+ All Categories
Home > Documents > Hematology & Immunology

Hematology & Immunology

Date post: 25-Mar-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
76
Hematology & Immunology Anemia: Low RBCs, Hgb, or volume of RBCs  Etiology: Inadequate RBC production Increased RBC destruction Acute or Chronic Blood Loss  Iron, Folate, or vitamin B12 deficiency  Chronic kidney disease  Bone marrow suppression or infiltration  Radiation therapy to bones Hematopoietic stem cell transplant  Medications   Hemolytic anemias  RBC membrane defects   Trauma, surgery  Coagulopathy  Complication of anticoagulation  GI bleed  Frequent diagnostic blood draws   Signs & Symptoms o Fatigue o Dyspnea o Activity intolerance o Altered mental status o Headache o Pallor o Possible jaundice or hepatosplenomegaly o Tachycardia o Hypotension o Syncope  Lab Values o Hgb < 12 g/dL (women) or 14 g/dL (men) o Urine – can test + for blood o Stool – can test + for blood  Patient Management Goals of Care Interventions  Improved O2 delivery to tissues and organs  Absence of hypovolemia due to bleeding  Tolerable level of fatigue   Supplemental O2  Elevate HOB for SOB  Assess patient’s ability to tolerate anemia  Administer PRBCs as ordered  Adequate rest periods  Diet supplements  Admin erythropoietin as ordered  Patient education re: diet  Potential Complications o Hemorrhagic Shock  o Respiratory Failure (risk due to decreased oxygen carrying capacity)  o Weakness and Fatigue (due to decrease in oxygen availability to cells) 
Transcript

Hematology & Immunology 

Anemia: Low RBCs, Hgb, or volume of RBCs 

Etiology: 

Inadequate RBC production  Increased RBC destruction  Acute or Chronic Blood Loss 

Iron, Folate, or vitamin B12 deficiency 

Chronic kidney disease  Bone marrow suppression 

or infiltration  Radiation therapy to bones Hematopoietic stem cell 

transplant  Medications  

Hemolytic anemias  RBC membrane defects  

Trauma, surgery  Coagulopathy  Complication of 

anticoagulation  GI bleed  Frequent diagnostic blood 

draws  

Signs & Symptoms 

o Fatigue 

o Dyspnea 

o Activity intolerance 

o Altered mental status 

o Headache 

o Pallor 

o Possible jaundice or hepatosplenomegaly 

o Tachycardia 

o Hypotension 

o Syncope 

Lab Values 

o Hgb < 12 g/dL (women) or 14 g/dL (men) 

o Urine – can test + for blood 

o Stool – can test + for blood 

Patient Management 

Goals of Care  Interventions 

Improved O2 delivery to tissues and organs 

Absence of hypovolemia due to bleeding  Tolerable level of fatigue  

Supplemental O2  Elevate HOB for SOB  Assess patient’s ability to tolerate anemia  Administer PRBCs as ordered  Adequate rest periods  Diet supplements  Admin erythropoietin as ordered  Patient education re: diet 

Potential Complications 

o Hemorrhagic Shock 

 

o Respiratory Failure (risk due to decreased oxygen carrying capacity) 

 

o Weakness and Fatigue (due to decrease in oxygen availability to cells) 

 

Thrombocytopenia: Platelet count < 150,000 (increased risk of bleeding) 

Causes: 

o Decreased platelet production (cancers, antineoplastic agents) 

o Increased platelet destruction (ITP, DIC, HIT, TTP, Hemolytic Uremic Syndrome) 

Thromboelastography (TEG/ROTEM)  

  

   

Idiopathic Thrombocytopenia Purpura (ITP) 

Autoimmune disorder in which there is platelet destruction by antibodies 

Associated with AIDS, systemic lupus 

Etiology – precipitating condition that prompts 1 of 4 mechanisms 

o Decreased platelet production 

o Increased platelet destruction 

o Splenic sequestration of platelets 

o Platelet dilution 

Pathophysiology 

o Lymphocytes produce antibodies – destroys existing platelets (cause unknown) 

o Coagulation pathways disrupted 

o Inadequate hemostasis 

o Bleeding  

Clinical Manifestation 

o Petechial hemorrhages on skin 

o Bruising unrelated to trauma 

o Platelet count < 30,000/mm3 (all other labs normal) 

Medical Management 

o Most cases resolve spontaneously 

o Mild cases: oral corticosteroids (platelet count will normalize 2‐6 weeks) 

o Severe cases (life threatening hemorrhage): 

Administer IV immunoglobulin 

High‐dose methylprednisolone IV 

Platelet transfusion 

Failure of steroid therapy – removal of spleen 

Nursing Actions: 

o Bleeding prevention (careful oral care, electric razor, avoid punctures) 

o Monitor medication interactions 

o Platelet transfusions as needed 

o Monitor for contributing factors (hemorrhage, infection) 

 

Thrombotic Thrombocytopenia (TTP) 

Acute form of thrombocytopenia that is related to deficiency of plasma enzyme that causes 

excessive platelet aggregation and clots 

Symptoms: 

o Decreased platelet count 

o Hemolytic anemia 

o Classically presents as neuro/renal problem 

Treatment: 

o Stop the cause 

o Administer platelets, Neumega 

o Plasmapheresis 

Heparin Induced Thrombocytopenia (HIT) 

Type 1 (most common‐30% heparinized patients) 

o Non‐immune mediated 

o Platelet count < 100,000 mm3 

Type 2 (immune mediated) 

o More severe consequences 

o 0.5‐5% of patients 

o Platelet counts < 50,000 mm3 or 50% drop in platelet count 

o Mortality rates 30% 

Pathophysiology 

o Formation of heparin antibody complexes 

o Antibodies release platelet factor 4  attracts heparin molecules 

o Activation of platelets 

o Thrombin release 

o Platelet clumps form 

Greater risk for thrombosis than bleeding  vessel occlusion 

Fibrin‐platelet‐rich thrombi – White clot syndrome 

Clinical Manifestations (related to formation of thrombi and subsequent vessel occlusion) 

o Most are venous but arterial can occur 

o Presence of blanching 

o Loss of pulses, sensation and motor function 

o Lab analysis: 

Platelet count < 50,000 mm3 or 30‐50% drop from baseline 

Positive HIPA (heparin induced platelet aggregation), SRA (Serotonin Release 

Assay), and ELISA (Enzyme‐Linked Immunosorbent Assay) 

Medical Management 

o ID and stop heparin 

o Administer DTI 

Nursing Actions 

o Monitor all patients receiving heparin 

o Ensure all heparin is D/C if HIT identified 

o Continued observation for complications 

o Provision of comfort and emotional support 

 

   

Disseminated Intravascular Coagulation (DIC): Consumptive Coagulopathy 

Etiology: 

o Obstetric Complications 

o Infections 

o Neoplasms 

o Massive Tissue Injury 

Pathophysiology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clinical Manifestations 

o Formation of Thrombi 

o Bleeding 

Lab Findings 

o PT > 12.5 sec 

o Platelets < 50,000/mm3 (or at least 50% drop from baseline) 

o aPTT > 40 sec 

o D‐dimer > 250 ng/mL 

o Fibrinogen < 100 mg/dL 

Medical Management – PREVENTION 

o Slow consumption of coagulation factors 

o Maintain organ perfusion 

Nursing Management 

o Assessment 

o Monitoring 

 

   

Blood and Blood Products  

 

 

Transfusion Considerations 

Blood admin via large bore IV and standard blood tubing with filter 

PRBC should be infused within 4 hours 

Patients receiving multiple products (units): 

o Warm products 

o IV calcium admin (citrate added to banked blood leads to hypocalcemia) 

Observe for adverse reactions to transfusions 

o If an adverse reaction: stop blood and report problem to provider/blood bank  

Transfusion Reactions & Complications 

  

Review Questions: 

A 45‐year‐old woman is admitted with deep venous thrombosis and pulmonary emboli. She has received 

a heparin bolus and was on a continuous heparin drip. The heparin was discontinued because of the 

occurrence of heparin‐induced thrombocytopenia. The patient now is scheduled for insertion of a 

Greenfield filter to protect the lungs from future emboli from the deep veins in her legs. Her 

preoperative laboratory results show a platelet count of 25,000/mm3. Which nursing action is 

indicated? 

a) No action is necessary 

b) Start an extra IV with large‐gauge catheter 

c) Notify the surgeon 

d) Monitor neurologic status carefully 

A 45‐year‐old woman is admitted with deep venous thrombosis and pulmonary embolism. She has 

received a heparin bolus and has been on a continuous heparin drip for 3 days. If the patient develops 

heparin‐induced thrombocytopenia (HIT), what clinical sign would the nurse expect to see first? 

a) Surface bleeding from wounds and IV sites 

b) Hematuria 

c) Petechiae 

d) Bleeding from gums 

A patient is admitted with urinary tract sepsis and septic shock. Within 24 hours, hematuria, hemoptysis, 

petechiae and purpura, and oozing from IV sites and wounds are noted. Disseminated intravascular 

coagulation (DIC) is suspected. Bleeding in DIC results from: 

a) Platelet malfunction and malformation 

b) Consumption of clotting factors 

c) Hereditary absence of clotting factors 

d) Interference in the clotting pathways by toxins 

A patient with chronic kidney disease asks why he is anemic. The explanation to this patient should be 

that anemia is the result of: 

a) Loss of blood in the urine 

b) Inadequate production of a hormone that stimulates production of red blood cells 

c) Deficiency of iron needed for production of red blood cells 

d) Development of a gastric ulcer and blood loss as a result of the ulcer 

A patient is admitted with urinary tract sepsis and septic shock. Within 24 hours, hematuria, hemoptysis, 

petechiae and purpura, and oozing from IV sites and wounds are noted. Disseminated intravascular 

coagulation (DIC) is suspected. The laboratory findings most specifically indicative of DIC as the cause of 

this bleeding are: 

a) Prolonged prothrombin time, activated partial thromboplastin time, and bleeding times 

b) Decreased platelet count 

c) Elevated fibrin degradation products, especially D‐Dimer 

d) Presence of schistocytes 

A 52‐year‐old man returns to the hospital 2 weeks after being discharged from an admission for upper 

gastrointestinal bleed. He has been vomiting bright red blood for the past 24 hours. Laboratory 

parameters reveal a hemoglobin of 6 g/dL and a hematocrit of 20%. Vital signs are blood pressure 90/60 

mm Hg; heart rate 120 beats/min and regular; and respiratory rate 22 breaths/min and shallow. He has 

received two units of red blood cells (RBCs) in the emergency department. The physician has ordered 

four more units of RBCs. 

a) Calcium & Potassium 

b) Blood Urea Nitrogen and Creatinine 

c) Bilirubin and Amylase 

d) Sodium and Magnesium 

A 52‐year‐old patient with a history of alcoholism is admitted with massive esophageal bleeding. After 

infusion of several liters of normal saline, the crossmatched blood is now available. A nursing action that 

can prevent a transfusion reaction is to: 

a) Obtain a detailed transfusion history 

b) Monitor vital signs 15 minutes after starting the transfusion 

c) Administer antihistamines before initiating the blood transfusion 

d) Check the patient’s identification and blood type with the blood identification and type carefully 

A 52‐year‐old patient with a history of alcoholism is admitted with massive esophageal bleeding. 

Crossmatched blood is now available. The first action to take if a transfusion reaction is suspected is to: 

a) Notify the doctor and blood bank 

b) Stop the transfusion and infuse normal saline at a KVO rate 

c) Check vital signs and order a new type and crossmatch 

d) Obtain blood and urine specimens and send them to the lab 

Thrombocytopenia may develop as the result of : 

a) a drug reaction 

b) a congenital problem 

c) an allergic reaction  

d) all of the above 

Which of the following assessment information would be consistent for a low platelet count from HIT: 

a) the presence of metabolic acidosis  

b) the presence of acute thrombosis development 

c) elevation in ALT and AST 

d) decrease in neutrophils 

 

 

 

A patient with traumatic brain injury is suspected to be going into disseminative intravascular 

coagulopathy. Laboratory results consistent with this diagnosis would be: 

a) low PT and aPTT, high platelet count, high fibrinogen 

b) low BT, low hemoglobin, high PT and high aPTT  

c) low platelet count, low fibrinogen, high PT, high aPTT 

d) low fibrinogen, low FSP, high platelet count, high hemoglobin 

A patient is admitted with urinary tract sepsis and septic shock. Within 24 hours, hematuria, hemoptysis, 

petechiae and purpura, and oozing from IV sites and wounds are noted. Disseminated intravascular 

coagulation (DIC) is suspected. Heparin may be used in the course of DIC because it: 

a) Decreases circulating platelets and their aggregation ability 

b) Neutralizes circulating thrombin 

c) Reduces blood viscosity and the need for blood administration 

d) Neutralizes circulating plasmin 

A 52‐year‐old patient with a history of alcoholism is admitted with massive esophageal bleeding. The 

patient is given a blood transfusion. The most common cause of a fatal transfusion reaction is: 

a) Immune‐compromised recipient 

b) Mismatched blood transfusion 

c) Volume overload 

d) Electrolyte imbalance 

 

Shock

Definition of Shock

“Complex syndrome of decreased blood flow to body tissues resulting in cellular dysfunction and eventually leading to organ failure” (Rice, 1991)

A state of imbalance of oxygen supply and oxygen demand to the tissues at the cellular level

Clinical syndrome characterized by inadequate tissue perfusion that results in impaired cellular metabolism

SHOCK is Not Low Blood Pressure An Abnormal Hemodynamic State characterized By An Acute Reduction in Blood Flow

Followed By Tissue Hypoxia or Anoxia a process that causes the eventual shutdown of all body systems in a systematic order.

o Time varies from person to person o Process speeds up with progression of the disorder o Circulatory failure leads to cell hypoxia and eventually - death

Pathophysiology of Shock

Aerobic Metabolism o In a normal cell – oxygen is used by the mitochondria to convert adenosine

diphospate (ADP) to adenosine triphosphate (ATP) through a process called oxidative phosphorylation in the Krebs cycle

Anaerobic Metabolism o When oxygen is not available – ATP is still produced, but less efficiently – in

smaller amounts that are inadequate for the cells to use for their essential functions.

o Anaerobic metabolism also produces large amounts of pyruvic acid, which is converted to lactic acid Produces metabolic acidosis

o As intracellular pH decreases – enzymes are released that destroy the cell

membrane and digest the cell contents o Consequences range from cellular dysfunction to death o Result……….Imbalance between oxygen supply and oxygen demand (Supply ≠

demand when compensation fails) o Oxygen debt………..When oxygen supply drops – oxygen consumption (V02) of

the cells decreases and anaerobic metabolism occurs along with an accumulation of oxygen debt Extent of oxygen debt correlates with the seriousness and irreversibility of

the shock state The larger the oxygen debt, the more serious and irreversible the shock

state becomes

Remember!

Anaerobic metabolism occurs regardless of the cause of the shock syndrome!

Can be reversed IF interventions are quickly instituted!

 

Stages of Shock: Compensatory • Progressive • Irreversible Compensatory

Decreased cardiac output compensatory mechanisms Activation of the autonomic nervous system Activation of the renin-angiotensin system Increased rate and depth of respirations

Compensatory Shock - Clinical Findings Normal BP, narrow pulse pressure Sinus tachycardia Fast, deep respirations Decreased urinary output Increased urine specific gravity

Cool, clammy skin Decreased LOC Dilated pupils Increased blood sugar Respiratory alkalosis with hypoxemia

Progressive

Decreased oxygen delivery to cells Shift to anaerobic metabolism Decreased production ATP Production of lactic acid results in metabolic acidosis Failure of the Na+/K+ pump Arrhythmias Alteration of capillary fluid dynamics Further decrease in cardiac output DIC

Progressive Shock – Clinical Findings

Decreased BP with narrow pulse pressure Continued tachycardia Acute renal failure Continued decreasing LOC Interstitial pulmonary edema Peripheral edema Metabolic and respiratory acidosis with hypoxemia

Irreversible

Microvascular and organ damage are now irreversible (untreatable) There is often a "last ditch" effort from the ischemic midbrain with an enormous

discharge of endogenous catecholamines and this can create a last spike of sinus tachycardia

Major Classifications of Shock States Hypovolemic Shock Cardiogenic Shock Obstructive Shock Distributive Shock

Hypovolemic Shock Due to a decrease in circulatory volume

o a decreased venous return. Can result when the fluid in the intravascular space has decreased or the size of the intravascular space has increased in proportion to the fluid volume

Etiology o Hemorrhage o Dehydration o Burns o Third-spacing (such as during a bowel resection)

Clinical presentation o Decreased BP o Increased HR o Increased RR o Decreased urine output o Normal temperature o Cool, pale skin o Decreased CO, CI, PA pressures, PCWP o Increased SVR o Decreased mixed venous oxygen saturation

Pathophysiology Decreased intravascular volume Decreased venous return Decreased ventricular filling Decreased stroke volume Decreased cardiac output Inadequate tissue perfusion

Treatment of Shock o The primary goals of treatment are:

Early identification of patients at risk for shock Optimize oxygen delivery Identify and treat the underlying cause of shock Decrease oxygen consumption

o Treatment Goal, ABC’s o Restoration of fluid status o Identify and control source of fluid loss o Fluid resuscitation, crystalloids or colloids o Blood products if indicated o Vasoconstrictive agents to maintain perfusion o Monitor lab values o Use large bore IV or CVL o Send blood for CBC, Electrolytes, BUN, CR, DIC, liver function, type and cross o Place NG tube if cause is R/O UGI bleed o Monitor and report patient response to treatment o Collaborative Management o Correcting the cause of volume depletion o Surgical correction o Replacing blood o Anti-emetics; anti-diarrheals o Restoring the intravascular volume o Isotonic fluid/Colloids/Blood Products

Signs and symptoms may also be related to the period of time over

which fluid loss has occurred

Patients may tolerate gradual fluid loses better than sudden shifts or

losses in fluid  

Cardiogenic Shock Occurs when the heart fails to function as a pump Severe dysfunction of the right or left ventricle that results in inadequate pumping Causes

o Large myocardial infarction or several small infarctions Affects 20-40% of all individuals who suffer a myocardial infarction

o End-stage cardiomyopathy o Papillary muscle dysfunction o Ventricular septal defect o Arrhythmia o Cardiac Contusion

Pumping action of the heart fails related to injury of cardiac muscle cells 80% mortality rate

Clinical Presentation

o Decreased BP, may be normal initially o Increased HR o Increased RR o Decreased urine output o Normal temperature

o Cool, pale skin o Decreased CO, CI o Increased PCWP, PA pressures o Decreased mixed venous oxygen

saturation

Pathophysiology Impaired pumping ability of the left ventricle Decreased stroke volume Decreased cardiac output Decreased blood pressure Decreased tissue perfusion Inadequate systolic emptying Elevated left ventricular filling pressure Increased left atrial pressure Increased pulmonary venous pressure Pulmonary interstitial edema or

Intraalveolar edema

Collaborative Management o Limiting or reducing myocardial damage during an acute MI

Rapid interventions with thrombolytics, angioplasty, coronary revascularizations

Nitroglycerin, oxygen, pain control, rest o Improving the effectiveness of the pumping action of the heart

Careful administration of fluid (Starling) Positive inotropes – dobutamine, amrinone, dopamine Intra-aortic balloon counterpulsation

Treatment goal, ABC’s

o Hemodynamic support Right Sided Failure Left Sided Failure o Volume expansion o Keep CVP between 10 and

15mm/Hg o Vasodilators may be used to

reduce afterload o Positive inotropes may be used

o Venodilators and diuretics as indicated

o Afterload reducers o Inotropes o IABP o Ventricular assist device

Obstructive Shock States Emboli resulting from a venous thrombosis can occlude a major pulmonary artery Tension pneumothorax – can impede venous return Cardiac tamponade – is caused by bleeding into the pericardial sac impairing ventricular

filling and decreasing cardiac output Distributive (Vasogenic)

Abnormality in the vascular system that produces a maldistribution of blood flow, includes neurogenic, anaphylactic and septic

Occurs when blood vessels dilate without subsequent increase in volume Related to poor vascular tone causing vasodilation Volume is adequate – vascular bed is too large Blood pools in the periphery Decreased venous return causes insufficient filling of the ventricle Leads to

inadequate ventricular pumping Decreased cardiac output Tissue hypoxia and cell death

Types of Distributive Shock

Anaphylactic • Neurogenic • Septic Anaphylactic Shock

Immune system overreaction that results in a host of vasoactive reactions Causes: Repeated exposure to an antigen (antibiotics, other drugs, contrast media, food,

insect stings, snake bites) Allergic reaction Fatal if untreated Antigen binds to immunoglobulin causing a release of chemicals including histamine,

kallikrein, and platelet-activating factor.

Pathophysiology: Massive vasodilation and increased capillary permeability Antigen + Antibody = Antigen/Antibody Reaction Release of vasoactive mediators Massive vasodilation (veins & arterioles) & Increased capillary permeability (leads to interstitial edema and relative hypovolemia)

Clinical manifestations o Urticaria o Pruritis o “Sense of impending doom” o Bronchoconstriction (wheezing,

cyanosis)

o Increased capillary permeability (fluid shifts to interstitial spaces)

o Decreased CO as a result of massive peripheral vasodilation Increased HR, RR

o Decreased PA pressures, PCWP

Treatment goal, ABC’s o Identify and remove causative agent o Fluids o Epinephrine o Antihistamines o Corticosteroids o Bronchodilators o Patient education

Neurogenic Shock Results from the loss of normal sympathetic nervous system response Etiology

o Brain injury that results in depression of the vasomotor center o Spinal cord injury (above mid-thoracic region) o High spinal anesthesia o Drug overdose

Pathophysiology: o Caused by stimulation of the autonomic nervous system = parasympathetic

system is unchallenged or sympathetic nervous system is blocked results in massive vasodilation, decreased venous return, and decreased cardiac output

Clinical Manifestations: o Decreased preload, SV, CO and blood pressure o Bradycardia develops – inhibited baroreceptor response o Loss of reflex tachycardia further compromises cardiac output and tissue

perfusion o Neurogenic shock develops within 60 minutes after spinal cord injury

Can continue for several weeks o Hypotension, heart rate less than 60, warm, dry skin, hypothermia o Additional signs of hypoperfusion

< urine output; decreased level of consciousness; decreased peripheral pulses; > capillary refill

Treatment goal, ABC’s o Maintain stability of the spine o Provide for cardiovascular stability o Fluid resuscitation o Vasoconstrictors to improve BP o Atropine

Septic Shock A systemic response to massive infection Adequate tissue perfusion is maintained by an adequate circulating blood volume and the

adequacy of circulating volume depends on the condition of the heart, vascular tone and actual blood volume.

Patients at risk o Fever o Host-related o Malignancy o Extremes of age o Malnutrition

o Immune deficiency o Chronic illness o Treatment Related o Chemotherapy o Radiation

o Antibiotics o Skin Breakdown o Invasive procedures o Prolonged hospitalization o Translocation of Bacteria

Caused by infection

o Initial inflammatory response results in an elevation of blood flow and vascular permeability at the infectious site

o Mediators are released causing further alterations in the vascular bed o Severe infections cause the release of endotoxins and exotoxins which are

powerful vasodilators o Results in decreased venous return and decreased cardiac output

Pathophysiology

o Too much inflammation o Hypercoagulability o Decreased fibrinolysis

Clinical presentation

o Early (Hyperdynamic) Signs of sympathetic stimulation Increased heart rate, respiratory rate, myocardial contractility, cardiac

output Increased oxygen consumption by tissues and cells Increased minute ventilation Blood vessels dilate – decrease SVR Warm, flushed skin, changes in LOC, fever and chills, hypoxemia, rapid

bounding peripheral pulses o Late (Hypodynamic) – the body can no longer meet the oxygen demands of the

tissues Decreased cardiac output Severe hypotension Weak, rapid thready pulses Hypothermia Cold, clammy , mottled skin Multiple organ failure

o Decreased BP o Increased HR, RR o Urine output increased then decrease o Temperature

o Skin: warm then cool o Color: flushed then pale o CO, CI increase then decrease o PA pressures, PCWP, SVR decrease then increase o Mixed venous oxygen saturation increase then decrease

Treatment Goals

o Optimize Oxygen Delivery Supplemental oxygen Administration of IV fluids Positive inotropes Vasoactive drugs Trendelenburg position modified

o Fluid administration, followed by appropriate vasopressor o Antibiotic therapy o Blood cultures o Anti-endotoxins o Septic Shock o Early recognition and removal of source of infection o Appropriate antibiotic therapy o Hemodynamic support o Nutritional support o Handwashing o Universal precautions o Measures to prevent nosocomial infection

Review

Shock is NOT JUST LOW BP Despite physician’s orders-drug titration is NOT about blood pressure, but tissue

perfusion. Hypovolemic shock requires fluid RX Cardiogenic shock requires inotropic and dilator RX Vasogenic shock requires fluid,Vasopressors and possibly inotropic RX Prevention is the single most important intervention!

Review of Shock Types

Shock Type CVP PAWP SVR C.O. HR Comments

Hypovolemic ↓ ↓ ↑ ↓ ↑

Cardiogenic ↑ ↑ ↑ ↓ ↑

Neurogenic ↓ ↓ ↓ ↑ ↓

Septic ↓ ↓ ↓ ↑ ↑

Anaphylactic ↓ ↓ ↓ ↑ ↑

Respiratory Monitoring and Beyond: ABGs, SPO2, & ETCO2 Description • Arterial blood gases are used to measure the amount of oxygen, carbon dioxide, and

bicarbonate in the blood, as well as the pH. • ABGs provide information regarding physiologic phenomena

Acids • Substances capable of releasing a hydrogen ion (H+) into solution. • Volatile acids

▫ excreted through the lungs (CO2) • Fixed or nonvolatile acids

▫ excreted by the kidneys (ketoacids and lactic acid) Bases • Substances capable of combining with H+ in solution. • Bicarbonate (HCO3)

▫ Most important base in the blood ▫ regulated by the kidneys

• Hemoglobin and plasma proteins. • Bases are reflected in the ABGs as the HCO

3 and the base excess or base deficit.

Elements of ABGs: Normal Values

Element Description Normal Value pH • Represents a combined effect of metabolic and respiratory

factors • Low pH = acidosis • High pH = alkalosis

7.35-7.45 (7.4)

PCO2 • Measure of the partial pressure of carbon dioxide dissolved in the plasma

• Byproduct of metabolism • CO2 is excreted by the lungs and is a measure of the adequacy

of ventilation • CO2 functions as an acid because it combines with water to

produce carbonic acid (H2CO3)

35-45 mmHg

HCO3 • Bicarbonate ion is a base regulated by the kidneys • It may be adjusted to compensate for respiratory acid-base

imbalance, or may be altered by other factors such as kidney disease or metabolic alterations

22-26 mEq/L

PaO2 • Partial pressure of oxygen dissolved in arterial plasma • Only about 1% of total oxygen content is carried in this state • Indicates how well oxygen is being taken up in the lungs

80-100 mmHg

SaO2 • Represents the percentage of total hemoglobin which is saturated with oxygen

• Vast majority of oxygen is carried in this state • Usually well-correlated with PaO2 (oxyhemoglobin

dissocation curve), some conditions (i.e. pH, temp) can influence the relationship

95-98%

Base Excess (BE)

• Represents the combined effects of HCO3 and other bases – plasma proteins, hemoglobin, and others

• A negative base excess is sometimes referred to as a base deficit

-2 to +2

Steps in ABG Interpretation

1. Check pH (acidotic, alkalotic, or normal) 2. Check PaCO2 (respiratory parameter)

▫ Elevated (acidotic), decreased (alkalotic), or normal 3. Check HCO3 (metabolic parameter)

▫ Elevated (alkalotic), decreased (acidotic), or normal 4. If abnormalities exist, determine which of the major acid/base imbalances is present 5. Determine whether any compensation mechanisms are involved 6. Check PO2 and O2 saturation

▫ normal, elevated, or decreased 7. Observe patient (evaluate vital signs and physical parameters)

▫ Evaluate why patient presents any abnormal values which are present and implement appropriate actions to correct the acid/base imbalance

Respiratory Acidosis (Elevated PaCO2) • Caused by hypoventilation of any etiology

▫ COPD ▫ Oversedation, head trauma, anesthesia, or reduced function of respiratory center. ▫ Neuromuscular disease ▫ Inappropriate mechanical ventilation ▫ Other causes of hypoventilation (sleep apnea)

Respiratory Alkalosis (Low PaCO2) • Caused by hyperventilation

▫ Hypoxemia ▫ Nervousness and anxiety ▫ Pulmonary Embolus ▫ Pregnancy ▫ Inappropriate mechanical ventilation ▫ Compensation for metabolic acidosis

Metabolic Alkalosis (Elevated HCO3) • Caused by a loss of nonvolatile acid or increase in HCO3 • Gastric loss of acid • HCO3 during cardiac arrest • Baking soda • Massive blood transfusion – citrate – lactate - bicarbonate • Increased excretion of H+, K+, and Cl - due to :

1. Diuretics 2. Cushings Syndrome 3. Corticosteroids 4. Aldosteronism

Metabolic Acidosis (decreased HCO3) • Caused by a gain in nonvolatile acid which uses up HCO3 or loss of HCO3. • Increase in immeasurable anions:

▫ Diabetic ketoacidosis ▫ Renal failure ▫ Lactic Acid ▫ Poisoning: salicylates, ethylene glycol, methyl alcohol, paraldehyde

• No increase in immeasurable anions: ▫ Diarrhea ▫ Drainage of pancreatic juice ▫ Treatment with diamox ▫ Treatment with ammonium chloride ▫ Renal tubular Acidosis

Clinical Signs of Acidosis/Alkalosis

Acidosis (CNS Depression) Alkalosis (CNS Excitation) • Depressed thought processes • Delayed reaction times • Slurred speech • Somnolence • Uncoordination • Confusion • Semi-coma • Death

• Anxiety • Paresthesia • Tremors • Nausea • Tetany • Convulsions • Death

Anion Gap

• The anion gap refers to a difference in the routinely measured cations (positively charged particles, such as Na+ , Ca++, and Mg++ ) and anions (negatively charged particles , such as HCO3- and Cl-)

• The formula for the anion gap is: ▫ AG= Na+ - (HCO3- + Cl-)

• The normal anion gap is 8-16 mEq/L • Practice: Na 138, HCO3 11, Cl 99, = Anion Gap of ______

Anion Gap – why do we care? • Assists in differential diagnosis of the type of metabolic acidosis • An elevated anion gap acidosis suggests an increase in plasma level of unmeasured

cations (accumulation of acids is not adequately buffered by a base) • A nonelevated anion gap acidosis reflects the loss of bicarbonate, rather than an

increase in acid production or a decrease in acid excretion.

Respiratory Acidosis (pH is low, PaCO2 is high)

pH 7.30 PCO2 65 PO2 90 HCO3 26 BE 0 SaO2 95%

Respiratory Alkalosis (pH is high, PaCO2 is low)

pH 7.5 PCO2 30 PO2 90 HCO3 26 BE 0 SaO2 95%

Metabolic Acidosis (pH is low, HCO3/BE is low)

pH 7.30 PCO2 35 PO2 92 HCO3 18 BE -3 SaO2 97%

Metabolic Alkalosis (pH is high, HCO3/BE is high)

pH 7.50 PCO2 40 PO2 95 HCO3 35 BE +3 SaO2 96%

Compensation • Body’s ability to regulate pH by adjusting either the rate of ventilation (excretion of

CO2) or the renal excretion of HCO3) • Mechanism by which an abnormal PaCO2 or HCO3 may be accompanied by a normal or

near-normal pH • In other words, it is the body’s attempt to normalize pH. • Common compensatory mechanisms involve regulating the amount of CO2 (respiratory

compensation-fast response) or the amount of HCO3- (metabolic compensation-slower response)

HOW? • Respiratory acidosis due to increased PaCO2

▫ Compensation: Kidneys excrete more acid and less HCO3- resulting in increased HCO3-

• Respiratory alkalosis due to decreased PaCO2 ▫ Compensation: Kidneys excrete HCO3-

• Metabolic acidosis due to decreased HCO3- ▫ Compensation: Hyperventilation to decrease PaCO2

• Metabolic alkalosis due to increased HCO3- ▫ Compensation: Hypoventilation to increase PaCO2

Primary Disorder

Cause Compensation Effect on ABGs

Metabolic Acidosis

• Excess nonvolatile acids • Bicarbonate deficiency

Rate & depth of respirations increase eliminates additional CO2

↓ pH ↓ HCO3 ↓ PaCO2

Metabolic Alkalosis

• Bicarbonate excess Rate & depth of respirations decrease retaining CO2

↑ pH ↑ HCO3 ↑ PaCO2

Respiratory Acidosis

• Retained CO2 & excess carbonic acid

Kidneys conserve bicarbonate to restore carbonic acid : bicarbonate ratio 1:20

↓ pH ↑ PaCO2 ↑ HCO3

Respiratory Alkalosis

• Loss of CO2 & deficient carbonic acid

Kidneys excrete bicarbonate and conserve H+ to restore carbonic acid : bicarbonate ratio

↑ pH ↓ PaCO2 ↓ HCO3

There are two types of compensation • Partial Compensation

▫ pH, pC02, and Bicarb are all abnormal • Full Compenstion

▫ pH is normal, pC02 and Bicarb are abnormal

Assessment of Acid-Base Balance • Look at the pH, and determine if it is low (acidotic), normal, or high (alkalotic) • Look at the CO2 and HCO3 and determine if these values “match” the pH.

▫ For example, you would expect a normal pH to go along with a normal CO2 and HCO3-. A normal pH with abnormal CO2 and HCO3 indicates compensation.

Practice

Interpretation:

pH 7.18 PCO2 34 PO2 84 HCO3 12 FiO2 .21 P/F Ratio 400

Interpretation:

pH 7.22 PCO2 59 PO2 35 HCO3 35 FiO2 .21 P/F Ratio 167

Interpretation:

pH 7.42 PCO2 50 PO2 80 HCO3 32 BE 2.5 SaO2 95%

Interpretation:

pH 7.37 PCO2 32 PO2 90 HCO3 18 BE -2.5 SaO2 98%

Interpretation:

pH 7.39 PCO2 64 PO2 65 HCO3 37 FiO2 .30 P/F Ratio 217

Interpretation:

pH 7.45 PCO2 27 PO2 65.5 HCO3 19.1 FiO2 .40 SpO2 .88

Physiologic Phenomena - Oxygenation • Ability of the lungs to deliver fresh O2 to the blood in the pulmonary capillary beds • Reflected in the partial pressure of oxygen (PaO2) and the percent saturation of oxygen

(SaO2) in the arterial blood • Oxygenation Definition

▫ Amount of oxygen carried in the arterial blood that is bound to the hemoglobin molecule.

▫ It is reflected as SaO2 (the percent of hemoglobin in saturated with oxygen) ▫ The driving force for SaO2 is the PaO2 (partial pressure of dissolved oxygen in

the blood) • Assess Oxygenation

▫ Look at the PaO2, which is a good indicator of O2 uptake in the lungs. ▫ Assess the SaO2 as an indicator of O2 content (CaO2) ▫ While PO2 and SaO2 are related, the vast majority of the total O2 content is

reflected in the SaO2 ▫ Consider the hemoglobin content of the blood

 

• Ventilation ▫ Ability of the body to rid itself of carbon dioxide (CO) ▫ Reflected in ABGs as partial pressure of CO (PaCO)

• Assess Oxygen Delivery ▫ The ‘bottom line’ of respiration is the delivery of O2 to the body’s cells and

removal of carbon dioxide ▫ For this to occur, the oxygenated blood must be delivered to the tissues and

deoxygenated blood returned to the heart • Two ways to Assess O2 Delivery

▫ Oxygen delivery and uptake by tissues can be measured using a properly equipped pulmonary artery catheter

▫ Basic physical assessment cues: • Short of breath or hyperventilating • Blood pressure, pulse rate and rhythm, skin temperature and color • Distention of the neck veins, Auscultation of a gallop or murmur • Crackles at the bases of the lungs

• Conditions Interfering with O2 delivery ▫ Decreased circulating blood volume (hypovolemia) ▫ Heart failure

Oxyhemoglobin Dissociation Curve

ETCO2 – ventilation vital sign ETCO2 monitoring determines the CO2 concentration of exhaled gases Photo detector measures the amount of infrared light absorbed by airway gases during

inspiration and expiration o CO2 molecules absorb specific wavelengths of infrared light energy o Light absorption increases directly with CO2 concentration

A monitor converts this data to a CO2 value and a corresponding waveform (capnograph)  

Respiratory Cycle Cellular Metabolism (metabolism of food into energy O2 consumption and CO2

production) Transport of O2 and CO2 between cells and pulmonary capillaries, and diffusion

from/into alveoli Ventilation between alveoli and atmosphere

 

ETCO2 Monitoring: Mainstream or Sidestream ETCO2 Values: Normal 35-45 (> 45 – hypoventilation, < 35 – hyperventilation) Pulse Oximetry Capnography Measures saturation of Hemoglobin with

Oxygen Reflects Oxygenation SPO2 changes lag when patient is

hypoventilating or apneic Should be used with Capnography

Carbon Dioxide Reflects Ventilation Hypoventilation/apnea detected

immediately Should be used with Pulse Oximetry

Review Questions

Which of the following ABG values would be most indicative of a diagnosis of acute respiratory failure?

pH pCO2 pO2 HCO3

A. 7.18 70 54 26

B. 7.18 80 63 42 C. 7.26 55 80 24

D. 7.34 45 65 23

Which of the following is a correct statement about a shift of the oxyhemoglobin dissociation curve to the right?

A. It can result from an increase in blood pH B. It can result from an increase in body temperature C. It results in less oxygen being unloaded from hemoglobin molecules D. It results in 100% saturation of hemoglobin

 

Which of the following best defines hypoventilation? 

A. An RR less than 10 B. A pCO2 greater than 45 C. A pO2 less than 75 D. An arterial pH greater than 7.35

 

An ABG sample obtained while a patient is breathing room air reveals the following: pH 7.18, pCO2 80, pO2 35, HCO3 29 The ABG indicates: 

A. Respiratory acidosis with mild hypoxemia B. Respiratory acidosis with severe hypoxemia C. Combined respiratory and metabolic acidosis with mild hypoxemia D. Combined respiratory and metabolic acidosis

 

A patient is admitted to the MICU with the following arterial blood gas results pH 7.55, CO2 28 mmHg, PaO2 88 mmHg, HCO3 26 mEq/L What is the interpretation? 

A. Respiratory Acidosis B. Compensated Metabolic Alkalosis C. Non-compensated Respiratory Alkalosis D. Metabolic Alkalosis

 

Which of the following is a complication of mechanical ventilation and peak end expiratory pressure (PEEP) therapy? 

A. Atelectasis B. Oxygen toxicity C. Reduced cardiac output D. Acute Respiratory Distress Syndrome

5/26/2020

1

VENTILATION STRATEGIESBeth Brown, BSN, RN, CCRN‐K

CONTENT

Modes of Mechanical Ventilation

Prone positioning

Noninvasive Ventilation

Mechanical Ventilation  Prevention of Complications Therapeutic Interventions

Tracheostomy

Therapeutic Gases Nitric Oxide Heliox

LUNG VOLUMES/CAPACITIES DEFINITIONS

Total Lung Capacity (TLC): Volume of gas contained in the lung at the end of maximal inspiration

Vital Capacity (VC): Maximal volume of gas that can be expelled from the lungs following a maximal inspiration

Inspiratory Capacity (IC): Maximal volume of gas that can be inspired from the resting expiratory level

Functional Residual Capacity (FRC): Volume of gas remaining in the lungs at resting end expiration

COMMON BASIC VENTILATOR SETTINGS

FiO2 ‐ fraction of inspired Oxygen (21% ‐ 100%).

Tidal Volume ‐ amt of air that the ventilator has been set to deliver to the patient with each breath. Healthy Lungs: 6‐8 ml/kg ALI/ARDS: 5‐6 ml/kg

Respiratory rate‐Number of positive  pressure breaths the ventilator delivers per minute.

5/26/2020

2

PEEP

Lets the patient exhale while maintaining a preset positive pressure at the end of expiration.

Allows for greater gas exchange before the next breath.  It is the application of  positive pressure to the airway at end expiration. 

First used early in the  1970s as a treatment for Respiratory distress syndrome in newborns

Auto‐PEEP: occurs when expiration is not long enough to empty the lungs

INSPIRATORY TIME: EXPIRATORY TIME RELATIONSHIP (I:E RATIO)

During spontaneous breathing, the normal I:E ratio is 1:2, indicating that for normal patients the exhalation time is about twice as long as inhalation time. 

If exhalation time is too short “breath stacking” occurs resulting in an increase in end‐expiratory pressure also called auto‐PEEP.

Depending on the disease process, such as in ARDS, the I:E ratio can be changed to improve ventilation

PRESSURES

PEAK Airway Pressures Measured at airway opening Norm: < 40

PLATEAU Pressures Measured at end of inspiration Norm: < 30

CONVENTIONAL MODES OF MECHANICAL VENTILATION

Ventilation Modes considerations: Trigger: What controls the tidal breath? Pressure or Volume

Limit: What determines the size of the breath?

Cycle: What actually ends the breath? Usually time 

5/26/2020

3

CONVENTIONAL MODES OF MECHANICAL VENTILATION –VOLUME MODES

Tidal volume and minute ventilation are ensured  Volume is preset Pressure varies with patient compliance and resistance

Assist‐Control Ventilation (ACV) CMV All breaths (patient initiated and pre‐set) are same volume

Synchronized Intermittent Mandatory Ventilation (SIMV) Pre‐set breaths are set volume, patient‐initiated volume determined by patient Vent synchronizes the mandatory breaths with patient’s own breaths

CONVENTIONAL MODES OF MECHANICAL VENTILATION – PRESSURE MODES

Tidal volume is determined by the selected pressure level, airway resistance, and lung compliance Pressure is preset Volume varies

Pressure Controlled Ventilation (PCV) Does not allow for patient‐initiated breaths Applies constant pressure for a preset time Variable tidal volumes (flow depends on lung resistance, lung compliance, and patient effort) Used in ARDS to reduce barotrauma

Pressure Support Ventilation (PSV) Patient determines inflation volume and respiratory rate Used to augment spontaneous breathing

CONVENTIONAL MODES OF MECHANICAL VENTILATION – PRESSURE MODES CONTINUED

Airway Pressure Release Ventilation (APRV) Bi‐level mode providing 2 levels of CPAP with an inverse ratio (very short expiration time – inverse ratio) Requires increased amounts of sedation Considered Rescue Method for patients with lung compliance and oxygenation issues Helps prevent alveolar collapse and maintain recruitment

Risks: Pneumothorax Ventilator trauma

CONVENTIONAL MODES OF MECHANICAL VENTILATION – DUAL MODES

Pressure Regulated Volume Control (PRVC) A control mode, which delivers a set  tidal volume with each breath at the lowest possible peak pressure.  Delivers the breath with a decelerating flow pattern that is thought to be less injurious to the lung…… “the guided hand”.

5/26/2020

4

VENTILATOR MODES

MODE  FUNCTION CLINICAL USE Assist‐Control Ventilation (A/C) Delivers breath in response to patient effort and if 

patient fails to do so within preset amount of timeUsually used for spontaneously breathing patients with weakened respiratory muscles

Synchronous Intermittent Mandatory Ventilation (SIMV)

Ventilator breaths are synchronized with patient’s respiratory effort

Usually used to wean patients from mechanical ventilation

Pressure Controlled Ventilation (PCV)

Pressure limited ventilation; can be combined with inverse ratio (watch for auto‐PEEP)

Pressure Support Ventilation (PSV) Preset pressure that augments the patient’s inspiratory effort and decreases breathing work 

Often used with SIMV during weaning 

Airway Pressure Release Ventilation (APRV)

Biphasic ventilation with short expiratory time

Pressure Regulated Volume Control (PRVC)

NON‐CONVENTIONAL MODES OF MECHANICAL VENTILATION

High Frequency Oscillatory Ventilation (HFO) Used for refractory hypoxemia Oscillates the lung around a constant mean airway pressure higher than conventional ventilation Delivers breaths at high frequencies and low tidal volumes Hertz (Hz): 1 Hz = 60 breaths

Disadvantages: Require heavy sedation/neuromuscular blockade Cannot transport patient Cannot auscultate breath/heart/bowel sounds

PRONE POSITIONING

Redistributes pulmonary blood flow

7 trials All showed improvement in oxygenation 6/7 did not show improvement in mortality

Complications Worsen chest wall compliance Airway obstruction Endotracheal tube dislodgement

Contraindications Unstable vertebral fractures Elevated intracranial pressure

NON‐INVASIVE POSITIVE PRESSURE VENTILATION (NPPV)

BPAP (Bilevel Positive Airway Pressure) Inspiratory Positive Airway Pressure (IPAP) Expiratory Positive Airway Pressure (EPAP) Indications: Respiratory Failure

CPAP (Continuous Positive Airway Pressure) Delivers 1 specified positive pressure Indications: Resp. Failure d/t cardiogenic pulmonary edema

High Flow Nasal Cannula Up to 60 L/min Indications: mild‐mod hypoxemic respiratory failure

5/26/2020

5

PULMONARY THERAPEUTIC INTERVENTIONS ASSOCIATED WITH MECHANICAL VENTILATION

Intubation

Weaning

Extubation

INTUBATION

Indications Airway Obstruction Protection 

Ventilatory Failure PaCO2 > 50 mmHg

Hypoxia PaO2 < 50 mmHg

Respiratory Distress (high RR, use of accessory muscles)

VERIFY TUBE PLACEMENT

Auscultation

Confirmation Device

eTCO2

Cxr ‐ tube should be between the 3rd and 4th ICS (2 ‐ 3 cm above the carina) – gold standard

INFLATION OF ET TUBE CUFF

Inflate cuff pressure to 25 mmHg using Wright manometer

Pressure on the wall of the trachea in excess of 30 mm hg occludes arterial blood flow causing ischemia/necrosis.

Minimal Leak Test Inflate cuff until no leak is heard in trachea. Withdraw 0.2 ‐ 0.5 cc air or until a slight leak is heard.

5/26/2020

6

NURSING CARE FOR INTUBATED PATIENT

Frequent oral care

Suction as needed

Tube placement checks

Adequate humidity

Assess oral mucosa

MECHANICAL VENTILATION – PREVENTION OF COMPLICATIONS

Ventilator Induced Lung Injury

Cardiovascular Complications

VAP

Sinusitis

VENTILATOR INDUCED LUNG INJURY

Oxygen toxicity Use of O2 greater than 60% longer than 48 hours

Barotrauma / Volutrauma Peak Pressure Plateau Pressure Shear Injury (atelectrauma) PEEP

CARDIOVASCULAR COMPLICATIONS

Positive End Expiratory Pressure 

↑ Intrathoracic Pressure

↓ Venous Return to Heart

↓ Preload

↓ Cardiac Output

Reduced Cardiac Output:

↓ Blood Pressure

↓Urine Output

5/26/2020

7

VAP BUNDLE

Head of Bed Elevation (~ 30 degrees)

Oral Care 

Stress Ulcer Prophylaxis

Sedation Wake‐Up

Spontaneous Breathing Trial

TROUBLE SHOOTING THE VENT

High peak pressure differential:

High Peak PressuresLow Plateau Pressures

High Peak PressuresHigh Plateau Pressures

Mucus Plug ARDS

Bronchospasm Pulmonary Edema

ET tube blockage Pneumothorax

Biting ET tube migration to a single bronchus

Effusion

WEANING

Improvement of respiratory failure

Absence of major organ system failure

Appropriate level of oxygenation

Adequate ventilatory status

Intact airway protective mechanism (needed for extubation)

WEANING

Definitions Rapid Shallow Breathing index (RSBI): respiratory rate divided by tidal volume.  Most studied of the weaning parameters The faster you breathe with small volumes the higher the number

Negative Inspiratory Force (NIF): (or MIP –maximal inspiratory pressure) Global assessment of strength of respiratory muscles

Minute Ventilation: respiratory rate x tidal volume Estimates demand on the respiratory system. Normal is 5‐6L/min in healthy adults.  Increased CO2 production from fever, hypermetabolic state, hypoxemia, etc will increase minute ventilation

5/26/2020

8

PREDICTORS OF WEANING OUTCOME

Predictor ValueVentilatory muscle capability:

Vital capacity

Maximum inspiratory pressure

> 10 mL/kg

< -30 cm H2O

Ventilatory performance Minute ventilation

Maximum voluntary ventilation

Rapid shallow breathing index

Respiratory rate

Vt

< 10 L/min

> 3 times VE

< 100

< 30 /min

5-7 ml/kg

EXTUBATION

Prior to extubation: Confirm minimal FIO2 and PEEP Evaluate upper airway complications Check cuff leak Check that cough and gag are present

Have equipment ready NC/facemask/bipap

Suction secretions

Extubate!

LATE POST‐EXTUBATION COMPLICATIONS

Fibrotic Stenosis of the Trachea Caused by prolonged use of any tube with a rigid inflatable cuff Follows earlier ulceration and necrosis of site Tracheoesophagel fistula may form Prevention – low‐pressure cuffs and proper monitoring of cuff pressures

Stenosis of Larynx Caused by discrepancy between the anatomy of the larynx and size/shape of the tube Treatment – dilation of surgical intervention or permanent tracheostomy

TRACHEOSTOMY INDICATIONS

Ventilation Long‐term mechanical ventilation Interval between oral intubation to trachvaries Consider trach if patient requires endotracheal tube > 21 days (American College of Chest Physicians)

Airway obstruction Tumors Paralyzed vocal cords Swelling Stricture Unusual anatomy Trauma

Airway protection Insufficient cough and/or gag High spinal cord injury Cerebrovascular accident Traumatic brain injury

Secretions

5/26/2020

9

TRACHEOSTOMY CARE (CONSENSUS STATEMENTS)

All supplies to replace trach should be at bedside or within reach

The first change of a tracheostomy tube should normally be performed by an experienced physician with assistance from another clinician

Use of a defined trach care protocol will help decrease complications

In an emergency, patients with a dislodged tracheostomy tube that cannot be reinserted should be intubated

Acute occlusion of a tracheostomy tube is most likely caused by a mucous plug, obstructing granuloma, or insertion of the tube into a false track

A patient can be turned in bed once the security of the tube has been assessed to avoid accidental decannulation

TRACHEOSTOMY CARE: MOBILIZATION OF SECRETIONS

Mobilization consists of 3 primary factors: Adequate hydration To keep secretions thin and mobile Humidified trach collar provides some moisture

Physical mobility Progressive mobility (out of bed, sitting in chair, walking) Range of motion exercises

Removal of secretions Suctioning Encouraging patient to cough

THERAPEUTIC GASES – NITRIC OXIDE

Inhaled

Improves oxygenation but does not improve outcome

Vasodilator ‐ ↓ PAP which reduces shunt fraction and ↑ PaO2 Short half‐life No systemic effects

Indications ARDS Persistent Pulmonary Hypertension

THERAPEUTIC GASES – HELIOX

Helium + Oxygen

Indications: COPD ALI ARDS

5/26/2020

10

REFERENCES

Modes of Mechanical Ventilation https://www.openanesthesia.org/modes_of_mechanical_ventilation/

Henderson, Griesdale, Dominelli et al. (2014). Does prone positioning improve oxygenation and reduce mortality in patients with acute respiratory distress syndrome? Canadian Respiratory Journal 21(4).

Hartjes, TM. (2006). AACN Core Curriculum for High Acuity, Progressive, and Critical Care Nursing 7th Edition.

WHICH OF THE FOLLOWING IS A COMPLICATION OF MECHANICAL VENTILATION AND PEAK END EXPIRATORY PRESSURE (PEEP) THERAPY?

A. Atelectasis

B. Oxygen toxicity

C. Reduced cardiac output

D. Acute Respiratory Distress Syndrome

Fluid & Electrolytes Study Guide 

An electrolyte is a term for salts, or ions and is expressed as millequivalents/L 

When immersed in water, electrolytes dissociate into charged particles, either (+) charged ions 

(cation) or as a (‐) charged ion (anion) 

In normal circumstances total cations = total anions (if not, a “gap” occurs) 

 

Key Concepts: 

o Electrolytes and body fluids are interdependent 

o Found in all fluid compartments body secretions and wastes 

o Measure electrolytes  in the extracellular fluid or vascular compartment 

o Major Body Fluid/Electrolyte Compartments 

Intracellular 

Fluid within the cells, including RBC’s and WBC’s 

Largest compartment 

Contains 2/3 of the total body weight (approx. 25 liters in a 70 kg 

adult) 

Extracellular 

Fluid outside the cells 

Make up 1/3 total body weight 

3 compartments 

o Intravascular – fluid within the blood vessel (plasma) 

o Interstitial – fluid that surrounds the cells 

o Trans‐cellular – includes CSF, pericardial, pleural, digestive, 

etc. 

 

   

Key Concepts 

  

Solution Types: 

o Hypotonic 

o Hypertonic 

o Isotonic 

 

  

   

Fluid Status Assessment 

Assessment of Blood Volume (Extra‐Cellular) 

BP 

CVP 

PAOP 

Peripheral Pulses 

Neck Veins 

Urine Output 

Specific Gravity 

Assessment of Interstitial Fluid Space 

Skin 

Respiratory Status 

Thirst 

Edema 

 

Hydration Status Assessment 

Fluid Deficit 

BP 

CVP 

PAOP 

Peripheral Pulses 

Neck Veins 

Urine Output 

Specific Gravity 

Fluid Overload 

Skin 

Respiratory Status 

Thirst 

Edema 

 

Alterations in Fluid Balance 

Fluid Imbalance  Cause  Signs/Symptoms  Treatment 

Hypovolemia  Prolonged vomiting 

Diaphoresis  Prolonged GI suction  DKA  Diuretics  “third space”  Cardiac arrest  Diseases affecting aldosterone 

Decreased BP  Tachycardia  Weak arterial pulses 

Flat neck veins  Decreased CVP/PAWP 

Decreased urine output  Increased Specific Gravity  Dry mucous Membranes 

Poor skin turgor  Weight loss 

Replace Na Replace Water 

Hypervolemia  Excessive isotonic NS infusions 

Chronic renal failure  Liver disease  Partial hypertension  Malnutrition with protein deficiency 

CHF with decreased CO 

Increased BP  Tachycardia  Pulmonary Congestion  

Orthopena  Crackles/Wheezes 

Full, bounding pulses  Rapid venous filling  Neck vein distention   increased PAWP/CVP 

Decreased Specific Gravity  Dependent Edema 

Urine output varies 

Rid Body of Excessive Na/Water 

Fluid Types 

Fluid Type  Definition  Examples 

Isotonic  Same Osmolarity as serum and body fluids Expands the intravascular compartment without effecting the intracellular or interstitial compartments 

LR NS D5W* 

Hypotonic  Lowers serum osmolarity and causes fluid shifts from intravascular into intracellular compartments Hydrates the cells Depletes fluid within the intravascular compartment 

0.45% NS 0.33% NS 

Hypertonic  Raises the serum osmolarity Shifts fluid from the intracellular/interstitial compartments into the intravascular compartment Shrinks the cells Volume expanders 

D5 ½ NS 3% NS D5LR 

 

   

Potassium – Normal 3.5‐5.5 (MEq/L) 

Action in Body: 

Maintains cellular osmolarity 

Necessary for transmission of nerve impulses and for muscle contraction   

Assists with reassembling amino acids into proteins  

Maintains acid‐base balance 

Regulated By: Kidney through glomerular filtration rate, aldosterone 

Comments: 

Kidney cannot conserve K+, so it must be consumed daily.   

K+ and H+ move together in the kidney.   

If cellular K+ is lowered, Na+ enters the cell, making it more irritable.  

Hyperkalemia: > 5.5 MEq/L 

Causes  Symptoms  Treatment 

Injured cells 

Early burns 

Hemolysis 

Renal disease 

Adrenal insufficiency 

Low cardiac output syndrome 

Certain drugs 

Too much intake of K+ 

Intestinal colic 

Diarrhea 

Irritability 

Nausea 

Dizziness 

Muscle weakness 

Cramps and pain 

flaccid muscle paralysis 

high peaked T‐waves on EKG, wide QRS 

Reducing K+ intake 

Giving oral or IV hydrating solutions 

Giving dextrose and insulin infusions (20% dextrose solution with 1 unit of insulin for each 2gm of dextrose). 

Using extrarenal dialysis 

Giving binding resins (e.g., Kayexalate) 

Giving osmotic diarrheal (Sorbitol) 

Albuterol 10‐20 mg  

Hypokalemia: < 3.5 MEq/L 

Causes  Symptoms  Treatment 

Alkalosis: K+ shifts into cell 

Severe stress: K+ shifts into the cell 

Diuretic therapy 

Abnormal GI losses 

Starvation or malnutrition 

Metabolic disease 

Increased adrenal corticosteroid secretion or corticosteroid therapy 

Liver disease 

Bartter’s syndrome 

Skeletal muscle: weakness, fatigue, decreased reflexes.  

Heart muscle: weak pulse, low voltage T‐waves, S‐T depression, predominant U‐waves, faint heart sounds, dysrhythmias.  

GI disturbances: vomiting, shortness of breath, depression, mental clouding. 

Return serum potassium level to normal 

 

Sodium – Normal 135‐145 MEq 

Action in Body: 

Maintains osmotic pressure and serum osmolarity.  

Helps maintain acid‐base balance, along with bicarbonate ion.   

Regulates fluid volume.   

Controls muscle contraction  Regulated By: Kidney through aldosterone, ADH, glomerular filtration rate, 3rd factor in kidney, tubular enzymes.  

Comments: 

Na+ competes with H+ and K+ in the renal tubule for excretion and absorption.  99% filtered Na+ is reabsorbed in the kidney  

Hypernatremia: > 145 MEq/L 

Causes  Symptoms  Treatment 

Impaired renal function 

Cushing’s syndrome 

Inhalation or ingestion of sea water 

Increased urine output 

Increased temperature 

Edema 

increased blood pressure 

weight gain 

Serum sodium is WNL and patient is asymptomatic 

Hydration status normal 

 

Hyponatremia: < 135 MEq/L 

Causes  Symptoms  Treatment 

Excess water relative to the amount of sodium 

Sodium depletion 

Abnormal losses 

Hyperglycemia 

Salt‐losing renal diseases 

Bartter’s syndrome 

Heart failure 

Cirrhosis 

Anorexia 

Nausea 

Mental confusion 

Giddiness 

Reduced blood volume 

Apprehension 

Increased blood viscosity 

Convulsions 

Pallid and clammy skin 

Low blood pressure 

Restore sodium concentration to normal levels or at an asymptomatic level 

Normal Fluid status is maintained 

Na+ and water loss – high sodium and adequate fluid intake 

Water intoxication: restrict fluid intake ‐ 500ml/day 

Water intoxication related to SIADH: restrict water intake 

 

Central Pontine Myelinolysis (CPM) 

Neurological disorder caused by severe damage to the myelin sheath of nerve cells in the Pons (brainstem). 

Too rapid sodium correction 

Hyponatremia should be corrected over 48 hours (Limit to 10 mmol/L during any 24 hour period) 

Irreversible (muscle weakness, slowed speech, swallowing difficulties, tremors) 

Locked in syndrome   

Calcium – Normal 8.5‐10 (Total) 

Action in Body: 

Serves as framework for bones and teeth.   

Essential for blood clotting, for normal functioning of the central nervous system, and for muscle contraction and neuromuscular stability.   

Stabilizes cell membranes.  

Regulated By: Parathyroid hormone, thyrocalcitonin, vitamin D, kidney function 

Comments: 

Major concentration is in the bone.   

50% of serum Ca2+ is bound to protein.   

Normal gastric acidity is necessary for absorption of Ca2+ in the gut.   

Acts as a sedative on body.  

Hypercalcemia: > 10.5 MEq/L 

Causes  Symptoms  Treatment 

Malignancy 

Hyperparathyroidism 

Renal disease 

Immobilization 

Vitamin D intoxication 

Neoplastic disease of bone, breast, and lungs 

Paget’s disease 

Addison’s disease 

Milk‐alkali syndrome 

Sarcoidosis 

Anorexia 

Nausea 

Weight loss 

Bone loss resulting in deep bone pain 

Kidney stones 

Muscle hypotonicity 

Lethargy 

Azotemia 

ECG‐AV block 

Return calcium level to normal levels or in an asymptomatic range 

Cardiac and neurologic functions are normal 

 

 

Hypocalcemia: < 8.5 MEq/L 

Causes  Symptoms  Treatment 

Hypoparathyroidism 

Acute pancreatitis 

Peritonitis 

Dietary lack of Ca2+ 

Deficiency of vitamin D 

Burns 

Renal failure 

Hyperphosphatemia 

Osteomalacia 

Diuretic therapy 

Abdominal/muscle cramps  

Tetany 

Tingling of fingertips and circumoral area 

Numbness 

Laryngeal stridor 

Positive Chvostek’s and Trousseau’s signs 

Confusion, coarse dry skin 

Alopecia 

ECG changes (prolonged QT)  

Return calcium level to normal by administering: 

Isotonic NS solution with calcium additives (calcium gluconate, calcium chloride) 

Oral Ca2+ with additional vitamin D 

Parathyroid hormone (100‐200 units given every 4‐6 hr during acute episode) 

 

Magnesium – Normal 1.5‐2.5 

Action in Body: 

Regulates nerve and muscle tone by preventing their activation by Ca 

Required for over 300 enzymes to work including protein, carbohydrate and fat metabolism  

Regulated By: Kidney function parathyroid hormone 

Comments: 

Has a higher concentration in cerebrospinal fluid than in serum.   

35% is bound to protein.   

Stored in bone, muscle, and soft tissue.  

Hypermagnesemia: > 2.5 MEq/L 

Causes excessive relaxation of nerves and muscles including myocardium and respiratory muscles 

Can cause numerous metabolic interactions 

Causes  Symptoms  Treatment 

Renal disease 

Overuse of magnesium‐containing antacids 

Hyporeflexia 

Hypotension 

Cardiac dysrhythmias 

Weakness 

Coma 

Respiratory arrest 

Return serum level to normal 

If renal function is normal ‐ diurese 

Peritoneal or hemodialysis 

Elimination of magnesium containing antacids.  For magnesium toxicity, administer 10% calcium gluconate slowly IV 

 

Hypomagnesemia: < 1.5 MEq/L 

Diminishes ability to relax muscular and neural tone 

Disrupts numerous physiological and metabolic enzyme reactions 

Causes  Symptoms  Treatment 

Impaired absorption or intake‐alcoholism 

Acute or chronic pancreatitis 

Malnutrition 

Increased losses 

Chronic alcoholism 

Diuretic therapy 

Renal disease 

CNS agitation 

Positive Chvostek’s and Trousseau’s signs 

Tachycardia 

Increased BP 

Ventricular dysrhythmias 

ECG changes: depressed ST, prolonged QT 

Serum magnesium returns to normal 

No significant cardiac or neuromuscular symptoms  

 

   

Phosphorus – Normal 2.7‐4.6 Mg/dL 

Contained in the body as phosphate 

85% found in teeth & bones 

Function o component of cell membrane o muscle function o neuro function o carb, fat, protein metabolism o Ingredient in compound found in RBCs o Buffers acids and bases o Promotes energy transfer through formation of ATP o WBC phagocytosis o Platelet function 

 

Electrolyte Disturbances and ECG Changes 

• p flat ‐ hyperkalemia  

• pr prolonged – hyperkalemia, hypermagnesemia 

• qrs widened – hyperkalemia, hypermagnesemia 

• qt prolonged – hypocalcemia 

• st prolonged – hypocalcemia 

• st shortened – hypercalcemia 

• st depressed – hypokalemia, hypomagnesemia 

• t widened – hypercalcemia 

• t tall – hyperkalemia, hypomagnesemia 

• t inverted – hypokalemia 

• shallow, flat T ‐ Hypokalemia  

• u prominent ‐ hypokalemia  

 

5/26/2020

1

Respiratory Failure

By

Beth Brown, BSN, RN, CCRN-K

Respiratory System

Respiratory system includes:>CNS (Medulla / chemoreceptors)>Peripheral nervous system (phrenic nerve)>Respiratory muscles>Chest wall>Lungs>Upper airway>Bronchial tree>Alveoli>Pulmonary vasculature>Heart

Alveolar Gas Exchange

Type I epithelial cells Gas exchange90% of alveolar lining

Type II epithelial cellsSurfactant production10% of alveolar lining

Respiratory Failure

Definition: A syndrome in which the respiratory system fails in one or more of its gas exchange functions

or

“inability of the lungs to meet the metabolic demands of the body. This can be from failure of tissue oxygenation and/or failure of CO2 homeostasis.”

5/26/2020

2

V/Q mismatch—

normal: (4L vent/ 5L perf) normal V/Q ratio of 0.8 responsive to oxygen therapy – contact

between air and blood

Intrapulmonary shunt—

a lung unit that is not ventilated, but continues to be perfused

alveoli collapsed / filled with mucus or fluid

clinical effect “refractory hypoxemia” not responsive to oxygen therapy –

altered contact between air and blood

Classifications

Type I -Hypoxemic respiratory failureMost common PO2 <60From lung diseases involving fluid filling or

collapse of alveoli

Type II -Hypercapneic resp failure Inadequate airflow / hypoventilation

syndromePCO2 > 50 (in non-chronic pt)Diseases of muscle weakness, respiratory

center, or lung disease

Classifications

Type I failure PneumoniaARDSPulmonary edema/

CHFAtelectasis Interstitial diseases/

fibrosis

Type II failureCOPDDrug ODNeuromuscular

diseasesChest wall

abnormalitiesHead or spinal cord

injury

5/26/2020

3

Classifications Type III – Perioperative respiratory failure –

increased atelectasis due to low FRC in the setting of abnormal wall mechanics

Type IV – Shock – patients who are intubated and ventilated in the process of resuscitation of shock

Acute vs ChronicAcuteDevelops over

minutes to hourspH is less likely to

be compensated

ChronicDevelops over

several days or longerAllows time for

renal compensation, so pH can be normal

Diagnosis of Respiratory FailureClinical picture – air hunger signs, hypoxia,

tachypnea, cyanosis, etc.ABG’s – PO2 < 60, PCO2 > 50

*vary depending on age, under-lying health, etc.

CXR– to evaluate underlying disease process

Management

Support ABC’s>oxygen, intubation, NIV, vent>lowest O2 level possible>PEEP to increase FRC, keep alveoli

open, and improve oxygenation Identify and treat underlying cause

5/26/2020

4

Management

Manage fluid & electrolytes

Hydrate and prevent pulmonary

edema / fluid overload

Pharmacologic – depends on cause Antibiotics Bronchodilators Steroids Diuretics Inotropes

Management

Bronchoscopy>therapeutic>diagnostic

Chest physiotherapy>percussion, suctioning, position change

Nutritional support

By Beth Brown, BSN, RN, CCRN

ARDSAcute Respiratory Distress Syndrome Acute clinical illness or syndrome:

>Bilateral pulmonary infiltrates on CXR>Non-cardiogenic pulmonary edema>Refractory hypoxemia>Diffuse alveolar damage

5/26/2020

5

Stages of ARDS

Exudative (flooding)

Fibroproliferative (overgrowth)

Fibrosis / repair and recovery(replacement or healing)

Increased Mortality Increased age Increased co-morbiditiesPositive fluid balance Steroids prior to onsetBlood transfusions givenLate intubation

Pathophysiology of ARDSDirect lung injury

>pneumonia >aspiration>pulmonary contusion>embolus>toxic inhalation>near-drowning

Pathophysiology of ARDS Indirect lung injury

>sepsis >multiple trauma

>pancreatitis>drug ingestion (aspirin, cocaine, opioids, TCA,

meth, etc.)>blood transfusion (many or just one -TRALI)>shock

5/26/2020

6

Inflammatory Mediators

Neutrophils Alveolar macrophages Tumor necrosis factor Arachadonic acid metabolites Proteolytic enzymes Platelet activation factor

Platelets Complement

Predisposing FactorsObesityAlcoholismGenetic predisposition SmokingCardiopulmonary bypassThoracic surgeryBlood type A

Pathophysiology1. Direct or indirect injury to the alveolus causes alveolar macrophages to release pro-inflammatory cytokines

Ware et al. NEJM 2000; 342:1334

2. Cytokines attract neutrophils into the alveolus and interstitium, where they damage the alveolar-capillary membrane (ACM).

3. ACM integrity is lost, interstitial and alveolus fills with proteinaceous fluid, surfactant can no longer support alveolus, interstitumwidens

PathophysiologyProgressive alveolar flooding = V/Q

mismatchSevere flooding = intrapulmonary shunt

(areas of lung not ventilated, but continue to be perfused)

Increased PVR (Pulmonary Vascular Resistance)Pulmonary HTNRV failure

5/26/2020

7

DiagnosisHistory of catastrophic event Exclude

>chronic pulmonary diseases>cardiogenic causes

Clinical picture>tachypnea>dyspnea>cyanosis>diffuse crackles>agitation, lethargy, obtundation

DiagnosisAcute onset (6 hrs to 1 week after event)Bilateral infiltrates on CXRGround glass opacities on CTP/F ratio (PO2/FIO2 in decimal) –Measurement

of how well lungs are oxygenating blood

200-300 - mild ARDS 100-200 - moderate ARDS

<100 – severe ARDS

5/26/2020

8

A screenshot of chest radiographs of a man suspected to have COVID-19. (Obtained by ProPublica via the Radiological Society of North America, cited in the paper “Severe Acute Respiratory Disease in a Huanan Seafood Market Worker: Images of an Early Casualty” by Lijuan Qian, JieYu and Heshui Shi.)

ManagementLow tidal volume ventilation (LTVV)

>protects from alveolar over-distention>Based on predicted body weight (PBW)>Target tidal volume 4-6 ml/kg with ARDS>Increase set rate to keep up minute

ventilation>Plateau pressure goal <30

5/26/2020

9

Predicted Body WeightMales

50kg + 2.3(height in inches-60)

Females45.5kg +2.3 (height in inches-60)

Management, cont…

PEEP>may use in higher levels >reduces atelectasis>reduces shear force injury>maintains alveolar recruitment>decreases release of inflammatory

mediators

Ventilation

NPPV (non-invasive)Volume controlPressure controlAirway pressure-release ventilation

(APRV) - Pressure control /inverse ratio

5/26/2020

10

PRONE POSITIONINGPROSEVA study 2013 showed promising

results for select population in severe ARDSP/F ratio < 150, FIO2 >.60, Peep >5Applied early (<36 hrs after intubation)Mean time of 17 hrs per day in proneAverage of 73% of time in ICU in prone

position

> Showed reduction in 28 day mortality(16% vs 33%)

> Showed reduction in 90 day mortality (24% vs 41%)

5/26/2020

11

Neuromuscular Blockade (NMB) Paralytic drug to decrease O2 demand To prevent patient-ventilator dyssynchrony For short term use, typically less than 48 hoursCan cause myopathy, increased rehabilitation

timeMUST use with sedationOften needed with alternate modes of

ventilation, including prone position

Inhaled Vasodilators

Nitric oxide/Prostacyclin)>Selective vasodilation>Helpful if pulmonary HTN involved>Can improve VQ mismatch & oxygenation>Inhibits platelet aggregation & adhesion

>Some anti-inflammatory effects>No decrease in mortality rates

ECMO / ECLS Form of partial cardiopulmonary bypass For cases with high risk of lung damage or oxygen

toxicity / organ support Done in VA or VV form, typically VV if not needed

for circulatory support Once started, vent reduced to

minimal support Typically used 7-12 days-

weaned when lungs improved

Studies Done / Therapies Aspirin- LIPS-A trial = no benefit as preventive, further trials needed

GM-CSF- higher levels in lungs assoc w/better survival– studies inconclusive –

further studies underway

Stem cells – promising animal studies – decreased lung injury / increased repair – trials underway

Steroids – data conflicting –depends on cause - use early if done (<14 days from onset.) More trials ongoing

Macrolide antibiotics (Azithromycin)-LARMA trial showed lower 180 day mortality - antimicrobial / anti –inflammatory effects. Warrants clinical trial.

Vitamin D – PETAL network – trial underway

Conservative fluid management – preferred unless can’t do –i.e. hypotension / poor organ perfusion.

5/26/2020

1

Pulmonary Disorders

B E T H B R O W N , B S N , R N , C C R N - K

Pneumonia

Inflammatory process of the lung parenchyma, including alveolar spaces and interstitial tissue

Produced by an infectious agent

Inflammatory exudate fills alveoli

Produces consolidation Second most common

cause of hospitalization Most common infectious

cause of death

Pneumonia Risk Factors

Older age (>65) ~ 3 x higher risk than general population Chronic co-morbidities COPD, bronchiectasis, asthma, cystic fibrosis Chronic Heart disease Stroke Diabetes, malnutrition Immunocompromised

Viral Respiratory Tract Infection Impaired airway protection Smoking and alcohol abuse Lifestyle factors / environmental toxins

5/26/2020

2

PneumoniaCommunity Acquired (CAP)Community Acquired (CAP)

Hospital Acquired / Nosocomial (HAP / VAP)Hospital Acquired / Nosocomial (HAP / VAP)

Acquired outside of the hospital setting

Classified as severe or non-severe

HAP - Acquired > 48 hours after hospital admit

VAP - Acquired > 48 hours after intubation / mechanical ventilation

Assumption of more virulent organism

(2019 guidelines - “HCAP” not used anymore)

CAP Typical bacteria Streptococcus

pneumoniae(pneumococcal) – most common, but decreasing

Haemophilus influenzae Moraxella catarrhalis Staphylococcus aureus Group A Streptococci Enterobacter species

(Klebsiella, E Coli, etc.)

Atypical bacteria Legionella Mycoplasma

pneumoniae Chlamydia pneumoniae Chlamydia psittaci Coxiella burnetii

CAP Respiratory Viruses

Influenza A & B Coronaviruses Rhinoviruses Adenoviruses RSV (Respiratory Syncytial Virus) Human Metapneumovirus Human bocaviruses Hantavirus

Fungi (seen more in immunocompromised pts) Cryptococcus Histoplasmosis Coccidioides Blastomyces Aspergillus Pneumocystis jirovecii

CAP Bioterrorism agents Bacillus anthracis (Anthrax) Yersinia pestis (plague) Francisella tularensis (tularemia) C. burnetii (Q fever) Ricin

5/26/2020

3

HAP/VAP Increased incident of antimicrobial resistance MDR- multi-drug resistant - nonsusceptibility to at least one

agent in three different classes XDR- extensively drug resistant - nonsusceptibility to at least

one agent in all but 2 classes PDR – pan-drug resistant – nonsusceptibility to all

antimicrobial agents that can be used for treatment Most HAP occurs in non-ventilated patients VAP rates on steady decline in US VAP prolongs ventilation days from 7.6 to 11.5 on

average, and LOS from 11.5 to 13.1 days VAP excess cost approximately $40,000 per pt.

HAP/VAP Related to number and virulence of micro-organisms

entering lower respiratory tract Aspiration of gastric contents (pneumonitis / infection) Microaspiration of colonized OP tract organisms ETT - facilitates aspiration Hospitalized pts often colonized with microorganisms

from hospital environment Possibly from contaminated reservoirs, respiratory

devices, equipment Contaminated hands of healthcare personnel Questionable adverse effect of PUD prophylaxis ?

HAP/VAP Pathogens HAP / VAP MSSA MRSA Pseudomonas aeruginosa Stenotrophanomas maltophilia Acinetobacter Klebsiella

Risk for MDR pathogens if prolonged hospitalization (> 5 days) and recent exposure to antibiotics (in preceding 90 days)

Pneumonia S/S

SystemicSystemic FocalFocal

Fever (hypothermia in elderly)

Rigors / chills Sweats Malaise Anorexia Confusion / AMS

Productive cough Purulent sputum Hemoptysis Rusty sputum (strep

pneumoniae) Green sputum – pseudomonas,

haemophilus, pneumococcal Red currant-jelly – klebsiella Foul smelling - anaerobic

Pleuritic chest pain Shortness of breath

5/26/2020

4

Physical Exam

Splinting of chest Decreased chest excursion Accessory muscle use Increased tactile fremitus (areas of consolidation) Dullness to percussion over consolidated area Bronchial breath sounds / crackles / rhonchi Egophony, bronchophony, whispered pectoriloquy

Lab Tests WBC Elevated or normal/ low esp in elderly pt Normal or decreased if viral

Blood cultures – high risk for bacteremia / sepsis Sputum Gram stain AFB - r/o TB Culture & sensitivity Legionella

Urinary streptococcal antigen Legionella by PCR or urinary antigen

Diagnosis of PNA

New infiltrate on CXR (consolidation)

May have pleural effusion (~30%)

New onset of fever Purulent sputum Leukocytosis Dyspnea or decline in

oxygenation

Treatment Empiric antibiotic coverage until pathogen known No suspicion for MRSA or pseudomonas

Beta lactam (i.e. ceftriaxone, ertapenem) + macrolide (azithromycin) or fluoroquinolone (levofloxacin)

Suspicion for pseudomonas or recent hospitalization / antibiotics Antipseudomonal Beta lactam (i.e. zosyn, meropenem) +

fluoroquinolone

Suspicion / known MRSA – add Vancomycin or linezolid

Glucocorticoids – controversial – maybe for exaggerated inflammatory response

Procalcitonin levels to help guide antibiotic discontinuation

5/26/2020

5

HAP/ VAP Prevention

Hand hygiene HOB elevated Oral care (chlorhexidine) / brush teeth Subglottic suctioning Judicious use of PUD prophylaxis Antimicrobial stewardship Weaning / extubation as early as possible Daily awakening trials Assess weaning appropriateness – RSBI, spontaneous trials

Avoid saline lavages Patient position changes

COPD / SubtypesChronic BronchitisEmphysemaChronic obstructive asthma *asthma with

reversible airflow obstruction is NOT considered COPD

“COPD is a common, preventable, and treatable disease characterized by persistent respiratory symptoms and airflowlimitation that is due to airway and/or alveolar abnormalities

usually caused by significant exposure to noxious particlesor gases.”

(GOLD definition- Global Initiative for Chronic ObstructiveLung Disease)

5/26/2020

6

Risk Factors Smoking (amount / duration contribute to severity) > 40 pack years**

Passive smoke Environmental/ occupational exposure Alpha-1 antitrypsin deficiency – genetic Typically manifests at a younger age Is a protective lung protein Not released from the liver as needed Can also cause liver disease

**Number of cigarettes per day / 20 x number of years of smoking = number of pack year

Chronic Bronchitis

(Blue bloaters) “airway predominant COPD”

Airway irritation Mucus buildup* Hypertrophy of mucus glands Mucus overproduction Mucus gland hyperplasia – produce more mucus (goblet cells*)

Destruction of cilia* Less motility of excess mucus

Difficult to get air in, but more difficult to have air outflow (airflow obstruction)

Air trapping Higher risk for pneumonia

Emphysema

(Pink puffers) “emphysema predominant COPD”

Structural issue Chronic inflammation

(macrophages/cytokines/neutrophils)release proteases

Main protease ELASTASE breaks down elastin(alpha-1 antitypsin protects against proteases)

Elastin is what makes lungs recoil after inhalation Airway collapse and air trapping Alveoli hyperexpanded and over dilated Later stages involve CO2 buildup and hypoxemia

5/26/2020

7

Chest CT scans from COPDGene subjects demonstrating emphysema-predominant and non-emphysematous COPD. (A) Emphysema-predominant: FEV1 55.8% predicted, 29.0% emphysema. (B) Non-emphysematous: FEV1 55.3% predicted, 4.2% emphysema.

Emphysema subtypes

Centriacinar (centrilobular) – dilation or destruction of the respiratory bronchiole (center portion of acinar

Panacinar – enlargement or destruction of all parts of the acinus (most commonly seen with alpha-1 antitrypsin deficiency)

Distal acinar (paraseptal) – alveolar ducts predominantly affected (air pockets very distal “blebs”– near pleura- high risk for pneumothorax)

ACINUS=collectively refers to bronchiole, alveolar ducts, alveolar sacs, and alveoliPARENCHYMA=above plus capillaries, and instersititum

COPD symptoms

Dyspnea (initially may be only with exertion)

Accessory muscle use Chronic cough Insidious onset of sputum production Gradual decline in activity – easily fatigued Morning is the worst time of day for them

5/26/2020

8

Heart Effects

Group 3 Pulmonary HTN (groups based on etiology) Chronic lung disorders (COPD, ILD, overlap syndromes, OSA,

etc.

Defined as mean PA pressure > 20 mmHg at rest > 35 considered severe

Cor pulmonale Complication of PH PH induced structural changes (hypertrophy or dilatation) or

impaired function of RV associated with chronic lung disease &/or hypoxemia

Diagnosis

Spirometry – performed pre and post bronchodilator To determine if airflow limitation present To determine if partially or fully reversible

FEV1

Forced expiratory volume in 1 second

FVC Forced vital capacity

Post bronchodilator ratio (FEV1/FVC) less than 0.7 (70%) indicates airflow limitation

*Ratio decreases naturally with age

Diagnosis CXR Increased radiolucency of lung flat diaphragm Long, narrow heart shadow Hyperinflation Used to exclude other

diagnoses CT Greater sensitivity and

specificity for emphysema (diagnosing subtypes of emphysema – cetriacinar, panacinar, paraseptal)

Not necessarily needed in routine diagnosis

(Panacinar emphysema from alpha-1 antitrypsin deficiency)

5/26/2020

9

Exacerbations

Worsening of chronic condition Increase in dyspnea Increase in productive cough Hypoxemia Respiratory acidosis Respiratory failure

Triggers Respiratory Infections 70%

Viral / bacterial (atypical is uncommon cause) Environmental pollution, PE, unknown etiology 30%

Treatment

Reverse airflow limitation Inhaled short acting bronchodilators

Beta agonists (albuterol, levalbuterol)Anticholinergic (Atrovent)Systemic glucocorticoids (typically 5-14 days, oral is ok)

Treat infection – Abx /antiviral if flu suspected Ensure adequate oxygenation Target Spo2 88-92% (risk of hypercapnea with excessive O2) Target PaO2 of 60-70mmHg

Avert intubation/mechanical ventilation NPPV if possible May be required if depressed MS, profound acidemia, or cardiac

dysrhythmias

Treatment

Ineffective therapies Mucoactive agents (may worsen bronchospasm) Methylxanthines (theophylline, aminophylline) – no efficacy

shown beyond standard treatment + associated with n/v, tremor, arrhythmias

Nebulized magnesium- no effect on FEV1 in COPD exacerbation

Chest physiotherapy (percussion, vibration, IPPB, postural drainage, etc) – not beneficial and may provoke bronchoconstriction

5/26/2020

10

Asthma/Status Asthmaticus

Recurrent, reversible airway disease characterized by increased airway responsiveness to an irritant

Produces airway narrowing Status asthmaticus=severe airflow obstruction not

relieved after 24 hrs of maximal doses of traditional therapy

Asthma

ExtrinsicExtrinsic IntrinsicIntrinsic Related to Specific

allergen Dust /dust mites Pollen Animal dander Mold Smoke Food (nuts, shellfish, etc) Medications Very cold or hot air Medications (Aspirin,

NSAIDs, beta-blockers

Unrelated to specific allergen Infection (bacterial / viral) Sinusitis Exercise Stress GERD Aspiration Emotions (fear, anger,

crying, laughing) Menstrual cycle

Asthma signs/symptoms

Dyspnea Chest tightness Wheezing (lack of wheezing an ominous sign) Thick tenacious sputum Inability to speak in full sentences Dehydration Chest hyperresonant to percussion Pulsus paradoxus greater than 20mm Hg Prolonged expiratory time (> 1:3 I:E ratio)

Pulmonary functions

Peak Expiratory flow rate (PEF) below 80% of pt’spersonal or predicted best

Decreased FVC Decreased FEV1

Increased FRV/FRC (functional residual volume / functional residual capacity

ABG’s – respiratory alkalosis – *progressing to acidosis is an ominous sign

5/26/2020

11

Management

Avoid irritants Oxygen Bronchodilators

- Beta -2 agonists (nebulized vs. MDI)- Anticholinergics- Corticosteroids- Magnesium- Heliox

Ventilation Strategies

Consider NPPV Carefully consider intubation – use rapid sequence

intubation-pre-oxygenation-experienced clinician-large ETT-lidocaine-induction agent (ketamine / propofol)

Ventilation Strategies

Decrease tidal volume Decrease respiratory rate Permissive hypercapnea Increase inspiratory flow / shorten inspiratory time

Goal is to reduce dynamic hyperinflation (auto-peep) keeping plateau pressure <30-35

5/26/2020

12

Pulmonary Embolus

A material that travels to the vascular system in the lungs where it lodges and occludes a vessel (obstructive shock)

Can be blood clots, tumor cells, cardiac vegetation, fat, amniotic fluid, air, or nitrogen

Effects of PE

Bronchoconstriction Atelectasis VQ mismatch Hypoxemia Increased pulmonary vascular resistance Pulmonary HTN RV failure (Cor Pulmonale) Circulatory collapse

5/26/2020

13

Clinical Presentation

Sub-Massive Hemodynamically stable Sudden onset of dyspnea at

reset or with exertion Chest discomfort / pleuritic

pain Flu-like symptoms Fever, scattered crackles Restlessness, apprehension Tachypnea / tachycardia Cough (hemoptysis) Orthopnea Can be asymptomatic

Massive Hemodynamically unstable Drop in SBP < 90mm/Hg or

> 40mm/Hg drop from baseline

Shock / hypotension Impending doom Severe dyspnea Hemoptysis Perspiration Tachycardia JVD Sudden death

Factors for Increased Mortality

RV dysfunction Elevated BNP PE with co-existing DVT RV thrombus Elevated serum troponin Hyponatremia

5/26/2020

14

Diagnosing PE

Pulmonary angiography – definitive, but also invasive

CT Angio (PE protocol) – definitive and non-invasive

Diagnosing PE

VQ scan – non-invasive, suggestive, not definitive Venous doppler – not definitive - tells if DVT is present. D-dimer elevated– not definitive – tells if by-products of a clot

are present Echo – dilated RV – massive PE (McConnell’s Sign) EKG – S1Q3T3 sign or new RBBB, a-fib/flutter, right axis shift,

sinus tach, T wave inversions inV1-V4 (RV strain pattern)

68 yo woman with new onset dyspnea on exertion

Prominent S in lead IQ wave /inverted T in lead III

T wave inversion V1-V4

5/26/2020

15

Treatment of PE

O2 /ventilatory support Anticoagulants Heparin drip Argatroban drip (HIT) Enoxaparin 1mg/kg DOAC (Eliquis, Xarelto,

Pradaxa, etc) Thrombolytics IVC filter Embolectomy- open or

catheter directed

Prevention of DVT/PE

Movement Early ambulation Range of motion Turn, cough, deep breath

Fluids – decrease blood viscosity SCD’s SQ Medications Heparin Enoxaparin (Lovenox) Fondaparinux (Arixtra)

DOACs Rivaroxaban (Xarelto) Apixaban (Eliquis) Dabigatran (Pradaxa) Warfarin (Coumadin) - Vit K antagonist

Fat embolus

From long bone, sternal, pelvic fracture From major soft tissue trauma Fat Embolus Syndrome (FES) Triad: Respiratory compromise – hypoxemia, dyspnea,

tachypnea Neurologic abnormalities – confusion, MS changes,

seizures Petechial rash – in 20-50% of cases – usually found in

nondependent regions of the body, i.e. head, neck, anterior thorax, axillae, and sub-conjunctiva

Treatment of Fat Embolus

Corticosteroids – give within 12 hrs of injury to prevent fat embolus

O2 Anticoagulation IVC filter for high risk patients

5/26/2020

16

Air Embolus

Usually enter via venous system (lower pressure) At risk with surgical wound > 5 cm above right atrium Neurological and ENT procedures Vascular catheters (insertion or removal) Blunt or penetrating trauma to chest Positive pressure ventilation Rapid ascent in scuba divers

Treatment Position head down, left side Hyperbaric oxygen chamber High FIO2 (reabsorbs faster) Supportive

Questions


Recommended