+ All Categories
Home > Documents > Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Date post: 13-Dec-2015
Category:
Upload: elfrieda-burke
View: 263 times
Download: 8 times
Share this document with a friend
58
Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surface Finned surface
Transcript
Page 1: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Heat Transfer from Extended SurfacesHeat Transfer Enhancement by

Fins

Bare surface Finned surface

Page 2: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Typical finned-tube heat exchangers

Page 3: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Straight fin of uniform cross

section

Straight fin of nonuniform cross section

Annular fin Pin fin

Page 4: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Equation for Extended Surfaces

x

T∞, h

Ac(x)dx

dx

Tb

cond,inq cond,outq

conv,outq

cond,in cond,out conv,outq q q

dAs(x)

Page 5: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

dx

Ac(x)dAs(x)

cond,inq cond,outq

conv,outq

cond,in cond,out conv,outq q q

x

( ) ( )c c

dT d dTkA x kA x dx

dx dx dx

( ) ( )shdA x T x T

cond,inq ( )x c

dTq kA x

dx

cond,outq x dxq

conv,outq

T∞, h

T(x)

convdq

Page 6: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

When k = constant,

( ) ( ) ( ) 0c s

d dTkA x dx hdA x T x T

dx dx

( ) ( ) 0sc

dAd dTkA x h T x T

dx dx dx

( ) ( ) 0sc

dAd dT hA x T x T

dx dx k dx

Page 7: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Fins of Uniform Cross-Sectional Area

Ac(x) = constant,

and dAs = Pdx

P: fin perimeter

x

Ac

Tb

L

dAsdx

,T h

( ) ( ) 0sc

dAd dT hA x T x T

dx dx k dx

2

2( ) 0

c

d T hPT x T

dx kA

P

Page 8: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

boundary conditionsat x =

0:

excess temperature : (x) = T(x) - T∞

2

2( ) 0

c

d T hPT x T

dx kA

22

20

dm

dx

where 2

c

hPm

kA

dxx

Tb

, T h

(0) bT T (0) (0)T T bT T b

L

T(x)

1 2( ) mx mxx C e C e 1 2sinh( ) cosh( )D mx D mx

Page 9: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

at x = L: 3 cases1) very long fin (L → ∞):

2) convection tip:

3) negligible heat loss: adiabatic tip

dxx

Tb, T h

L( ) ( )x T x T

( )T L T ( ) 0T T

( )L

dTk h T L T

dx ( ) 0L

d hL

dx k

0L

dTk

dx 0

L

d

dx

T(x)

Page 10: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Temperature distribution

2) convection tip:

1) long fin:

3) adiabatic tip:

( ) mx

b

xe

cosh ( ) / sinh ( )( )

cosh / sinhb

m L x h mk m L xx

mL h mk mL

( ) cosh ( )

coshb

x m L x

mL

Page 11: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Total heat loss by the fin

1) long fin:

3) adiabatic tip:

2) convection tip:

,

0

f c b

x

dTq kA

dx

or ( )f

f Aq h T x T dA

x

Ac

dAs

Tb

L

dx

P, T h

f c bq hPkA M

sinh / cosh

cosh / sinhf c b

mL h mk mLq hPkA

mL h mk mL

tanh tanhf c bq hPkA mL M mL

Page 12: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Find: 1) Temperature distribution T(x) and heat loss qf when the fin is constr

ucted from: a) pure copper, b) 2024 aluminum alloy, and c) type AISI 316 stainless steel.

2) Estimate how long the rods must be for the assumption of infinite length to yield an accurate estimate of the heat loss.

Assumption:very long fin

Example 3.9

, , 5mmk L D

C100bT 2

25 C100 W/m K

Th

air

Page 13: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

1) For a very long fin

heat loss:

conductivity at2

bT TT

Copper: k = 398 W/m.KAluminum alloy: k = 180 W/m.KStainless steel: k = 14 W/m.K

Copper: 8.3 W

Aluminum alloy: 5.6 W

Stainless steel: 1.6 W

qf

( ) mx

b

xe

( )

b

T

T

T

T

x

( ) mx

bT T T eT x

, , 5mmk L D

C100bT 2

25 C100 W/m K

Th Air

c

hPm

kA

4h

kD

2

,4c

DP D A

cf bhPkAq

Page 14: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.
Page 15: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

2)

1/ 22.65

2.65 ckAL

m hP

To get an accuracy over 99%

For the adiabatic condition at the tip

qf = MtanhmL (long fin: qf = M)

Copper: 0.19 m

Aluminum alloy: 0.13 m

Stainless steel: 0.04 m

tanh 0.99mL 2.65mL or

Page 16: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Fins of Nonuniform Cross-Sectional Area : Annular Fin

T∞, h2r t

cond,in cond,out conv,outq q q

bT

dr

1rr

cond,inqcond,outq

conv,outq

c 2A rt

Page 17: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

T∞, h

1r

2rrdr

t

conv,outq

cond,outq cond,inq

2r

dTq k rt

dr

cond,outq 2 2r dr

dT d dTq k rt k rt dr

dr dr dr

cond,inq

conv,outq conv 2 2 ( )dq h rdr T r T

T(r)

c 2A rt

bT

2 2sdA rdr

Page 18: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

When k = const,

boundary conditions: when an adiabatic tip is presumed

2 4 ( ) 0d dT

k rt h r T r Tdr dr

2( ) 0

d dT hr r T r T

dr dr kt

in terms of excess temperature

( ) ( )r T r T

2 0d d

r m rdr dr

where 2 2hm

kt

1( ) ,br 2

0r r

d

dr

( ) ( ) 0sc

dAd dT hA x T x T

dx dx k dx

2r tdr

1rr

c 2A rt

2 2sdA rdr

42 ( ) 0

d dT h rdrrt T x T

dr dr k dr

Page 19: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Particular solutions

: real : real : zero or integer

J andand

(or )J Y

nJ nY

: imaginary : fractional

: zero or integer

I and

and

(or )I K

nI nK

Solutions to generalized Bessel equations

2 0, 2 0d d

r rdr dr

General Solution:

/ 1/( ) ,r r Z r

where (1 ) /( 2), 2 /( 2), / (1 ) / 2

Page 20: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

present case:

boundary conditions:

2 0d d

r m rdr dr

2 0, 2 0d d

r rdr dr

2 21, m

Thus,

, 0, mi

( )r Z mr 1 0 2 0( ) ( )r C I mr C K mr

1 1 0 1 2 0 1( ) ( ) br C I mr C K mr

2 2 2

0 01 2

( ) ( )0

r r r r r r

dI mr dK mrdC C

dr dr dr

/ 1/( )r r Z r

Page 21: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

1( ) ( ),n nn n

dx I x x I x

dx

1( ) ( )n nn n

dx K x x K x

dx

2 2

0 01 2

( ) ( )0

r r r r

dI mr dK mrC C

dr dr

01

( )( ),

dI mrmI mr

dx 0

1

( )( )

dK mrmK mr

dx

1 1 2 2 1 2( ) ( ) 0C I mr C K mr

Page 22: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

1 21

0 1 1 2 0 1 1 2

( ),

( ) ( ) ( ) ( )bK mr

CI mr K mr K mr I mr

1 22

0 1 1 2 0 1 1 2

( )

( ) ( ) ( ) ( )bI mr

CI mr K mr K mr I mr

1 2 0 1 2 0

0 1 1 2 0 1 1 2

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )b

K mr I mr I mr K mrr

I mr K mr K mr I mr

1 0 2 0( ) ( )r C I mr C K mr

Page 23: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Heat loss from the fin

1

,f c b

r r

dTq kA

dr

1

12r r

dk r t

dr

1 1 1 2 1 1 1 21

0 1 1 2 0 1 1 2

( ) ( ) ( ) ( )2

( ) ( ) ( ) ( )f b

K mr I mr I mr K mrq kr t

K mr I mr I mr K mr

T∞, h

1r

2rrdr

t

T(r)

c 2A rtbT

1 2 0 1 2 0

0 1 1 2 0 1 1 2

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )b

K mr I mr I mr K mrr

I mr K mr K mr I mr

Page 24: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Fin Performance

• fin effectiveness

• fin resistance

• fin efficiency

Page 25: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

heat loss without fin

Tb

T∞, h

Ac,b: fin cross-sectional area at the base

Ac,b

1. Fin effectiveness

fin effectiveness:

design criteria:

, ,b c b b c b bq hA T T hA

,

ff

c b b

q

hA

(rule of a thumb)

2f

Assume hs are the same for with or without fin.

Page 26: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Ex) long straight fin with uniform cross- sectional area

In order to get high fin performance

• installation of fins at the lower h side

• large k material

• thin shape

f c bq hPkA

,

c bf

c b b

hPkA

hA

c

kP

hA

Page 27: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

provides upper limit of f, which is reached as L approaches infinity.

Practically qf for the adiabatic tip reaches 9

8% of heat transfer when mL = 2.3.

Thus, the fin length longer than L = 2.3/m is not effective.

f

c

kP

hA

f c bq hPkA long fin

c

hPm

kAtanh ,f c bq hPkA mLadia. tip

Page 28: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

2. Fin resistance

b: driving potential

Thermal resistance due to convection at the exposed base: Rt,b

,

bf

t f

qR

,t fb

f

Rq

,b

t bb

Rq

,

b

c b bhA

,

1

c bhA

Tb

T∞, h

Ac,b

Page 29: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Ex) straight fin of uniform cross-sectional area with an adiabatic tip

3. Fin efficiency

qmax: heat loss when the whole fin is assumed at Tb

max

ff

q

q f

f b

q

hA

tanhc b

b

hPkA mL

hPL

ff

f b

q

hA

tanh mL

mL

x

Ac

dAs

Tb

L

dx

P, T h

Page 30: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

For an active tip, the above relation can be used with fin length correction.rectangular fin:

pin fin:

tanhtanh , c

cf

c

f

mq M m

Lm

LL

Errors can be negligible if

or /ht k / 2 0.0625hD k

2c

tL L

4c

DL L

cf mL

Tb

x, T h

L

t D

Page 31: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

When w >> t, P ~ 2w,

Lc

wt

Corrected fin profile area

cA wt

1/ 2

c cc

hPmL L

kA

1/ 22

c

h wL

kwt

1/ 22

c

hL

kt

pp c

c

AA L t t

L

1/ 22

c c

hmL L

kt

1/ 2

2 cc

p

hLL

kA

1/ 2

3 / 22c

p

hL

kA

1/ 23 / 2 2 /f c pf L h kA

Ap

Page 32: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Efficiency of straight fins (rectangular, triangular, and parabolic

profile)

Page 33: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Efficiency of annular fins of rectangular profile

Page 34: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Overall Surface Efficiency

overall efficiency of array of fins:

At : area of fins + exposed portion of the base

single fin efficiency:

ff

f b

q

hA

t f bA NA A

max

to

q

q t

t b

q

hA

Page 35: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

f f b b bN hA hA

tqf b bNq hA f

ff b

q

hA

b f f t fh N A A NA

1f ft b f

t t

NA NAhA

A A

1 1ft b f

t

NAhA

A

1 1ft

t b

o f

t

q

hA

NA

A

t f bA NA A

Page 36: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

In the case of press fit: thermal contact resistance

Tb T∞Tc

(

x

(

a

))

m

tc

co

q

q ( )t c

t b

q

hA

( ) ( )t c f c b bq Nq hA

( ), ,

bf c

t c t f

qR R

( ),

b cf c

t c

T Tq

R

( ) ( ) ,

, ,/b c

f c f c c bt c c b

T Tq q A

R A

, , ,/t c t c c bR R A

,t cR ,t fR( )f cq

bT cT T

Page 37: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

, , fbt f f

f f b

qR

q hA

,

1t f

f f

RhA

( ), ,/ 1/

bf c

t c c b f f

qR A hA

( ) ( )t c f c b bq Nq hA

, ,/ 1/b

b bt c c b f f

NhA

R A hA

, ,1 /f f b

b bf f t c c b

N hAhA

hA R A

, ,1 /f f

b bf f t c c b

N Ah A

hA R A

Page 38: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

let , , 11 /f f t c c bhA R A C

( )

1

f ft c b b

N Aq h A

C

1

f f t ft b

t t

N A A NAhA

C A A

1

1 1f ft b

t

NAhA

A C

(

x

(

a

))

m

tc

co

q

q ( )t c

t b

q

hA

1

1 1f f

t

NA

A C

Page 39: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Find: Increase in heat transfer, q = qt – qwo, associated

with using fins

Example 3.10

.0 15mH

2300K50 W/m K

Th

air

S

500 KbT

6mmt

1 25mmr 20mmL

2 45mmr

Engine cylinder

Cross-section

(2024 T6 Al alloy)

Annual fins

Page 40: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

1 1ft f

tt bA

NAh

Aq

tA f bNA A

1) Heat transfer rate

12fNA r H Nt

fA 2 22 12 cr r

2cr 2 2

tr

2 2 22 0.048 0.025 0.0105 mfA

25 0.0105 2 0.025 0.15 5 0.006 0.0716 mtA

0.0060.045 0.048 m

2

1 25mmr 20mmL

2 45mmr

H =

0.1

5 m

t = 6

mm

500 KbT

2300K50 W/m K

Th

f: known

Page 41: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

To get f, use Fig. 3.19.

Parameters:

2

1

0.0481.92

0.025cr

r

1/ 2

1/ 2 3 / 23 / 24

50/ 0.023 0.15

186 1.38 10c pL h kA

cL2

tL

0.0060.02 0.023 m

2

pA cL t 4 20.023 0.006 1.38 10 m

1 25mmr 20mmL

2 45mmr

H =

0.1

5 m

t = 6

mm

2024 T6 Alk = 186 at 400 K

2

1

,cr

r 1/ 23 / 2 /c pL h kA

Page 42: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

1/ 23 / 2 / 0.15c pL h kA

2

1

1.92cr

r

0.95f

0.15

0.95

Page 43: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Without fins

wo 454 Wt qq q

5 0.010550 0.0716 1 1 0.95 500 300 690 W

0.0716

1 1ft f b

ttq

NAhA

A

woq 12 bh r H 236 W

The amount of increase in heat transfer

wo

6902.67

236tq

q

1 25mmr 20mmL

2 45mmr H

= 0

.15

m

t = 6

mm

500 KbT

2300K50 W/m K

Th

Page 44: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Comments:

Fixed fin thickness : 6 mm, Minimum fin gap : 4 mm Nmax= H/S =15

Page 45: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Fixed fin gap : 4 mm, Minimum fin thickness : 2 mm Nmax= H/S =25

Page 46: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Example 3.11Hydrogen-air Proton Exchange Membrane (PEM) fuel cell

Known: 1) Dimensions of a fuel cell and finned heat sink2) Fuel cell operating temperature3) Rate of thermal energy generation: 11.25 W

4) Power production: P = 9 W

5) Relationship between the convection coefficient and the air channel dimensions

50 mm 50 mm 6 mm

10 mm gaps50 mm 26 mm

56.4 CcT

9.4 m/s, 25 CV T

Without finned heat sink

With finned heat sink

air1.78 f fh k L a L a 3/ 1000 W/(m s)f fP C

Page 47: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Assumptions: 1) Steady-state conditions2) Negligible heat transfer from the edges of the fuel

cell, as well as from the front and back faces of the finned heat sink

3) 1D heat transfer through the heat sink4) Adiabatic fin tips5) Negligible radiation when the heat sink is in place.

Find: 1) Net power of the fuel cell-fan system for no heat sink, Pnet = P – Pf

2) # of fins N needed to reduce the fan power consumption by 50%

Page 48: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

Volumetric flow rate of cooling air: ,cf VA c cA W H t

f cV W H t 9.4m/s 0.05m (0.026m 0.006m) 3 39.4 10 m /s

net

fPP C 3 -3 39.0 W 1000 W/(m /s) 9.4 10 m /s

9.0 W 9.4 W 0.4 W

Fan power consumption:

3/ 1000 W/(m s)f fP C

9.4 m/s, 25 CV T

The fan consumes more power than is generated by the fuel cell, and the system cannot produce net power.

P = 9 W

fP C net fPP P 1.

Fuel cell

Page 49: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

3/ 1000 W/(m s)f fP C

Aluminum fined sink: k = 200 W/m.K

air1.78 f fh k L a L a

+ finned sink base(conduction)

+ exposed base of finned side(convection)

Lc = 50 mm

+ fins(conv+cond)

11 1equiv , , ( )t b t f NR R R

= 11.25 W

2. To reduce the fan power consumption by 50%, 3 34.7 10 m /sf

9.4 W / 2 4.7 WfP

, ,base equiv

c

t c t

T Tq

R R R

Thermal circuit

3 2, 10 m K/Wt cR

contact joint(contact)

Page 50: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

3 2, 10 m K/Wt cR

Aluminum fined sink: k = 200 W/m.K

Lc = 50 mm

,

,c b

t c

T Tq

R

q Aq, /

c b

t c

T T

R A

,

c b

t c

T T

R

3 2(10 m K/W)/(2 0.05m 0.05m)=0.2K/W

, , /t c t cR R A , / 2t c c cR L W : 2 sides of the heat sink assembly

,basetR /L kA /(2 )b c ct kL W

(0.02m)/(2 200W/m K 0.05m 0.05m) = 0.002K/W

, :t cR

,base :tR

Page 51: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

N, h are needed to evaluate Rt,b

1

(2 0.05m 0.001m) 0.05 mNh

,t bR1

hA

1

2 c f ch W LNt

1

0.005 0.0005 Nh

, :t bR

3 2, 10 m K/Wt cR

Aluminum fined sink: k = 200 W/m.K

Lc = 50 mm

air1.78 f fh k L a L a

Page 52: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

, ( ) :t f NR, ( )

b

t f N

T T

R

( )f Nq fNq

,

b

t f

T TN

R

,, ( )

t ft f N

R

NR

For a single fin,

, /t f b fR q

For a fin with an insulated fin tip,

tanhf c b fq PkA mh L

,

1,

tanhb

t ff c f

Rq PkA mh L

3 2, 10 m K/Wt cR

Aluminum fined sink: k = 200 W/m.K

Lc = 50 mm

c

mhP

kA

Page 53: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

2 c fL t

c fL t

2

0.102m10.2

200W/m K 0.00005mc

Pm

kA

h hh

Lc = 50 mm

Aluminum fined sink: k = 200 W/m.K

2 (0.05m 0.001m) 0.102m P

cA 20.05m 0.001m =0.00005m

Page 54: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

2

1

0.102m 200W/m K 0.00005m tanh( 10.2 0.008 m)h h

For N fins,

Aluminum fined sink: k = 200 W/m.K

N, h are also needed to evaluate Rt,f

,

1

tanht f

c f

RPkA Lh m

,, ( )

t ft f N

R

NR

1

0.00102 tanh(0.008 10.2 )hN h

Page 55: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

11 1equiv , , ( )t b t f NR R R

The equivalent fin resistance, Reqiuv

tot , ,ba use eq iv

11.25 Wc c

t c t

T T T Tq

R R R R

56.4 CcT

25 CT

equiv , ,basec

t c t

T TR R R

q

56.4 C 25 C(0.2 0.02)K/W 2.59K/W

11.25W

The total thermal resistance, Rtot

tot , ,base equivt c tR R R R

Page 56: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

1 1, , ( )

12.59K/W

t b t f NR R

,

1,

0.005 0.0005t b NR

h

, ( )

1

0.00102 tanh(0.008 10.2 )t f N

hR

N h

air1.78 f fk Lh a L a

2 0.05m 0.001m 0.1 0.001N N

N N

a

2 c fW N

N

t

Page 57: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

air1.78 f fk Lh a L a

Properties: Table A.4. air( 300K)T

air 0.0263W/m Kk

0.1 0.001 0.1 0.0011.78 0.0263 0.08 0.08

N N

Nh

N

1 1, , ( )

12.59K/W

t b t f NR R

,

1

0.005 0.0005t b h NR

, ( )

1

0.00102 tanh(0.008 10.2 )t f N

hR

N h

Page 58: Heat Transfer from Extended Surfaces Heat Transfer Enhancement by Fins Bare surfaceFinned surface.

For N =

22, 2 -10.0035 m, 19.1W/m K, 13.9ma h m

, ( ) ,2.94K/W, 13.5K/Wt f N t bR R

equiv tot2.41K/W, 2.61K/WR R

54.4 CcT

For N =

20,

For N =

24,

58.9 CcT

50.7 CcT

11 on top and 11 on the bottom,

net 9.0W 4.7W 4.3WfP P P

( 56.4 C)cT


Recommended