+ All Categories
Home > Documents > Heavy quark potential and running coupling in QCD

Heavy quark potential and running coupling in QCD

Date post: 19-Jan-2016
Category:
Upload: abra
View: 24 times
Download: 0 times
Share this document with a friend
Description:
Heavy quark potential and running coupling in QCD. W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen. EUROGRAD workshop Todtmoos 2007. Outline. Some basics of Yang-Mills theory Functional Schroedinger equation Coulomb gauge Dyson-Schwinger equations - PowerPoint PPT Presentation
20
Heavy quark Heavy quark potential potential and running coupling and running coupling in QCD in QCD W. Schleifenbaum W. Schleifenbaum Advisor: H. Reinhardt Advisor: H. Reinhardt University of Tübingen University of Tübingen EUROGRAD EUROGRAD workshop workshop Todtmoos 2007 Todtmoos 2007
Transcript
Page 1: Heavy quark potential and running coupling in QCD

Heavy quark Heavy quark potentialpotential

and running couplingand running couplingin QCDin QCD

W. SchleifenbaumW. SchleifenbaumAdvisor: H. ReinhardtAdvisor: H. Reinhardt

University of TübingenUniversity of Tübingen

EUROGRAD EUROGRAD workshopworkshop

Todtmoos 2007Todtmoos 2007

Page 2: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

OutlineOutline

Some basics of Yang-Mills theorySome basics of Yang-Mills theory Functional Schroedinger equationFunctional Schroedinger equation Coulomb gauge Dyson-Schwinger Coulomb gauge Dyson-Schwinger

equationsequations Quark potential & confinementQuark potential & confinement Running coupling in Landau and Running coupling in Landau and

Coulomb gaugeCoulomb gauge

Page 3: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Yang-Mills theoryYang-Mills theory

Local gauge invariance of quark fields:

Lagrangian acquires gauge field through

QCD: nonabelian gauge group SU(3)

Yang-Mills Lagrangian: dynamics of gauge fields

( )( ) ( ) i xq x e q x

( )aA x

( ) ( ) L q i m q q i D m q

D gA

[ ( ), ( )] 0 , [ ( ), ( )] 0x y A x A y

41( ) ( )

4

[ , ]

a aYML d x F x F x

F A A g A A

nonabelian term

Page 4: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

asymptotic freedom:

running coupling:

dimensional transmutation:→ express dimensionless g in terms of

nonperturbative methods:

End of perturbative End of perturbative methodsmethods

2

22 200

1 1( ) , exp

2 ( )ln / QCDQCD

g kgk

3 50

( )( ) ( )

lng

g g g

O

lattice gauge theory continuum approach via integral equations

2( )g k

k

„The hamiltonian method forstrong interaction is dead [...]“

Page 5: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Good gauge? Need unique solution

infinitesimally:

Faddeev-Popov determinant

Gauge fixingGauge fixingtasktask: separate gauge d.o.f.: separate gauge d.o.f.

QED: .... easy: QED: .... easy:

YM theory: .... hard!YM theory: .... hard!

alternative methodalternative method: fix the gauge: fix the gauge

A A11 1

U

gA A UA U U U

[ ] 0A

[ ] 0A

[ ] 0 1UA U

1[ ] [ ]ln UA G A U

UA

A

CONFIGURATION SPACE

“I am not smarter, I just think more.”

1det [ ] 0 J G A

same physics

Gribov copy

IR physics

Page 6: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Coulomb gauge Coulomb gauge HamiltonianHamiltonian

Canonical quantization:

Gauß‘ law constraint:

Weyl gauge Hamiltonian:

Coulomb gauge:

0 [ ] [ ] Ui iD A A

1 2 2 22 H B

1, A G D

1 1 2 2 1 22

H J J B g J G G J

curved orbit space→ gluon confinement

heavy quark potential → quark confinement

gaugeinvariance

0 00 0

[ , ] , 0 set 0i j ij

LA i A

A

Page 7: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Yang-Mills Schroedinger equation:

ansatz for vacuum wave functional:

minimizing the energy:

mixing of modes:enhanced UV modes might spoil accuracy of IR modes IR modes are enhanced as well!

Variational principleVariational principle

1

--1/2 2AωA

ψ A = J A e 1 12

, AA N

[Feuchter & Reinhardt [Feuchter & Reinhardt (2004)](2004)]

H E

„„It‘s no damn good at all!“It‘s no damn good at all!“

??*

Λ

ψ H ψ = DAJ(A)ψ (A)Hψ(A) min →

Page 8: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Gap equationGap equationInitially, only one equation needs to be solved:Initially, only one equation needs to be solved:

Ghost propagator: Ghost propagator:

Ghost Dyson-Schwinger equation:Ghost Dyson-Schwinger equation:

Gap equation: (infrared expansion)Gap equation: (infrared expansion)

Cf. Landau gauge – [Alkofer & von Smekal (2001)]

1 1

1 ( ) k

0 [ , ] ?H G

F

2

1 A AG A e

gA

D

Page 9: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Tree-level ghost-gluon vertexTree-level ghost-gluon vertex

0 0G A G A G A G A

Non-renormalization:

Tree-level approximation:

Check by DSE/lattice studies (Landau gauge):[W.S. et al. (2005)][Cucchieri et al. (2004)]

crucial for IR behavior!

( )ijt l

renormalizationconstant:

1 1Z

Page 10: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Infrared analysisInfrared analysisPropagators in the IRPropagators in the IR

Infrared expansion of loop integralsInfrared expansion of loop integrals

1

1 12 2

1( ) , ( ) , 0

2

A Bp G p p

p p

,)(22/122 GC INABpp

)(222/122

ZC INABpp

)(

)(1,

2

12

Z

G

I

I

[Zwanziger (2004); W.S. & Leder & Reinhardt (2006)]

Two solutions :1

0.3982

Page 11: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

IR sector is dominated by Faddeev-Popov determinantIn a stochastic vacuum,

we have the following expectation values,

and find the same equations:

Horizon condition: [Zwanziger (1991)]

Ghost dominanceGhost dominance

0 [ ] 1YM A L

[ ] [ ] [ ]O A DA J A O A

1 1 1

1 02

1( ) 0kG k

k

Page 12: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

If the ghost-loop dominates the IR, it better be transverse.

In d spatial dimensions, there are two solution branches:

Infrared transversalityInfrared transversality

Only obeys transversality!

{ 3, 1/ 2}d

12

supports

14

d

( 3)/ 2( ) dG p p

Coulomb gauge: d=3

12

Page 13: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Full numerical solution for Full numerical solution for =1/2=1/2

• Excellent agreement with infrared analysisExcellent agreement with infrared analysis• (in)dependence on renormalization scale(in)dependence on renormalization scale• Confinement of gluonsConfinement of gluons

[D. Epple, H. Reinhardt, W.S., PRD 75 (2007)]

Page 14: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Heavy quark potentialHeavy quark potentialTwo pointlike color charges, separated by Two pointlike color charges, separated by rr

Approximation:Approximation:

(cf. ghost-gluon vertex)(cf. ghost-gluon vertex)

Solution with Solution with =1/2 gives=1/2 gives

Coulomb string tensionCoulomb string tension

2

2( )2

C ext ext

gV r G G

[D. Epple, H. Reinhardt, W.S., PRD 75 (2007)]

2 2

0 0

G G G G

G G G G

rrV Cr

C )(

C

3

3 1 22

11

2

r ip rd p

ep

Page 15: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Perturbative tails & talesPerturbative tails & tales

2 22 2

( ) , ( )ln ln

G A

2 2k ke e

ffG k AA k

k k

1. Landau gauge1. Landau gauge

In the ultraviolet, QCD is asymptotically free.Free theory:

Interacting theory: (from renormalization group)

Anomalous dimensions: (scaled by

2 2

1 1( ) ,G k AA

k k

9 13, , 2 1

44 22

Page 16: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

running coupling:

nonperturbative UV-asymptotics:

• ghost DSE: sum rule gives correct 1/log behaviour setting gives correct and !

• ghost and gluon DSEs: sophisticated truncation of gluon DSE necessary to reproduce

nonperturbative IR-asymptotics:

• finite

•depends on renormalization prescription [WS & Leder & Reinhardt (2006)]

0 0

2

2 20

1( )

ln /g k

k

0 0

[Fischer & Alkofer (2002)]

622 2

2( ) ( ) ( , ) ( , )G A

kg k g G k AA k

ff

(0) 8.9/ CN [Lerche & von Smekal (2002)]

Page 17: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

2. Coulomb gauge:2. Coulomb gauge:

perturbation theory still subject to ongoing researchFree theory:

Interacting theory: (ansatz)

running coupling

solution to gap equation:

2

1( ) , ( )G k k k

k

22

2

( ) , ( ) lnln

Ge

e

fG f

2k

2kk k k

k

522 2 1

2 1( ) ( ) ( , ) ( , )G

g g Gff

kk k k

2

0 02 20

1 810, , ( ) ,2 11ln /g

k

k

[Watson & Reinhardt, arXiv:0709.0140v1]

Page 18: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

numerical result:

[Epple & Reinhardt & WS (2007)]

set the only scale:

→ very sensitive to accuracy of (k)

should-be result:set in ghost DSE:

3/ 112 4/ 11

1( ) ln , ,

lnG k k k k

k k

0 0

( )ZM

CN3

16)0(

Page 19: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Coulomb potential: over-Coulomb potential: over-confinementconfinement

Heavy quark potential involved simple replacement

Only upper bound for Wilson loop potential (→lattice)

Lattice calculations: too large by a factor of 2-3.No order parameter for „deconfinement“.

MISSING: ’s knowledge of the quarks.

( ) ( )CV r V r

†1 2( ) ( ) q x q x

[Zwanziger (1997)]

(„No confinement without Coulomb confinement“)

Page 20: Heavy quark potential and running coupling in QCD

Todtmoos 2007 W. Schleifenbaum

Summary and outlookSummary and outlook

minimized energy with Gaussian wave minimized energy with Gaussian wave functionalfunctional

gluon confinementgluon confinement quark confinementquark confinement computed running coupling, finite in the IRcomputed running coupling, finite in the IR need for improvement in the UVneed for improvement in the UV calculation of Coulomb string tensioncalculation of Coulomb string tension


Recommended