacity()*asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground, params_in_ground, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_1, params_in_ground_4, panel_4, panel_4_in, h);

elseif steps <10

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

Page 120: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_3 = [0.5*asphalt_ground_1.heatcapacity()*asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground_1.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground_1.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_4 = [0.5*asphalt_ground_1.heatcapacity()*asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground_1.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground_1.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

else

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

Page 121: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

params_in_ground = [0.5*asphalt_ground_1.heatcapacity()*...

asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground_1.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*...

panel_4_in)+5.6*Tair,...

Page 122: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground,...

panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2,...

panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3,...

panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4,...

panel_4, panel_4_in, h);

end

end

function [pan_1,pan_1_in, pan_2,pan_2_in, pan_3,pan_3_in, pan_4,pan_4_in] = ground_floor_right(panel_1,panel_1_in, panel_2,panel_2_in,...

panel_3, panel_3_in, panel_4, panel_4_in,h,IskySW,IskyLW,theta_Z,IsunSW,Tair,steps)

asphalt_ground = sur(0.93,0.75, 0.16,920,0.1, 2360, [0 10], [0 10], [0 0], 25+273.15);

asphalt_ground_1 = sur(0.93,0.75, 0.16,920,0.5, 2360, [0 10], [0 10], [0 0], 25+273.15);

SBconst= 5.67e-8;

if steps ==13

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

Page 123: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_2, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_3, params_in_ground_4, panel_4, panel_4_in, h);

elseif steps ==14

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

Page 124: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

asphalt_ground.emissivity()*SBconst];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground_1.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

elseif steps >14

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

Page 125: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

asphalt_ground.emissivity()*SBconst];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

else

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

Page 126: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

(1-asphalt_ground.albedo())*IskySW+...

asphalt_ground.emissivity()*IskyLW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

Page 127: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

end

end

function [pan_1,pan_1_in, pan_2,pan_2_in, pan_3,pan_3_in, pan_4,pan_4_in] = ground_floor_1(panel_1,panel_1_in, panel_2,panel_2_in,...

panel_3, panel_3_in, panel_4, panel_4_in,h,IskySW,IskyLW,theta_Z,IsunSW,Tair,L_ground_wall_1,L_ground_wall_2,L_ground_wall_4,steps)

asphalt_ground = sur(0.93,0.75, 0.16,920,0.1, 2360, [0 10], [0 10], [0 0], 25+273.15);

asphalt_ground_1 = sur(0.93,0.75, 0.16,920,1, 2360, [0 10], [0 10], [0 0], 25+273.15);

SBconst= 5.67e-8;

sv1 = 0.2635;

sv2 =0.2885;

longw_1 = asphalt_ground.emissivity()*L_ground_wall_1;

longw_2 = asphalt_ground.emissivity()*L_ground_wall_2;

longw_3 = asphalt_ground.emissivity()*L_ground_wall_4;

if steps ==10

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_1+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

Page 128: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

longw_2+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_3+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

elseif steps ==11

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_1+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

Page 129: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+....

longw_2+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_3+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

elseif steps ==12

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_1+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

Page 130: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_3+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

else

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_1+...

Page 131: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+...

5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*...

asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_3+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*...

Page 132: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, ...

panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2,...

panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3,...

panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, ...

panel_4, panel_4_in, h);

end

end

function [pan_1,pan_1_in, pan_2,pan_2_in, pan_3,pan_3_in, pan_4,pan_4_in] =...

ground_floor_2(panel_1,panel_1_in, panel_2,panel_2_in,...

panel_3, panel_3_in, panel_4, panel_4_in,h,IskySW,IskyLW,theta_Z,...

IsunSW,Tair,L_ground_wall_1,L_ground_wall_2,L_ground_wall_4,steps)

asphalt_ground = sur(0.93,0.75, 0.16,920,0.1, 2360, [0 10], [0 10],...

[0 0], 25+273.15);

asphalt_ground_1 = sur(0.93,0.75, 0.16,920,1, 2360, [0 10], [0 10],...

[0 0], 25+273.15);

SBconst= 5.67e-8;

sv1 = 0.2635;

sv2 =0.2885;

longw_1 = asphalt_ground.emissivity()*L_ground_wall_1;

longw_2 = asphalt_ground.emissivity()*L_ground_wall_2;

longw_3 = asphalt_ground.emissivity()*L_ground_wall_4;

if steps ==13

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_1+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

Page 133: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

longw_2+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

longw_3+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

elseif steps ==14

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_1+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

Page 134: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

longw_2+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

longw_3+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

Page 135: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

else

params_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

longw_1+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_1 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_1),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_2 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_2),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv2*(1-asphalt_ground.albedo())*IskySW+...

longw_2+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_3 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_3),...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

params_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground.thickness(), ...

sv1*(1-asphalt_ground.albedo())*IskySW+...

longw_3+...

0*cos(theta_Z*pi/180)*(1-asphalt_ground.albedo())*IsunSW+...

(asphalt_ground.conductivity()/asphalt_ground.thickness()*298)+5.6*Tair,...

(asphalt_ground.conductivity()/asphalt_ground.thickness()+5.6),...

asphalt_ground.emissivity()*SBconst];

params_in_ground_4 = [0.5*asphalt_ground.heatcapacity()*asphalt_ground.massdensity()*asphalt_ground_1.thickness(), ...

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()*panel_4),...

Page 136: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

(asphalt_ground.conductivity()/asphalt_ground_1.thickness()),...

0];

[pan_1, pan_1_in] = runge(params_ground_1, params_in_ground_1, panel_1, panel_1_in, h);

[pan_2, pan_2_in] = runge(params_ground_2, params_in_ground_2, panel_2, panel_2_in, h);

[pan_3, pan_3_in] = runge(params_ground_3, params_in_ground_3, panel_3, panel_3_in, h);

[pan_4, pan_4_in] = runge(params_ground_4, params_in_ground_4, panel_4, panel_4_in, h);

end

end

function plotwall( IsunSW,T_air, varargin )

x = 6:1:22;

yyaxis left

plot(x,T_air(:,1),’-’,’LineWidth’,3,’color’,’b’);

hold on

for i =1:length(varargin)

abc = varargin{i} ;

plot(x,varargin{i}(:,1),’-’,’LineWidth’,3,’color’,’k’);

hold on;

plot(x,varargin{i}(:,2) ,’-’,’LineWidth’,3,’color’,’r’);

hold on;

end

face = varargin{1};

ylabel(’Temperature / ^o C’)

xlim([6 22]);

ylim([20 60]);

yyaxis right

x = 6:1:22;

plot(x,IsunSW, ’linestyle’,’--’,’linewidth’,3.5,’color’,’r’)

hold on

ylabel(’Radiation/(Wm^{-2})’)

ylim([0 800]);

%

set(gca,’FontSize’,30,’LineWidth’,2.5);

set(gca,’TickLength’,[0.0275 0.0275],’xminortick’,’off’,’yminortick’,’on’);

set(gca,’FontSize’,30,’LineWidth’,2.5);

box on;

Page 137: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

%

% print(gcf,’-dpng’, ’-r300’,[’Fig2.png’]);

%

xlabel(’Hour’);

if face(1,3) == 1

Location = ’East Wall ’;

elseif face(1,3)== 2

Location = ’North Wall ’;

elseif face(1,3) == 3

Location = ’West Wall ’;

elseif face(1,3) == 4

Location = ’South Wall ’;

elseif face(1,3) == 5

Location = "Top Wall";

else

Location = "Bottom Wall";

end

title([Location])

box on;

aaa = legend(’Air temperature’, ’Outer Wall’, ’Inner Wall’, "I_{sun}");

set(aaa, ’FontSize’ , 10);

legend(’boxoff’);

end

function f = fun(theta_Z, direct, diff, table)

eps = (((direct+diff)/diff) + 5.535E-6 * theta_Z^3)/(1+5.535E-6 * theta_Z^3);

delta = (1/cos(theta_Z*pi/180))*diff/1367;

if (eps>=1) && (eps<=1.065)

f11 = table(1,1);f12 = table(1,2);f13 = table(1,3);f21 = table(1,4);f22 = table(1,5);f23 = table(1,6);

elseif (eps>=1.065) && (eps<=1.23)

f11 = table(2,1);f12 = table(2,2);f13 = table(2,3);f21 = table(2,4);f22 = table(2,5);f23 = table(2,6);

elseif (eps>1.23) && (eps<=1.5)

f11 = table(3,1);f12 = table(3,2);f13 = table(3,3);f21 = table(3,4);f22 = table(3,5);f23 = table(3,6);

elseif (eps>1.5) && (eps<=1.95)

f11 = table(4,1);f12 = table(4,2);f13 = table(4,3);f21 = table(4,4);f22 = table(4,5);f23 = table(4,6);

elseif (eps>1.95) && (eps<=2.8)

f11 = table(5,1);f12 = table(5,2);f13 = table(5,3);f21 = table(5,4);f22 = table(5,5);f23 = table(5,6);

elseif (eps>2.8) && (eps<=4.5)

f11 = table(6,1);f12 = table(6,2);f13 = table(6,3);f21 = table(6,4);f22 = table(6,5);f23 = table(6,6);

elseif (eps>4.5) && (eps<=6.2)

f11 = table(7,1);f12 = table(7,2);f13 = table(7,3);f21 = table(7,4);f22 = table(7,5);f23 = table(7,6);

else

Page 138: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

f11 = table(8,1);f12 = table(8,2);f13 = table(8,3);f21 = table(8,4);f22 = table(8,5);f23 = table(1,6);

end

F = f11 + delta*f12 + (pi*theta_Z/180)*f13;

F1 = max(0,F);

FF = f21 + delta*f22 + (pi*theta_Z/180)*f23;

F2 = max(0,FF);

f = 0.5*(1-F1) + F2;

end

% View factor model

function F = vv1(W,L,H)

N=1024; M = 100;

for j=1:M

%f= @(z,y1,x,y2) (1/pi)*(x+3).*(y2-x*tan(20*pi/180))./((3+x).^2+z.^2+(y2-x*tan(20*pi/180)).^2).^2; %Defines the function

f= @(z,y1,x,y2) (1/pi)*x.*z./(x.^2+z.^2+(y2-y1).^2).^2;

for i=1:N fi(i)=f(rand*H, rand*L, rand*W, rand*L);end; %Computes its values

F12(j) =(H*L/N)*sum(fi); %View factor estimation

end

F = sum(F12)/M;

end

function F = vv2(x,y1,y2,z1,z2)

N=3000; M = 100;

for j=1:M

%%%%%% Rectangle Configuration %%%%%%%%%%%%%%

a = 0;%z1/2;

f= @(z1,z2,y1,y2) (1/pi)*((x.^2 )./(x.^2+(y1-(y2)).^2 + ((z1)-(z2-a)).^2).^2);

for i=1:N fi(i)=f(rand*z1, rand*z2, rand*y1, rand*y2);end; %Computes its values

F12(j) =(y2*z2/N)*sum(fi); %View factor estimation

end

F = sum(F12)/M;

end

function [out,in] = runge(params1, params2, t0_out, t0_in, h)

out = (h/params1(1))*(params1(2) - params1(3)*t0_out - params1(4)*t0_out^4) + t0_out;

in = (h/params2(1))*(params2(2) - params2(3)*t0_in) + t0_in;

end

function out = forward_air(params, t0_air,h)

out = (h/params(1))*(params(2)-params(3)*t0_air) + t0_air;

end

function plot33(t_ground, t_air, container_1, container_2 ,ground_mid,ground_left, ground_right, b,i)

%%%% container_1 - in top south north west east(bot, bot mid, top mid, top)

x = linspace(1,b,b);

Page 139: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

y = linspace(1,100,100);

c= round(b/5);

[X Y Z] = meshgrid(x,x,y);

a(b,b,100) = 0;

% a(:,:,:) = t_air;

a(:,:,1:5) = t_ground; %ground

a(:,c +33:c +43,1:5) = ground_mid(1); %ground mid

a(:,c +44:c +48,1:5) = ground_mid(2); %ground mid

a(:,c +49:c +58,1:5) = ground_mid(4); %ground mid

a(:,124:133,1:5) = ground_right(1); %ground right

a(:,134:144,1:5) = ground_right(2); %ground right

a(:,145:end,1:5) = ground_right(4); %ground right

a(:,1:11,1:5) = ground_left(1); %ground left

a(:,12:23,1:5) = ground_left(2); %ground left

a(:,24:c -1,1:5) = ground_left(4); %ground left

a(3:b-3,c:c +31,5:40) = container_1(1); %volume

a(3:b-3,c:c +31,40+1:40+2) = container_1(2); %Top

a(3:b-3,c-2:c +33,1:5) = container_1(10); %Bot

a(1:2,c:c +31,5:40) = container_1(3); %South

a(end-1:end,c:c +31,5:40) = container_1(4); %North

a(3:b-3,c-2:c-1,5:40) = container_1(5); %West

a(3:b-3,c +32:c +33,5:21) = container_1(6); %East

a(3:b-3,c +32:c +33,22:30) = container_1(7); %East

a(3:b-3,c +32:c +33,31:37) = container_1(8); %East

a(3:b-3,c +32:c +33,38:40) = container_1(9); %East

%%%%%Container 2

%%%% container_2 - in top south north east west(bot, bot mid, top mid, top)

a(3:b-3,3*c:3*c +31,5:40) = container_2(1); %volume

a(3:b-3,3*c:3*c +31,40+1:40+2) = container_2(2); %Top

a(3:b-3,3*c-2:3*c +33,1:5) = container_2(10); %Bot

a(1:2,3*c:3*c +31,5:40) = container_2(3); %South

a(end-1:end,3*c:3*c +31,5:40) = container_2(4); %North

a(3:b-3,3*c +32:3*c +33,5:40) = container_2(5); %East

a(3:b-3,3*c-2:3*c -1,5:21) = container_2(6); %west

a(3:b-3,3*c-2:3*c -1,22:30) = container_2(7); %west

a(3:b-3,3*c-2:3*c -1,31:37) = container_2(8); %west

a(3:b-3,3*c-2:3*c -1,38:40) = container_2(9); %west

d = pcolor3(X,Y,Z,a);

Page 140: Heat Transfer for Infrastructural Development · the use of sophisticated and computationally exhaustive methods such as Compu-tational Fluid Dynamics (CFD), ray tracing and nite

colorbar

caxis([20 45])

view([0,0])

end


Recommended