+ All Categories
Home > Documents > Hermann Minkowski and Einstein´s Theory of Relativity

Hermann Minkowski and Einstein´s Theory of Relativity

Date post: 02-Jun-2018
Category:
Upload: guillermo-paredes
View: 216 times
Download: 0 times
Share this document with a friend
25
8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 1/25 H ermann M inkowski an d Einstein s Special Theory of.Relativity LEWIS PYENSON Communicated by J. D. NORTH 1 Introduction With his work on the general theory of relativity in the period 1912-1916 EINSTEIN thought that he was introduced for the first time to the heuristic power of mathematics for formulating new physical theories. Before 1912 he avoided complicated or innovative mathematics) In particular, unlike many other mathematicians and physicists EINSTEIN remained unimpressed with the physical ideas in HERMANN MINKOWSKI'S theory of matter and four-dimensional space- time, developed during the period 1907-08. EINSTEIN believed instead that MIN- KOWSKI had introduced a useful mathematical formalism that was not of central importance for understanding the fundamental ideas of the special and general theories of relativity. 2 HERMANN MINKOWSKI was EINSTEIN'S most important mathematics teacher at the Federal Institute of Technology in Ziirich. E~NSTEIN ook nine courses from MINKOWSKI, more than from anyone else including the professor of physics HEINRICH F. WEBER.3 By the time he graduated in 1900, however, EINSTEIN had become indifferent to MINKOWSKI'S approach to mathematics and physics. 4 MINKOWSKI rem embere d EINSTEIN S ack of enthusiasm a decade later when he modified EINSTEIN'S special theory of relativity. 5 MINKOWSKI thought that by mathematizing special relativity he clarified the essential physical features of t RUSSELLMCCORMMACH discusses the early attitutes of EINSTEIN oward mathematics in his Editor's Foreword to volume 7 of Historical Studies in the Physical Sciences (1976), pp. xi-xxxv. 2 A. EINSTEIN, Relativity. The Special and General Theory, transl. R.W. LAWSON (New York, 1920), p. 68; EINSTEIN,The Meaning of Relativity (Princeton, 1931), p. 31. 3 As recorded in EINSTEIN'S matriculation record, Wissenschaftshistorischen Sammlung of the ETH-Bibliothek, Ziirich. 4 A. EINSTEIN Autobiographical Notes, in P.A. SCnILEV, ed., Albert Einstein. Philosopher- Scientist (Evanston, Ill., 1949), p. 16. s Historical treatments of Mn~Kowsvd'S approach to the principle of relativity include TExu HIROSIGE Theory of Relativity and the Ether, Japanese Studies in the History of Science, no. 7 (1968), 37-53, esp. 46-48; STANLEYGOLDBERG, Early Response to Einstein s Theory of Relativity, 1905-1911. A Case Study in National Differences (diss., Harvard Univ., 1968), esp. chapter 2; J.ILLv, On the Birth of Minkowski's Four-Dimensional World, Proceedings of the XllIth International Congress of the History of Science, 18-24 August 1971. Section VI. The History of Physics and Astronomy (Moscow, 1974), pp. 67-72; GERALD HOLTON, The Metaphor of Space-Time Events in Science, Eranos Jahrbuch, 34 (1965), 33-78, esp. 33-38.
Transcript
Page 1: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 1/25

H ermann M inkowsk i

an d Ein stein s Special Theory of.Relati vity

LEWIS PYENSON

C o m m u n i c a t e d b y J. D. NORTH

1 Introduction

W i t h h i s w o r k o n t h e g e n e r a l t h e o r y o f r e l a ti v i ty i n t h e p e r i o d 1 9 1 2 - 1 9 1 6

EINSTEIN th ou gh t t h a t he was i n t ro du ced fo r the f i rs t t ime to t he heu r i s t i c po we r o f

m a t h e m a t i c s f o r f o r m u l a t i n g n e w p h y s i c a l th e o r ie s . B e f o re 1 9 1 2 h e a v o i d e d

c o m p l i c a t e d o r i n n o v a t i v e m a t h e m a t i c s ) I n p a r ti c u la r , u n l ik e m a n y o t h e r

m a t h e m a t i c i a n s a n d p h y s i c is t s EIN STEIN r e m a i n e d u n i m p r e s s e d w i t h t h e p h y s ic a l

i deas i n HERMANN MINKOWSKI'S t heo ry o f ma t t e r and fou r -d i me ns io na l space -

t ime , dev e lop ed dur ing t he pe r iod 1907-08 . E INSTEIN be l i eved ins t ead t ha t MIN-

K OW SK I h a d i n t r o d u c e d a u s e fu l m a t h e m a t i c a l f o r m a l i s m t h a t w a s n o t o f c e n t r a l

i m p o r t a n c e f o r u n d e r s t a n d i n g t h e f u n d a m e n t a l i d e a s o f t h e sp e c ia l a n d g e n e r a l

t heor i e s o f r e l a t i v it y . 2

HERMANN MINKOWSKI was E INSTEIN 'S mo s t im po r t a n t ma the ma t i c s t each er

a t t he Feder a l Ins t i t u t e o f Te ch no log y in Z i i ri ch . E~NSTEIN ook n ine cou r ses f ro m

MINKOWSKI, mo re t h an f rom an yo ne e lse i nc lud ing t he p rofe ssor o f phys i cs

HEINRICH F. WEBER. 3 By the t ime he gr ad ua te d in 1900, how eve r , EINSTEIN ha d

be co me ind i f f e r en t t o MINKOWSKI'S ap pr oa ch to m a th em at i c s and phys i cs . 4

MINKOWSKI remembered EINSTEIN S

a c k o f e n t h u s i a s m a d e c a d e l a te r w h e n h e

mo dif ie d EINSTEIN'S specia l the or y of re la t ivi ty . 5 MINKOWSKI th ou gh t tha t by

mathemat i z ing spec i a l r e l a t i v i t y he c l a r i f i ed t he e s sen t i a l phys i ca l f ea tu res o f

t RUSSELLMCCORMMACHdiscusses the early attitutes of EINSTEIN oward mathematics in his

Editor's Foreword to volume 7 of Historical Studies in the Physical Sciences (1976), pp. xi-xxxv.

2 A. EINSTEIN,Relativity. The Special and Gen eral The ory , transl . R.W . LAWSON (Ne w York,

1920), p. 68; EINSTEIN,The Meaning of Relativity (Princeton, 1931), p. 31.

3 As recorded in EINSTEIN'Smatriculation record, Wissenschaftshistorischen Sammlung of the

ETH-Bibliothek, Ziirich.

4 A.

EINSTEIN

Autobiographical Notes, in P.A. SCnILEV, ed. ,

Albert Einstein. Philosopher-

Scientist (Evanston, Ill., 1949), p. 16.

s Historical treatments of Mn~Kowsvd'S approach to the p rinciple of relativity include TExu

HIROSIGE Theory of Relativity and the Ether, Japanese Studies in the History of Science, no. 7

(1968), 37-53, esp. 46-48; STANLEYGOLDBERG,

Early Response to Einstein s Theory of Relativity,

1905-1911. A Case Study in National Differences (diss., Harvard Univ., 1968), esp. chapter 2; J.ILLv,

On the Bir th of Minkowski's Four-Dimensional World, Proceedings of the XllIth International

Congress of the Histor y of Science, 18-24 August 1971. Section VI. The Histor y of Physics and Astronomy

(Moscow, 1974), pp. 67-72; GERALD HOLTON, The Metaphor of Space-Time Ev ent s in Science,

Eranos Jahrbuch, 34 (1965), 33-78, esp. 33-38.

Page 2: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 2/25

72 L. PYENSON

EINSTEIN'S the ory . A lth ou gh

EINSTEIN

accep t ed

MINKOWSKI S

m a t h e m a t i z a t i o n

as o n l y a t e ch n i ca l i mp r o v emen t o n h i s o w n w o r k , man y o t h e r p h y s i c i s t s an d

ma t h ema t i c i an s a t t emp t ed t o ex t en d M IN K OW S K I'S f o r mu l a t i o n o f ma t t e r an d

e l ec tr o mag n e t i s m . F e w r ea l ized t h a t t h e r e w e r e m a j o r d if fe r en ces b e t w ee n

MINKOWSKI'S an d EINSTEIN'S ap pr oa ch es to the prin cip le of relat ivi ty.

In th i s p ap er I exam ine MINKOWSKI'S in te rpre tat ion of EINSTEIN'S pr incip le

o f r e la t iv i t y , em phas i z ing MINKOWSKI'S v i ews on the r e l a t i ons be tw een m athe-

mat i cs and phys i cs as wel l as h i s specu la t i ons concern ing a poss ib l e un i f i ca t i on

of e l ec t rom agne t i sm and g rav i t a ti on . I conc lude by sugges t i ng how the d if f e ren t

app roac hes o f MINKOWSKI and EINSTEIN to t he ro l e o f math em at i cs i n phys i cs

m ay i l lumina te the re cep t ion of EINSTEIN'S special an d gen eral theo r ies o f relat iv ity .

2 . M i nk ow sk i s in t erpre t at ion o f spec i a l r e la t iv i ty

I f EINSTEIN wa s no t fav ora bly im pres sed wi th MINKOWS~ZI'S m athe m at ics

l ec tu res , MINKOWSrd l a t e r t hou gh t t ha t h i s ow n in t e rp re t a t i on o f t he p r inc ip le o f

relat iv i ty wa s sup er ior to EINSTEIN'S bec aus e of EINSTEIN'S l imi ted m ath em at ic al

com petence . H e is r epor t ed t o have t o ld h i s s t uden t s t ha t EINSTEIN was a l azy

do g a t Z i i ri ch , and he was su rp r i sed t ha t EINSTEIN had been ab l e t o fo rm ula t e

the spec ia l t heo ry o f r e la t i v it y . 6 Indeed , d u r ing a se r ies o f l ec tu res on t he e l ec t ro -

dyna m ics o f m ov ing bod ies de l i vered befo re an au d ience o f phys i c i s ts in t he sp r ing

of 1908, MINKOWSKI argu ed that he w as p r iv i leged to ju dg e EINSTEIN'S nc om plete

ma s t e r y o f m a t h ema t i c s b ecau s e E i n s t e i n d r ew h is ma t h ema t i ca l d ev e l o p m en t

f r o m me . Th o u g h h e w as o n e o f th e b e s t o f h is t ime , t h e m a t h ema t i ca l k n o w l ed g e

t h a t h e co u l d acq u i r e f r o m t h e P o l y t ech n i c in Z i i ri ch, w h e r e ma t h em a t i c s w as

no t t he s t ronges t t h ing, w as i ncom ple t e . 7 MINKOWSKI ns i s ted t ha t he was on ly

m ent ion ing EINSTEIN'S m athe m at ica l l imi tat ion s to lend credib i l i ty to h is cr i t ic i sm

of EINSTEIN, espec i a l ly i n v i ew o f t he uncer t a in au th or i t y he c om m an de d in h i s

p resen t aud ience wi th r espec t t o phy s i ca l th ings , i n to which he w ou ld no t go .

6 MINKOWSKI, cited in G.J. WHITROW, ed., Eins te in . The Man and His Achievement (New York,

1973), p. 5; B. HOFFMANN,

Alb ert Einstein. Crea tor and Reb el

(New York, 1972). p. 85; MAX BORN,

reported in C. SEELIG Alb ert Einstein. A Doc umen tary Biograp hy transl. M. SAWLL London, 1956), p. 28.

Untitled manuscript, n.d., M athe m a t i s c he s Arc h iv 60: 4. Handschr i f ten-Sammlung Nieder-

s~chsische Sta ats - un d Universitfitsbibliothek G6ttingen.

Es liegt das wesentlich glaube ich, an einer Beschfiinktheit seiner mathematischen Hilfsmittel

und ich bin derjenige, der dieses wohl behaupten daft, denn Einstein hat seine mathematische

Ausbildung dutch mich bezogen. Obwohl er seinerzeit der besten einer war, so sind doch die

mathematischen Kenntnisse, die er vom Polytechnikum in Zfirich mitnehmen konnte, wo so viele

andere Dinge voranstanden, natiirlich unvollkommen gewesen. Ich erw/ihne dieses hier deshalb,

damit sic mit wenigstens eine Autorit~it in meinem Urteil fiber Einstein zuerkennen, wenn ich

auch nicht weiss, wieviel Autorifiiten sic mir somit in Bezug auf die Richtigkeit der Urteile in

physikalischen Dingen, die ich nicht abgeben will, einr~iumen wollen. N~imlich ganz um meine

eigene Meinung nun zu sagen, so bedeutet jene ... Hypothesen richtig aufgefasst, ein Naturgesetz

allerersten Ranges, ich mSchte sogar gem dazu sagen, das erste allg. Naturgesetz, n~imlich einer-

seits deshalb, weil es sich um die urspriingl ichsten Begriffe aller Nature rkenntnis um die Auffas-

sung yon Raum und Zeit darin handelt, dann wegen ganz ausserordentlichen Konsequenzen

dieses Gesetzes, in denen die Ueberrealen doeh leider noch gar nicht bemerkt worden sind.

I thank ALWIN JAEGGLI of the Handschr i f tenabte i lung of the Federal Institute of Technology in Zfirich

for help in transcribing this passage.

Page 3: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 3/25

M inkow ski and Spec ia l Re la t iv i ty 73

H i s o w n v i e w , i n c o n t r a s t t o

E I N S T E I N ' S ,

is b a s e d o n a n a t u r a l l a w o f t h e m o s t

g e n e r a l r a n k , I w o u l d e v e n w i l li n g l y c a l l i t t h e f ir s t g e n e r a l n a t u r a l l a w . T h i s

l aw , l a t e r i d e n ti f ie d a s t h e p r i n c i p le o f t h e a b s o l u t e w o r l d , is o f c e n t r a l i m p o r t a n c e

b e c a u s e i t b a s e s a l l n a t u r a l k n o w l e d g e c o n c e r n i n g s p a c e a n d t i m e o n o r i g i n a l

c o n c e p t s , a n d b e c a u s e t h e e x t r a o r d i n a r y c o n s e q u e n c e s o f t h e l a w t r e a t s u p e r - r e a l

t h i n g s w h i c h h a v e n o t r e a l ly b e e n m e n t i o n e d u n t i l n o w .

F o r h is p a r t , E I NS TE IN w a s s k e p t ic a l a b o u t t h e p h y s i c a l c o n s e q u e n c e s o f

M I N K O W S K I ' S a p p r o a c h . A s s o o n a s M I N K O W S K I ' S f i r s t p u b l i s h e d s t a t e m e n t o n

r e l a t i v i ty a p p e a r e d , E IN S TE IN t u r n e d t o t h e o n l y p a r t o f M IN K O W S KI'S p a p e r t h a t

c o n t a i n e d a p h y s i c a l p r e d i c ti o n , s p e ci fi ca ll y , t h e f o r m u l a t i o n o f t h e p o n d e r o m o t i v e

e l e c t r o m a g n e t i c f o r c e . I n a s h o r t p a p e r w r i t t e n w i t h h is c o l l a b o r a t o r JA K OB

JOHANN L A U B , E I N S T E I N o b s e r v e d t h a t M IN K O W SK I r e q u i r e d t h e e l e c t r o m a g n e t i c

f o r c e o n a p a r t i c l e in m o t i o n a l w a y s t o b e n o r m a l t o t h e p a r t i c le ' s p a t h i n f o u r -

d i m e n s i o n a l s p a c e , a f o r m u l a t i o n t h a t d i d n o t a c c o u n t fo r t h e p o l a r i z a t i o n c u r r e n t

p r o d u c e d b y a c u r r e n t f l o w i n g t h r o u g h a w i r e in t h e p r e s e n c e o f a m a g n e t i c f ie ld . 8

T h e r e q u i r e d p o l a r i z a t i o n c u r r e n t w a s a n a t u r a l o u t c o m e o f EIN ST EIN 'S s p e c ia l

t h e o r y o f r e l a ti v i ty . E IN S TE IN & L A U B'S o b j e c t i o n s r e f l e c t e d a m o r e b a s i c d i s a g r e e -

m e n t w i t h M I N KO W S K I c o n c e r n i n g t h e g e n e r a l e x p r e s s i o n f o r a r e l a ti v i s ti c a n a l o g u e

t o N E W T O N ' S second law. As a resu l t , EINSTEINa n d M IN K O W S K I a r r i v e d a t d i f f e r e n t

e x p r e s s i o n s f o r t h e t r a n s v e r s e a n d l o n g i t u d i n a l e l e c t r o n m a s se s , a l t h o u g h t h e r a t i o

o f t h e t w o c o m p o n e n t s r e m a i n e d t h e s a m e i n b o t h t h e or ie s .

T h e d i s t i n c t i o n b e t w e e n E IN S T EIN 'S a n d M I N K OW S K I'S m e c h a n i c s w a s n o t

w i d e ly p e r c e iv e d a n d w a s n o t u n d e r s t o o d b y s o m e c o n t e m p o r a r y a u t h o rs .

P ILIVV F RA N K , i n a t r e a t m e n t o f g r o u p t h e o r y a p p l i e d t o m e c h a n i c s , i d e n t if i ed

t h e t w o d i f f e r e n t n o t i o n s o f f o r c e . 9 M IN K O W S K I a s s u m e d t h a t t h e r e l a t iv i s t i c

d 2 x

s e c o n d l a w w a s a n e x p r e s s i o n w i t h c o m p o n e n t s o f t h e f o r m : Fx = m ~ a 2 , w h e r e r n

was r e l a t i v i s t i c m as s and ~r was p r op e r t i m e . E INSTEIN 'S exp r e s s i o n w as :

d d x

Fx = r n ~ d-oa F R A N K d i d n o t r e a l i z e t h a t o n l y E IN S TE IN 'S f o r m u l a t i o n w a s p h y s i -

c a l ly j u s t i fi e d : f o r th e x - c o m p o n e n t o f t h e r e l a t i v i s t ic f o r c e o n e n e e d s t h e l o c a l

t i m e d e r i v a t i v e o f t h e e n t i r e r e l a t iv i s t ic m o m e n t u m , n o t , a s M IN K O W S K I s u g g e st s ,

t h e p r o p e r t i m e d e r i v a t iv e o f t h e f o u r - v e c t o r m o m e n t u m . E IN ST EIN d o u b t l e s s l y

r e c o g n i z e d M IN K O W S KI'S e r r o r . A d i r e c t e x p e r i m e n t a l d e c i s i o n b e t w e e n t h e t w o

g e n e r a l e x p r e s s io n s f o r fo r c e m i g h t n o t b e p o s s ib l e , a n d i n a n y e v e n t h e h a d a l r e a d y

p o i n t e d o u t a p h y s i c a l p a r a d o x i n M I N KO W S K I'S f o r m u l a t i o n o f t h e e l e c t ro -

m a g n e t i c f o r c e . A s t h e r e w a s n o n e e d t o c o m m e n t f u r t h e r o n M I N K O W S K I ' S

p h y s i c a l t h e o r y , E I N S T E I N u r n e d h i s a t t e n t i o n e l s e w h e r e .

M IN K O W SK I'S t h e o r y w a s n e v e r t h e l e s s i n f l u e n t i a l i n g a i n i n g a c c e p t a n c e f o r t h e

p r i n c i p le o f r e la t iv i ty . S o m e c o n t e m p o r a r y o b s e r v e r s c o n s i d e r e d i ts m a t h e m a t i c a l

a n d p h y s i c a l r e s u l t s a s a s i g n i f ic a n t i m p r o v e m e n t o n E IN S TE IN 'S w o r k , w h i c h

8 A. EINSTEIN& J . LAUB, U eb er d ie e lekt romagne t i schen Grun dgle ichung en f ii r be ,,yegte K/Srper,

Ann. Phys. 26 (1908), 532-540. See L. PYENSON, Ein stein 's E arly Scientific C ollab ora t ion, Hist .

Stud. Phys. Sci.

7(1976), 83-123, p. 95.

9 p. FP, NK, D ie Stel lung des Relat ivi t~i tsprinzips im System der M ech anik u nd de r Elek tro-

dyna mi k , Si tzungsber ichte der mathem at isch-naturwissenschaf tl ichen Klasse der kaiserI ichen Akad emie

der W issenschaf ten zu Wien 118 (1909 ), 373-446.

Page 4: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 4/25

74 L. PYENSON

they regarded as a contribution to the electron theory.

MINKOWSKI-interpreted

his own work in this way. He did not realize that EINSTEINhad developed a theory

of physical measurement, a new synthesis of classical mechanics and MAXWELLIAN

electrodynamics . MINKOWSKI believed tha t, whereas EINSTEIN was concerned

only with electrodynamics, he himself was formulating a new theory of matter

that revealed the true mathematical harmony of the physical world.

MINKOWSKI'S first publ ic statement on EINSTEIN'S principle of relativity was

delivered as an address to the G6ttingen mathematical society in the autumn of

1907. MINKOWSKI did n ot believe his ideas were in publishable form. In 1915,

six years after

MINKOWSKI'S

death, ARNOLD SOMMERFELD ranscribed

MINKOWSKI'S

address for publicat ion, l° Occasionally SOMMEREELD thou gh t that MINKOWSKI'S

terminology was ill-chosen. Annotating a typescript of

MINKOWSKI'S

manuscript,

SOMMERFELD expressed opposi tion to MINKOWSKI'S use of the ether and would

have liked to eliminate the archaic pon deromot ive force in favor of electro-

magnetic force. 'at SOMMERFELDwas unable to resist rewriting MINKOWSKI'S

judgement of EINSTEIN'Sformulation of the principle of relativity. He introduced

a clause inappropriately praising EINSTEIN or having used the MICHELSONexperi-

ment to demonstrate that the concept of absolute rest does not express a property

of phenomena . 12

SOMMERFELD

also suppressed

MINKOWSKI'S

conclusion, where

EINSTEIN is portr aye d as the clarifier, but by no means the principal expositor, of

the principle of relativity. 13 With the exception of these changes, it seems that

SOMMEREELD printed MINKOWSKI'Smanuscript substantially as he found it.

In his address to the G6ttingen mathematical society, MINKOWSKI nterpreted

EINSTEIN'S principle of relativity as a prelude to his own radical interpre tation of

space and time. He incorrectly underst ood EINSTEIN'S work as a con trib utio n

to electrodynamics. On the other hand, he thought that he revealed ErNSTEIN'S

work in its true generality because he applied ideas from pure mathematics to

EINSTEIN'S

electromagnetic content:

An ideal transformation of our presentation of space and time, which we

have long wanted to carry out, recently seems to have come out of the electro-

magnetic theory of light. This is something the mathematician should be keen

to know. He is, moreover, particularly predisposed to internalize the new

intuitions, as they consist in adapting concepts with which he is long since

conversant. To some extent, the physicist needs to invent these concepts from

scratch and must laboriously carve a path through a primeval forest of ob-

so H. MINKOWSKI, Das Relativitatsprinzip, Ann. P h y s . , 47 (1915), 927-938.

l i D a s R e l a t i v i t i i t s p r i n z i p ,

yon H. MINKOWSKI.Abgedruckt in den Ann. d. Phys. 1915, Correktur

nach dem anderen Exemplar teilweise erg~inzt. A. S. M a t h . A r c h i v . , 60: 3. H a n d s c h r i f t e n - S a m m l u n g ,

N i e d e r s . S t a a t s - u . U n i v e r s i t i i t s b i b l i o t h e k ,

G&tingen.

1 2 I b i d . , p. 6. ... wie sich Einstein priignant ausdrtickt ... .

~ a I b i d . , p. 16. Was das Verdienst der einzelnen Autoren angeht, so rtihren die wesentlichen

Ideen yon Lorentz her, Einstein hat das Prinzip der Relativitgt reinlicher herauspr/ipariert, zugleich

es mit besonderem Erfolg zur Behandlung spezieller Probleme der Optik bewegter Medien angewandt,

endlich auch zuerst die Folgerung fiber Veriinderlichkeit der mechanischen Masse bei thermodynami-

schen Vorgiingen gezogen. Kurz danach und wohl unabh/ingig yon Einstein hat Poincar6 sich in

mehr mathematischer Untersuchung tiber die Lorentzschen Elektronen und die Stellung der Gravita-

tion zu ihnen verbreitet, endlich hat Planck einen Ansatz zu einer Dynamik auf Grund des Relativi-

t~itsprinzipes versucht.

Page 5: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 5/25

M i n k o w s k i a n d S p e c i a l R e l a t i v i t y 7 5

s c u r i t y ; a t t h e s a m e t i m e t h e m a t h e m a t i c i a n t r a v e l s n e a r b y o n a n e x c e l l e n t l y

d e s i g n e d r o a d. I n a n y e ve n t, t h e n e w a p p r o a c h e s - p r o v i d e d t h e y a c c o u n t co r -

r e ct ly f o r t h e o b se r ve d p h e n o m e n a - m a r k p o s s ib l y t h e g re a te s t t r i u m p h t h a t

t h e a p p l i c a ti o n o f m a t h e m a t i c s h a s r e c o r d e d : t h e p o s i t i o n t h a t t h e w o r l d i n

s p a ce a n d t i m e i s i n a c e r t a in s e ns e a f o u r - d i m e n s i o n a l , n o n - E u c l i d e a n m a n i -

f o ld . I t w il l b e c o m e a p p a r e n t , t o t h e g l o r y o f m a t h e m a t i c i a n s a n d t o t h e

b o u n d l e s s a s t o n i s h m e n t o f t h e r es t o f m a n k i n d , t h a t t h e m a t h e m a t i c i a n s h a v e

c r e a t e d p u r e l y w i t h i n t h e i r i m a g i n a t i o n a g r a n d d o m a i n t h a t s h o u l d h a v e

a r r i v e d a t a r e a l a n d m o s t p e r f e c t e x i s te n c e , a n d t h i s w i t h o u t a n y s u c h i n t e n t i o n

on the i r pa r t . 14

M IN K OW S KI e m p h a s i z e s t h e u s e f ul n e ss o f u n c o n v e n t i o n a l m a t h e m a t i c s f o r

t h e p h y s i c i s t. A l t h o u g h e x p e r i m e n t i s i n t r o d u c e d a s t h e f in a l a r b i t e r o f t h e t h e o r y ,

MINKOWSKI fee ls tha t phys ic i s t s hav e re cen t ly ve r i f i ed the ac tu a l ex i s t ence o f

t r u t h s t h a t m a t h e m a t i c i a n s h a d a l r e a d y e s ta b l is h e d .

T h e P r i n c i p l e o f R e l a t i v i t y i s d i v i d e d in t o f o u r s e c t i o n s : e l e c tr i c it y , m a t t e r ,

d y n a m i c s , a n d g r a v i t a t i o n . T h e f i r s t t w o s e c t i o n s s e r v e t o r e f o r m u l a t e a n i n t e r -

p r e t a t i o n o f e l e c t r o d y n a m i c s D A V ID I-IIL BE RT h a d p r o p o s e d s e v e ra l w e e k s

e a r l ie r i n a s e m i n a r t h a t h e a n d M ~ NK OW S I(I w e r e c o n d u c t i n g o n t h e p a r t i a l d i f -

f e r en t ia l e q u a t i o n s o f e le c t r o d y n a m i c s . A c c o r d i n g t o l e c tu r e n o t e s r e c o r d e d b y

HERMANN MIERENDORFF, HILBERT in t ro du ce d the sem ina r by de sc r ib ing the

t h r e e c o n t i n u a - e t h e r , e l ec t ri c it y , a n d m a t t e r - t h a t f il le d g e o m e t r i c a l s p ac e. ~s

T h e e t h e r is a n i m m o v a b l e c o n t i n u u m , a n d i ts s t a t e is g iv e n b y t h e e le c t ri c ( E) a n d

m a g n e t i c ( H ) f i e l d i n t e n s i t i e s . E l e c t r i c i t y i s a c o n t i n u u m s u b j e c t t o m o t i o n , a n d

i t i s c h a r a c t e r i z e d b y a s c a l a r c h a r g e d e n s i t y p a n d a v e c t o r c u r r e n t d e n s i t y . I n

t r a d i t i o n a l m e c h a n i c s , d e t e r m i n a t i o n o f m o t i o n r e s u l ti n g f r o m k n o w n f o r ce s is

o n e o f th e s t a n d a r d p r o b l e m s , H m B ER T c o n t i n u e d . I n e l e c t r o d y n a m i c s , h o w e v e r ,

o n e g e n e r a l l y s ee k s t h e c h a r g e a n d c u r r e n t d e n s i t i e s in t h e p r e s e n c e o f e x t e r n a l

f o rc e s . T o d o t h is , o n e d e f in e s a s e l e c t r o m a g n e t i c f o r c e t h e v e c t o r A =

p E + v x H ) ,

d 2 K( t )

a n d o n e e q u a t e s t h i s f o r c e t o A = m d t 2 , w h e r e K ( t ) i s t h e r a d i u s v e c t o r o f a

14 H. M rNKOWSK I,

op . c i t .

(n o te 1 0 ), p p . 9 2 7 -9 2 8 .

V o n d e r e l e k t r o m a g n e t i s c h e n L i c h t t h e o r i e a u s g e h e n d , s c h e i n t s i ch in d e r j i i n g s t e n Z e i t e in e

v o l l k o m m e n e W a n d l u n g u n s e r e r V o r s t e l l u n g e n y o n R a u m u n d Z e i t v o l lz i e h e n z u w o l le n , d i e

k e n n e n z u l e r n e n ff ir d e n M a t h e m a t i k e r j e d e n f a l l s y o n g a n z b e s o n d e r e m I n t e r e s s e se i n m u s s .

A u c h i s t e r b e s o n d e r s g u t p r ~ i di s p o n ie r t , d i e n e u e n A n s c h a u u n g e n a u f z u n e h m e n , w e i l e s si c h

d a b e i u m e i n e A k k l i m a t i s i e r u n g a n B e g r i f f s b il d u n g e n h a n d e l t , d i e d e m M a t h e m a t i k e r l~ in gs t

~ iu ss er st g e l i i uf i g s i n d , w i i h r e n d d i e P h y s i k e r j e t z t d i e s e B e g r i ff e z u m T e i l n e u e r f i n d e n u n d s i c h

d u r c h e i n e n U r w a l d y o n U n k l a r h e i t e n m i i he v o l l e in e n P f a d d u r c h h o l z e n m i i ss e n , i n d e s s en g a n z

i n d e r N ~ i h e d i e l ~ i n g s t v o r t r e f f l i c h a n g e l e g t e S t r a s s e d e r M a t h e m a t i k e r b e q u e m v o r w ~ i r t s f i i h r t .

U e b e r h a u p t w i i r d e n d i e n e u e n A n s~ itz e, f a l ls s i e ta t s / i c h li c h d i e E r s c h e i n u n g e n r i c h t i g w i e d e r -

g e b e n , f a s t d e n g r /S s st e n T r i u m p h b e d e u t e n , d e n j e d i e A n w e n d u n g d e r M a t h e m a t i k g e z e i ti g t h a t .

E s h a n d e l t s i c h, s o k u rz w i e m 6 g l i c h a u s g e d r i i c k t - G e n a u e r e s w e r d e i c h a l s b a l d a u s f t ih r e n -

d a r u m , d a s s d i e W e l t in R a u m u n d Z e i t i n g e w i s s e m S in n e e i n e v i e r d i m e n s i o n a l e n i c h t e u k l i d i s c h e

M a n n i g f a lt i g k ei t i st . E s w i ir d e z m n R u h m e d e r M a t h e m a t i k e r , z u m g r e n z e n l o s e n E r s t a u n e n d e r

i i b r i g e n M e n s c h h e i t o f f e n b a r w e r d e n , d a s s d i e M a t h e m a t i k e r r e i n i n i h r e r P h a n t a s i e e i n g r o s s e s

G e b i e t g e s c h a f fe n h a b e n , d e m , o h n e d a s s d i e s e s j e i n d e r A b s i c h t d i e s e r s o i d e a l e n G e s e l l e n g e le g e n

h ~it te , e i ne s T a g e s d i e v o l t e n d e t s t e r e a l e E x i s t e n z z u k o m m e n s o l lt e .

15 H . M IE R EN D OR FF , D i e p a r t i e l l e n D i f f e r e n z i a l g l e i c h u n g e n d e r E l e k t r o d y n a m i k , H i l b e r t N a c h -

l a s s

570/5.

N i e d e r s . S t a a t s - u . U n i v e r s i t f i t s b i b l i o t h e k

G i f t t i n g e n .

Page 6: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 6/25

76 L. PYENSON

m o v i n g p a r t i c l e o f m a s s m . I n o r d e r t o t r e a t s t a t i o n a r y m a t t e r , i t is n e c e s s a r y t o

s p e c if y t h r e e c o n t r i b u t i o n s t o K ( t ) f r o m t h e n a t u r e o f m a t t e r . T h e f ir st is d e f i n e d

a s th e c u r l o f a n e w q u a l i t y , th e m a g n e t i z a t i o n o f m a t t e r . S e c o n d is t h e p a r t i a l t i m e

d e r i v a t i v e o f t h e e l ec t ri c a l p o l a r i z a t i o n o f m a t t e r . T h e t h i r d c o n t r i b u t i o n t o K ( t )

c o m e s f r o m t h e m o t i o n o f th e c h a r g e s . H E RM A N N M IE RE ND O RF F r e c o r d e d t h a t

H IL BE R T f e lt t h a t t h i s f o r m u l a t i o n o f e l e c t r o m a g n e t i c f o r c e d o e s n o t h o l d , h o w e v e r ,

f o r m a t t e r i n m o t i o n . H I L BE R T s i m p l y o b s e r v e d w i t h o u t b e i n g s p e c i fi c t h a t i t

r e m a i n s t o b e s e en w h e t h e r L OR EN TZ ' e q u a t i o n s f o r t h e e l e c t r o d y n a m i c s o f m o v i n g

b o d i e s a r e c o r r e c t . 1 6

I n th e fi rs t t w o s e c t io n s o f t h e P r i n c i p l e o f R e l a t i v i t y , M IN K O W SK I e l a b o r a t e s

H IL B ER T 'S f o r m u l a t i o n o f e l e c tr i ci t y a n d m a t t e r i n t e r m s o f f o u r - d i m e n s i o n a l

s p a c e - t i m e v e c t o rs : H e e m p h a s i z e s t h e n e c e s s i ty o f a d i s t i n c ti o n b e t w e e n e l e c tr i c it y

a n d m a t t e r b e c a u se , t h o u g h a p u r e l y e l e c t r o m a g n e t i c b a s is m i g h t s o m e d a y b e

p r o v i d e d f o r m e c h a n i c s , t h e M I CH E LS ON e x p e r i m e n t a r g u e s a g a i n s t t h e e x i s t e n c e

o f a n a b s o l u t e s t a t e o f r e s t. T h i s p o i n t c a n b e c l e a r e d u p , M I N K O W S K I s u g g e s t s , if

o n e a s s u m e s t h a t t h e e q u a t i o n s o f t h e e l e c t ro d y n a m i c s o f m a t t e r r e m a i n u n c h a n g e d

b y a c o o r d i n a t e t r a n s f o r m a t i o n u n d e r t h e L O RE N TZ r o t a t i o n g r o u p . I n t h is s en s e ,

t h e p r i n c i p l e o f r e l a t i v i t y b e c o m e s a n e w p h y s i c a l l aw . M I N K O W S K I, t h e n , s u b s t a n -

t i a l ly r e v i s e s E IN S TE IN 'S W O p o s t u l a t e s o f th e s p e c i a l t h e o r y o f r e l a t i v i t y a n d i g n o r e s

E IN S TE IN 'S r e j e c t i o n o f th e e t h e r . T h e s e c o n d h a l f o f M I N KO W S K fS p a p e r m a k e s

l it tl e u s e o f h i s f o u r - d i m e n s i o n a l m a c h i n e r y . P a r t t h r e e i s e n t i r e ly d e v o t e d t o

s h o w i n g t h a t t h e p r i n c i p l e o f r e l a ti v i ty , a s h e d e fi n e s it , d o e s n o t c o n t r a d i c t t h e

e n e r g y o f r a d i a t i o n c a l c u l a t e d f r o m P L A N C K 'S q u a n t u m t h e o r y . M IN K OW S K I

g l os s es a p a p e r b y P LA NC K s h o w i n g t h a t t h e s e c o n d l a w o f t h e r m o d y n a m i c s c a n

b e f o r m u l a t e d i n a r e l a ti v i s ti c a l ly c o v a r i a n t m a n n e r , 17 a n d h e s u g g e s t s h o w

P LA N CK 'S a r g u m e n t c a n b e r e c a s t in f o u r - d i m e n s i o n a l s p a c e - t i m e . T h e f i n a l

s e c t i o n o f M I NK O W S K I'S p a p e r i s a b r i e f p a r a g r a p h o n P O IN C A R ~'S i n v e s t i g a t i o n

i n 1 90 6 o f p o s s i b l e f o r m u l a t i o n s o f a n o n- N EW T O N I A N g r a v i t a t i o n a l l a w t h a t a r e

i n v a r i a n t s o f t h e L O RE N TZ g r o u p , is

I t s h o u l d b e e m p h a s i z e d t h a t a l l t h e p h y s i c a l p r o p o s i t i o n s i n M I N K O W S K I ' S

e a r ly a p p r o a c h w e r e d e ri v a ti v e . H i s o ri g i n al c o n t r i b u t i o n c o n c e r n e d t h e r e q u ir e -

m e n t t h a t a l l p h y s i c a l l a w s b e i n v a r i a n t s o f t h e L O R E NT Z g r o u p i n f o u r - d i m e n s i o n a l

s p a c e - t i m e . M I NK O W SK fS o r i e n t a t i o n i s s u c c i n c t l y r e v e a l e d i n a n u n p u b l i s h e d

l e c t u r e o n c o m p l e x a n a l y s i s F u n k t i o n e n t h e o r i e ) p r o b a b l y d e l i v e re d ju s t b e f o r e t h e

16 In 1907 LORENTZ' orm ulation of MAXWELLIAN lectrod yna m ics and his electro n theo ry we re

accepted by m ost physical scientists and ma thema ticians at G6 ttingen. Exceptions were he theoretician

MAX ABRAHAMand the exp erim entalist WALTERKAUFMANN Priva tdoc ent at GS ttingen from 1899

to 1903). In opp osition to LORENTZ' lectro n who se shape de pen ded o n velo city, ABRAHAMproposed

a theory of a rigid electron. There is no evidence to suggest, how ever, that HILBERTwas attracted to

ABRAHAM'S heory. On LORENTZ'electrody narnics see T.

HIROSIGE,

Origins of Lo rentz' Th eory of

Electrons and the Con cept of the Electrom agnetic Field, H i s t . S t u d . P h y s . S c i . , 1 (1969), 151-209;

R. MCCORMMACH, H .A . Lorentz and the Electromagnetic View of Nature, I s i s , 61 (1970), 469 -497 ;

on ABRAHAM'S heory see S. GOLDBERG, The Abraham Theory of the Electron. The S ymbiosis of

Experiment and Theory,

A r c h i v e H i s t . E x . S c i . ,

7 (1970-71), 7-25 .

17 M. PLANCK, Z ur Dy nam ik bewe gter System e, A n n . P h y s . , 26 (1908), 1-34. First pre sente d to

the Prussian Academ y of Sciences on 13 Jun e 1907.

18 H. POINCARI~, Su r la dy nam iqu e de l'61ectron, R e n d i c o n t i d e l C i r c o l o M a t e m a t i c o d i P a l e r m o ,

21 (1906), 129-17 5. See A. J.MILLER A Study of Henri Poincar6's Sur la Dynam ique de l 'Electron ,

A r c h i v e H i s t . E x . S c i . , 10 (1973), 207-328 .

Page 7: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 7/25

M in kow sk i a nd S pe c i al R e l a t i v i t y 77

P r i n c i p l e o f R e l a t i v i t y p a p e r J 9 M a t h em a t i c s i s h is c en t ra l co n ce r n ; a l l u si o n s

t o p h y s i c s ex p r e ss b a s i c co n f u s io n s . Th e g l o r y an d r e w ar d o f co m p l ex an a ly s is ,

he s ta t es , i s t o be found in an app l i ca t i on t ha t r e f l ec t s a p rees t ab l i shed har m on y

am o n g co n t em p o r a r y ma t h ema t i ca l b r an ch es o f k n o w l ed g e , sp ec if ic a ll y t h e f o rma-

t io n o f co n cep t s an d p r o b l em s t h a t a r e u s e fu l f o r ex ten d i n g [ t h is ] t h eo r y an d f o r

t h e d ev e l o p m en t o f p h y s i ca l t h eo r ie s . H e h as in mi n d a r ecen t t r i u mp h o f

m a t h e m a t i c s . . , t h a t p e r h ap s w i ll n u m b er am o n g t h e g r ea te s t s u cces s es t h a t t h e

app l i ca t i on o f m athem at i cs t o sc i ence has ye t show n. Th i s is t he r ecen t ly fo rm u-

l a t ed p r inc ip l e o f r e l a ti v i ty , wh ich , i f i t r ea l ly is show n to ha ve suc ceeded , t o t a l ly

upse t s a l l p rev iou s conce p t ions o f me chan ics . The p r inc ip le , he says , r ep l aces the

c l assi ca l p r inc ip l e o f i ner ti a t ha t r e qu i red t he ex i s t ence o f an abso lu t e f r ame o f

r e fe r en ce an d in w h i ch t h e l aw s o f mec h an i c s w e r e i n n o w ay ch an g ed b y a u n i f o r m

spat i a l t r ans fo rmat ion . Th i s eva lua t ion i s a t bes t unc l ear ; t he c l ass i ca l p r inc ip l e

o f i ner t ia i s no t r e l a t ed t o a bso lu t e space . MINKOWSKI con t inue s t ha t t he n ew

principle aro se f ro m a defect in MAXWELL'Sop t i cs, wh ich had r a i sed t he t heore t i ca l

poss ib i l i ty o f de t ec t ing t he i n f luence o f t he ear th ' s m ot ion on the ve loc i ty o f li gh t.

A l l ex p e r i men t s a t t emp t i n g t o d o t h i s g av e a n eg a t i v e r e s u l t . Th e p r o b l em w as

clever ly solved , MINKOWSKI suggests , by LORENTZ, wh o m odif ied MAXWELL'S

e l ec t r o d y n ami cs t o ex c l u d e th e i n fl u en ce o f u n i f o r m m o t i o n o n t h e p r o p ag a t i o n

of l igh t. Th i s i dea l ed to t he LORENTZ ran s fo rm at ion l aw, wh ich , i n tu rn , d eve loped

in to t he p r inc ip l e o f r e l a ti v it y . N ei ther EINSTEIN no r any agen t i n t h is d eve lopm ent

o ther t han LORENTZ i s m en t ioned . The new p r inc ip l e gov erns a l l o f phys i cs and

g lo r i f i es mathemat i cs t o t he h ighes t degree . I t expresses t he f ac t t ha t t he l aws o f

m echan ics a re c ova r i an t un der t he LORENTZ group . Imp l i ca t i ons o f t he p r inc ip l e

o f r e la t i v i ty a re be ing w ork ed ou t by severa l phys i c is t s . MINKOWSKI m en t ions

tha t PLANCK'S re l a ti v i st ic dyna m ics ha ve r evo lu t ion i ze d the con cep t o f ma ss ,

a l t h o u g h t h i s i n ap p r o p r i a t e r ema r k l eav es t h e im p r es s i o n t h a t h e h ad n o t y e t

s tud i ed PLANCK's paper . The m os t im por t a n t r esu l t o f t he p r inc ip l e o f r e l a t i v it y

fo l lows a l ong t r ad i t i on i n ma them at i cs . T h i s is t he r ea l i za t i on t ha t t ime mu s t

no w be cons ide red as an ima g inary l eng th . A s a r esu lt , the w or ld is i n r ea li t y a

four -d ime ns iona l , non-EucLIDEAN mani fo ld . Th i s is an en orm ou s t r i ump h fo r

p u r e ma t h em a t i c s b ecau s e t h e ma t h em a t i c i an h as co m e t o r ev ea l g r ea t d o m a i n s

p u r e l y b y hi s imag i n a t io n w i t h o u t ev e r ex p ec t in g t h a t t h ey w o u l d co m e to en j o y

a r ea l ex i s t ence i n na tu re . MINKOWSKI obse rves t ha t t hese r ecen t r esu l ts a re

ex t r ao r d i n a r y b ecau s e t h ey r ev ea l a d r am a t i c r ev is i o n o f t h e p h y s i ca l w o r l d

p i c tu re . He impl i es t ha t i t i s hard ly su rp r i s ing , however , t ha t pu re mathemat i cs

p rov ide s such a r ad i ca l i n t e rp re t a t i on o f phys i ca l r ea l i ty . 2°

On e m on th a f t e r t he Pr inc ip l e o f Re l a t i v i t y l ec tu re , MINKOWSt(I p resen t ed

a pap er t o t he G 6t t i ngen sc ien t if ic soc i e ty on t he ba s i c equa t ion s o f e l ec t ro -

m agne t i c p rocesses , a t T h i s w as t he w ork to wh ich EINSTEIN resp ond ed in 1908 .

19 Type sc r ip t o f t e n pa ge s , w i th t he s t r uc k - ou t t i tl e , F u nk t io ne n the o r i e ,

H e r m a n n M i n k o w s k i

N o t e b o o k s Box IX, fo lde r 4 , NIELS BOI-IR Lib ra ry of the Am er ica n Ins t i tu te of Physics , New Y ork .

The t e x t i s r e p r odu c e d in t he A ppe n d ix o f t he p r e se n t pa pe r .

20 Ib id . pp. 8-10 .

E1 H . M IN KO W SK I, D ie G r u ndg le i c hun ge n f t i r d i e e l e k t r om a gne t i s c h e n V or gg nge in be w e g te n

K/3rpern , N a ch r ich ten d er k i~n igl ich en G ese l l sch a f t d er W issen sch a f ten u n d d er Geo rg -Au g u s t Un ivers i -

t i it z u G 6 t t i n g e n M a t h e m a t i s c h - p h y s i k a l i s c h e K l a s s e (1908), pp. 53-111 . R ep rin ted in D . HILBERT, ed.,

G e s a m m e l t e A b h a n d l u n g e n y o n H e r m a n n M i n k o w s k i (Berlin, 1911) , 2, 352-404.

Page 8: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 8/25

78 L. PYENSON

I t r em a ine d the o n ly one o f MINKOWSKI'Sp a p e r s t o a p p e a r i n p r i n t b e f o re h e d i e d

i n J a n u a r y 1 90 9, a n d i t is t h e m o s t m a t h e m a t i c a l l y s o p h i s t i c a t e d o f a l l h i s w r i t i n g s

o n r e l a t i v it y . T h e u n d e r l y i n g a i m o f t h e p a p e r i s t o p r o v i d e t h e f o u n d a t i o n f o r a

t h e o r y o f m a t t e r b y r e i n t e r p r e t in g t h e e l e c tr o n t h e o r y . T h e p a p e r is n o t c o n c e r n e d ,

a s E IN ST EIN 'S w o r k h a d b e e n , w i t h t h e p r i n c i p l e s o f m e a s u r i n g p h y s i c a l q u a n t i t i e s ,

n o r f o r t h e m o s t p a r t w i t h c o n t r a d i c t i o n s b e t w e e n t h e m e c h a n i c a l a n d e l e c t r o -

m a g n e t i c w o r l d p i c tu r e s . I n t h e p a p e r , M I NK O W S K I e l a b o r a t e s t h e t r i p l e d i v i s i o n

o f p h y s i c a l s p a c e t h a t H IL B ER T i n t r o d u c e d i n t h e i r s e m i n a r . M I NK O W S KI d e f i n es

th ree use s o f the w ord re l a t iv i ty , e ach ide n t i f i ed to so m e ex ten t w i th HILBERT'S

t h r e e c o n t i n u a . T h e theorem o f r e l at i v it y is t h e p u r e m a t h e m a t i c a l f a c t t h a t

e q u a t i o n s d e s c r i b i n g s y s t e m s i n u n i f o r m m o t i o n r e l a t i v e t o e a c h o t h e r a r e c o -

v a r i a n t u n d e r L O RE N TZ t r a n s f o r m a t i o n s . T h e t h e o r e m o f r e la t i v i ty is a d i r e c t

con sequ ence o f MAXWELL'Se q u a t i o n s . T h e p o s tu l t e o f r e l a ti v i t y is t h e h y p o t h e s i s

t h a t t h e t h e o r e m o f r e l a ti v i ty d es c ri b es t h e m o t i o n o f p o n d e r a b l e - t h a t i s, el e ct ro -

m a g n e t i c - m a t t e r. I t is n o t c o n c e r n e d w i t h d e fi n in g m e a s u r a b l e q u a n t i t i e s d e r i v e d

f r o m l a b o r a t o r y m a t t e r , a n d M IN K OW S KIp o i n t s o u t t h a t i t s p ec if ie s n o p a r t i c u l a r

r e l a t i o n b e t w e e n e l e c tr i c it y a n d m a t t e r . T h e p o s t u l a t e o f r e l a t i v i ty is t o b e u s e d

f o r m a t t e r i n t h e s a m e w a y t h a t t h e c o n s e r v a t i o n o f e n e r g y is i n t r o d u c e d w h e n

s p ec if ic e x p re s s i o n s f o r e n e r g y a r e n o t k n o w n . T h e principle o f r e l a ti v i t y f o r m u l a t e s

t h e i d e a t h a t t h e L O R EN TZ c o v a r i a n c e h o l d s a m o n g g e n u i n e , m a t e r i a l q u a n t i t i e s

i n m o v i n g b o d i e s . I t a s s e r t s t h a t m e a s u r a b l e , c o v a r i a n t q u a n t i t i e s e x i s t f o r a l l

p h y s i c a l p h e n o m e n a i n v o l v i n g m a t t e r i n m o t i o n . M I NK O W S KI c r e d i t e d L O RE NT Z

w i t h d i s c o v e r i n g t h e t h e o r e m a n d t h e p o s t u l a t e o f r e l a t iv i t y , a n d E IN ST EIN w i t h

p r o p o s i n g a n e a r l y v e r s i o n o f t h e p r i n c i p l e o f r e l a ti v i t y . 22

T h e f i rs t p a r t o f t h e p a p e r c o n c e r n s t h e p u r e e l e c t r o m a g n e t i c f ie ld , t h a t i s,

e l e c t r o m a g n e t i s m w h e n o n l y t h e e t h e r i s p r e s e n t . M I N KO W S KIexpresses LORENTZ'

r e f o r m u l a t i o n o f M A XW E LL 'S e q u a t i o n s i n t e r m s o f a f o u r - d i m e n s i o n a l v e c t o r

s p a ce w h e r e t h e f ir st t h re e d i m e n s i o n s c o n s i s t o f o r d i n a r y t h r e e - d i m e n s i o n a l

s p a c e a n d t h e f o u r t h d i m e n s i o n h a s a s u n i t v e c t o r l / Z - 1. H i s d e r i v a t i o n o f t h e

t h e o r e m o f r e l a ti v i ty in d i c a te s h o w h e b e l i ev e d p u r e m a t h e m a t i c s c o u l d p r o v i d e

the ba s i s fo r ph ys ica l l aw . M INKOWSKIb e g i n s b y c o n s i d e r i n g a c o o r d i n a t e r o t a t i o n

o f a n g l e ~ a r o u n d t h e x 3 a x is , su c h t h a t

X1 r ~ X 1 X2 ~ ~ X 2

x 3 ' = x 3 c o s i O + x 4 si n i O ,

x 4 ' = - x 3 s in i O + x 4 c o s i ~ .

A s a n a n g l e o f r o t a t i o n i n fo u r - d i m e n s i o n a l sp a c e , ~ is a p u r e l y i m a g i n a r y q u a n t i t y .

M I N K O W S K I

nex t s e t s

q = - i ta n i 0 = (e ° - e - ~')/(e + e - ~').

T h i s n o t a t i o n a l s u b s t i t u t i o n a l l o w s h i m t o w r i t e t h e r e l a t i o n s

1 i q

c o s i O s i n i =

z 2 l b ~ .

352-353.

Page 9: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 9/25

M inkowski and Special Relativity 79

w h e r e q is a q u a n t i t y b e tw e e n - 1 a n d 1. M a k i n g a n a l g e b ra i c su b s t i t u ti o n ,

M IN KO W SK I p u t s t h e o r i g i n a l a n g u l a r r o t a t i o n a l t r a n s f o r m a t i o n i n t h e f o r m

x ' = x , y ' = y ,

z ' - z - q t t , - q z + t

1]/1]/1]/1]/1]/1]/1~-- 2 ' ] / 1 - - q 2

F r o m t h i s s te p , i t i s a p p a r e n t t h a t q i s a n o r m a l i z e d v e l o c i t y o f s o m e s o r t. G e n e r a l -

i z in g t h e l a s t r e s u lt , M I N KO W S K I g i ve s t h e t r a n s f o r m a t i o n s f o r a n o r d i n a r y t h r e e -

d i m e n s i o n a l d is t a n c e v e c to r t a n d f o r a n o r d i n a r y t i m e c o o r d i n a t e t :

(1) ? ' - } - q t t ' - - @ + t

T h e l i n e ar t r a n s f o r m a t i o n o f d e t e r m i n a n t + 1 c h a r a c t e r iz e d b y e q u a t i o n s (1)

i s c a l le d a s p e c ia l L O RE N TZ t r a n s f o r m a t i o n . M I N KO W S K I c o n s i d e r s t h e q u a n t i t y

P 1 ~ - w e , w h e r e w is t h e v e l o ci ty o f a p a r t i c u l a r c o o r d i n a t e s y s t e m , a n d p is a n

i n v a r i a n t w i t h r e s p e c t t o t h e s p e c ia l LO RE NT Z r a n s f o r m a t i o n , a n d h e s h o w s t h a t / 9

is iden t i ca l w i th th e re s t de ns i ty o f e l ec t r ic i ty in the p re se nce o f ma t t e r . M INKOWSKI

e x t e n d s h i s r e s u lt s t o d e m o n s t r a t e t h a t M A X W E L L 'S e q u a t i o n s a r e c o v a r i a n t

u n d e r s p a c e - l i k e r o t a t i o n s .

T h e s e c o n d a n d l a r g e r p a r t o f M IN K OW S K I'S p a p e r c o n c e r n s e l e c t r o m a g n e t i c

p roces se s in the p re sence o f m a t t e r . As in the f i r st pa r t , MINKOWSK~ in i t i a l ly

p r e s e n t s a x i o m s t h a t f o r m t h e b a s i s o f h i s a n a ly s i s . (i) W h e n m a t t e r i s a t r e s t, a l l

b a s i c e l e c t r o m a g n e t i c q u a n t i t i e s ar e a l so a s s u m e d t o b e a t r e st . I n o t h e r w o r d s ,

t h e r e s u l t s o f t h e f i r s t s e c t io n o f th e p a p e r w e r e a n e c e s s a r y l i m i t i n g c a se f o r w h a t

w o u l d f o l lo w . ( ii ) A n y v e l o c i t y a t t a i n e d b y m a t t e r h a s t o b e l e ss t h a n t h e v e l o c i t y

o f li g h t in e m p t y s p a ce . ( ii i) W h e n t h e m a g n e t i c a n d e l e c tr i c f ie l ds t r a n s f o r m a s a

s p a c e - t i m e v e c t o r o f t h e s e c o n d k i n d ( t h a t is , a s a s e c o n d r a n k a n t i - s y m m e t r i c

t e n so r ) u n d e r a L OR EN TZ t r a n s f o r m a t i o n , t h e n t h e c u r r e n t a n d c h a r g e d e n s i t y

n e c e s s a r il y t r a n s f o r m a s a s p a c e - t i m e v e c t o r o f t h e f i r st k i n d ( t h a t is , a s a f o u r -

d i m e n s i o n a l s p a c e - t i m e v e c t o r ) . T h i s r e q u i r e m e n t i s e q u i v a l e n t t o r e q u i r i n g t h a t

e q u a t i o n s f o r m o v i n g b o d i e s b e c o v a r i a n t w i t h r e s p e c t t o a L O R E N T Z r a n s f o r m a -

t ion . MINKOWSKI'S ax io m s rev ea l h ow h i s a pp ro ach d i f fe red f rom EINSTErN 'S

s p e c ia l t h e o r y o f r e l a ti v i t y . M I N ~O W S K fS f ir s t a x i o m i s c o n t r a r y t o t h e s p i r it o f

EINSTEIN 'S p r inc ip le o f r e l a t iv i ty , wh ich im pl i ed tha t an abs o lu te s t a t e o f r e s t

c o u l d n o t b e a c h i e v e d . ( O n e m i g h t s a y t h a t i t is n o t a s e r i o u s p r o v o c a t i o n b e c a u s e

E IN ST EIN a l s o s p o k e o f r es t s y s t e m s w i t h o u t t h e q u a l i f i c a t i o n , w h i c h w a s t o b e

u n d e r s t o o d , t h a t h e m e a n t a s t a t e o f r e s t re l a t iv e t o a p a r t i c u l a r f r a m e o f r e fe r e nc e .)

MINKOWSKIh a d p r e v i o u s l y i n t r o d u c e d t h e s e c o n d a x i o m i n h i s l e c tu r e o n c o m p l e x

a n a l y s i s . I t c o r r e s p o n d e d t o a p r o p o s i t i o n t h a t E IN ST EIN h a d dedu ed as a conse -

q u e n c e o f h i s o w n s e c o n d p o s t u l a t e o f r e l a t i v it y , w h i c h s t a t e d t h a t t h e v e l o c i t y

o f l i g h t i n e m p t y s p a c e i s a c o n s t a n t i n d e p e n d e n t o f t h e v e l o c i t y o f t h e e m i t t i n g

b o d y . M I NK O W S KI c a l le d h i s t h i r d a x i o m t h e p r i n c i p l e o f r e la t i v i ty , a c o m p l e t e l y

n e w d e f i n i t i o n o f t h e t e r m , a n d c e r t a i n l y o n e t h a t E IN ST EINh a d n o t u s ed . A l t h o u g h

h e m a d e n o u s e o f f o u r - d i m e n s i o n a l s p a c e - ti m e , E IN ST EIN h a d d e r i v e d t h e t r a n s -

f o r m a t i o n l a w s f o r t h e e l e c t r o m a g n e t i c f i e l d a f t e r h e p o s t u l a t e d t h a t i t w a s n o t

p o s s i b l e t o d i s t i n g u i s h w h e t h e r a s y s t e m m o v i n g w i t h c o n s t a n t v e l o c i t y r e l a t iv e

t o a n o t h e r s y s t e m w a s i n d e e d a t r es t o r a c t u a l l y i n m o t i o n .

Page 10: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 10/25

80 L. PYENSON

3. Extending sp ecial relativity: M ink ow ski s gravitation theory

In the appen dix to his paper o f 1908 on th e bas ic equa tions for e lectroma gnetic

processes , MINKOWSKI sought to formu late re lat ivis tic m echanics . The appen dix

clo sed w ith an a ttem pt t o treat gravitation. MINKOWSKI S interest in grav itatio n

reflected a long-sta nd ing con cern for man y W ilhelm ian scientists. 23 It w as clear

by 1900 that small discrepancies in the perihel ion precess ions of the four inner

planets as w el l as in several short-period co m ets co uld not be resolved by NEWTON S

laws o f mech anics an d gravitation. 24 This persistent anom aly, together with othe r

considerations based on the s ize and phys ical properties of the universe as a

w ho le, led th e w idely respected M un ich astro no m er HUG O YON SEELIGER to

qu estion the exact inverse-square natu re o f NEWTON S gravitation law . 25 Ex am -

ination of the assum ed equivalence in NEWTONIAN mec han ics b etween inert ial

and g ravitation al m ass led to several attempts, such as th ose b y ERNST MACH in

1889 26 and by ROLAND VON E6TV6S in 1896, 27 to arrive at a m ore precise m e-

chanical no tion of gravitat ional m ass. Of most interest in Germ any after 1900,

however , were inves t igat ions o f e l ec trodynamics as an analogy for or as the

sou rce of gravitation al ph eno m ena . B etw een 1900 and 1905, LORENTZ, s WILrmLM

23 Thr e e s e c onda r y sou r c e s a r e i nva lua b le f o r unde r s t a n d ing g r a v i t a t i ona l t ho ugh t i n t h i s pe r iod .

F i r s t i s J . ZENNECK'S a r t ic le , G rav i ta t io n , com ple ted in 1901 for the Encyklopiidie der mathemati-

schen Wissenschaften,

1, 26-7 2. S econ d is SAMUEL OVPENHEIM'S ar tic le , K rit ik des N ew ton sch en

G r a v i t a t i onsge se t z e s , c om ple t e d i n 1920 , a l so fo r

ibid., II1,

sec t ion 2 .2 , 80-158. Third i s the t r ea tment

by JOHN DAVID NORTH, The

Measure of the Universe

( O xf o rd , 1965 ) , w h ic h o r ga n iz e s m os t o f t he

sources m ent i one d b y ZENXECK in to topics re f lec t ing cosm ologica l con s ide ra t ions . See a lso , JOHN F ,

WOODWARD, The

Search for a Mechanism: Action-at-a-distance in Gravitational Theory

(diss. , Univ.

of D env er , 1972) an d LEwis PYENSON, The

G6ttingen R eception of Einstein s General Theory of

Relat iv i ty

(d iss ., Jo hn s Hop kin s Univ . , 1974) , pp . 1-57 .

24. SIMON NEWCOMB, Th e Elements of the Four lnner Planets and the Fundamental Constants

of Astronomy. Supplement to the American Ephemeris and Nautical Almanac for 1 897 ( W a h i n g t o n ,

D.C ., 189 5). See PAU L I. COHEN, Relativity and the Exc ess Advances of Perihelia in Planetary Orbits

(M. A . diss., Univ . of Pen nsy lvan ia , 1971) , pp. 8 4-91 ; J . CHAZY, La th~orie de la relativitd et la mdca-

nique cdleste, tome 1 (Par is , 1928) , 163-184. A n ex ce l len t genera l a cco un t ma y be fou nd in ANTONIE

PANrmKOEK,

A History of Astronomy

(New York , 1961) .

25 H. VON SEELIGER U e b e r d a s N e w t o n s c h e G r a v i t a t i o n s g e s e t z , Astronomische Nachrichten,

137 (1895), 129-136. H. YON SEELIGER, U eb er das Ne wto nsc he Gra vi ta t io nsg ese tz , Sitzungsberichte

der mathem atisch-physikalischen Classe der KO niglich-bayerischen Akademie der Wissenschaften zu

Miinchen,

26 (1896) , 373-400. EINSTEIN'S co m m en ts o n SEELIGER'S pr op os als a re giv en in, Co ns id era -

t ions on th e Univ erse as a W hole , in M.K . MUN~TZ, ed ., Theories of the Universe (New York , 1957) ,

p. 276. See a lso MA X JAMMER, Concepts of Mass (New Yo rk, 1964 ) , PO. 127-128.

26 ERNSTMACH

Die Mechanik in ihrer Entwicklung

(Leipzig, 18 89) , pp. 213 -21 9. See JAMMER,

ibid.,

pp . 91 - 97 ; H . G RO EN ER , M a c h ' s P r inc ip l e a nd E ins t e in ' s The o r y o f G r a v i t a t i o n , i n R . S .

CottoN & R .J. SEEGER, eds., Ernst Mach. Physicist and Philosopher, vo lum e 6 o f B os ton S tud ie s i n

the P h i lo sop hy o f S c i e nc e ( D or d r e c h t , 1970 ) , pp . 200 - 215 ; N O RM A NJ. GOLDEN, Some Aspec ts o f

Ma ch s Principle within the Theory o f G eneral Relat iv i ty

(d iss ., U niv . of W yom ing, 1971) .

27 R . y o n E6 TV 6 S, U n t e r s u c h u n g e n t i b er G r a v i t a t i o n u n d E r d m a g n e t i s m u s , Ann. Phys., 59

(1896) , 354-400.

28 H.A. LOV,ENTZ, C ons id e r a t i ons on G r a v i t a t i o n ,

Proceedings of the Royal Academy of

Sciences, Amsterdam, 2 (1900), 559-574, ana lyz ed inten sive ly in R . McCORMMACH, op. cir. (note 16) ,

476-478.

Page 11: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 11/25

M in kow sk i a nd S pe c i al R e l a t i v i t y 81

W I E N , 2 9 R I C H A R D G A N S , 3 ° F R I T Z W A C K E R , 31

nd

A L E X A N D E R W I L K E N S 3 2 e x -

a m i n e d w h e t h e r g r a v i t a t i o n c o u l d b e t r e a t e d a c c o r d i n g t o t h e e l e c t r o m a g n e t i c

v i ew o f n a t u r e .

F a r f r o m a n a f t e r t h o u g h t , M IN K OW S KI S a p p e n d i x o n g r a v i t a t i o n s e rv e d t o

i n d i c a t e h i s p l a n s f o r f u t u r e w o r k . 33 H e s o u g h t t o u n i f y e l e c t r o m a g n e t i s m a n d

g r a v i t a t i o n b y i n t r o d u c i n g a n e w , g e o m e t r i c a l m e c h a n i c s . T h e a p p e n d i x s h o w e d

h o w g r a v i t a t i o n m i g h t p l a u s i b l y b e e x p r e s s e d i n t h e s a m e f o u r - d i m e n s i o n a l

s p a c e - t i m e g e o m e t r y u s e d f o r e l e c t r o m a g n e t i c p r o c e s s e s .

MINKOWSKI beg ins by de f in ing a ray s t ruc tu re Strahlgebilde) fo r a f ixed space -

t im e po in t B*(x* , y* , z* , t* ) a s the s e t o f a l l sp ace - t im e po in t s B (x , y , z , t ) such

t h a t, f or t - t * > 0 ,

(2) (x - x*) 2 + (y - y, )2 + (z - z*) 2 = (t - t*) 2.

MINKOWSKI f ixe s the ve loc i ty o f l igh t a s un i ty fo r e a se in ca lcu la t io n . B* i s c a l l ed

t h e l i g h t p o i n t Lichtpunkt) o f a l l p o i n t s l o c a t e d o n t h e c o n c a v e s i d e o f t h e t h r e e -

d i m e n s i o n a l s u r f a c e d e s c r i b e d b y r e l a t i o n ( 2 ). I n v e r s e l y , t h e p o i n t B c a n b e c o n -

s i d e r e d f ix e d , a n d t h e p o i n t B * c a n b e v a r i e d . S e e n in t h i s w a y , fo r a n y p o i n t B

i n s p a c e- t im e , l i g ht p o i n t s r e p r e se n t t h e b o u n d a r y o f a ll o t h e r p o i n t s w i t h w h i c h B

c o u l d c o m m u n i c a t e d u r i n g t h e p a s t.

M IN K OW S KI c o n s i d e r s a m a t e r i a l p o i n t F o f m a s s m a n d a m a t e r i a l p o i n t F *

o f m a s s m * . H e l o c a t e s F a t p o i n t B , a n d i d e n t if i e s t h e l i n e s e g m e n t B C a s a n i n -

f i n i t e si m a l l y s m a l l p a r t o f t h e s p a c e - t i m e l i n e o f F , c a l l i n g th e l a t t e r t h e p r i n c i p a l

l ine Hauptlinie) o f F . B * i s c o n s t r u c t e d a s t h e l i g h t p o i n t o f B o n t h e s p a c e - t i m e

l ine o f F* , a nd i t is g iven the c oo rd in a te s (0, 0 , 0 , z*) . C* i s con s t ru c ted a s the l igh t

po in t o f C , aga in o n th e spa ce - t im e l ine o f F* ( see F ig u re 1 ). MINKOWSKIde f ine s

a s c o o r d i n a t e s (0 , 0 , 0 , 0 ) t h e c e n t e r o f c u r v a t u r e o f t h e s p a c e - t i m e l i n e o f F * a t

p o i n t B * , s in c e th i s e n t a il s n o c o n t r a d i c t i o n w i t h h i s p r e v i o u s d e f i n i ti o n s . H e t h e n

c o n s t r u c t s li n e O A p a r a l l e l t o B C * a s t h e ra d i u s v e c t o r o n t h e h y p e r b o l i c sh e l l

_ X 2 _ y 2 _ z 2 _ z 2 _ _1 h a v i n g c o o r d i n a t e s ( 0 , 0 , 0 , t), t > 0 . P o i n t D * i s l o c a t e d

a s th e i n t e r s e c ti o n o f t h e e x t e n s i o n o f l in e B C * w i t h t h e s p a c e w h i c h w a s n o r m a l

t o O A t h r o u g h t h e p o i n t B . T h e p o i n t A , a t fi rs t l ef t i n d e t e r m i n a t e , is f i n al l y

f ixed a t the l ine BD*.

M IN K OW S KI a s s u m e s t h a t t h e n e w r e l a t iv i s t ic l a w o f g r a v i t a t i o n is o f t h e s a m e

g e n e r a l f o r m a s t h e N EW T ON IA N l a w o f g r a v i t a t i o n . T h a t i s, it h a s t h e a p p e a r a n c e

3 ) - m m * r ~ .

H e r e m a n d m * a r e t w o m a s s e s , a n d t i s t h e t h r e e - d i m e n s i o n a l v e c t o r s e p a r a t i n g

t h e m . O f f e r in g n o e x p l a n a t i o n t o h i s r e a d e r s , M I NK O W S K I p o s t u l a t e s t h a t t h e

29 W . W l r N , U e b e r d i e M 6g l i c hke i t e ine r e l e k t r om a gne t i s c h e n B e g r t indung de r M e c ha n ik ,

Ann. Phys.

5 (1901) , 501-514.

30 R . G A N S, G r a v i t a t i on und E le k t r o m a g ne t i sm u s , Phys. Zs. 6 (1905) , 803-805.

a~ F . W A C KnR, U e be r G r a v i t a t i on und E le k t r om a gne t i sm us ,

Phys. Zs.

7 (1906) , 300-302.

32 A . W lLK ~N S, Z u r G r a v i t a t i ons th e o r i e , Phys. Zs. 7 (1906) , 846-850.

33 NearlY tw en ty years la te r F.W . LANCnESTER tre ate d MINKOWSKI'S ideas, a l th ou gh his ex-

po sit i on was no t fa ithful to MINKOWSNI'S or ig ina l text. F.W . LANCHESTER,

Relativity. An elementary

explanation of the space-time relation as established b y Mink ow ski and a discussion of gravitational

theory based thereon

(London, 1935) .

Page 12: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 12/25

82 L. PYENSON

' . C 1 J ' ' j

~ O~

[Jne

Fig. 1. Geometrical reconst ruction for MINKOWSKI'S reatment of gravitation in the Basic Equations

for Electromagnetic Processes.

g r a v i t a t i o n a l f o r c e o n t h e m a s s p o i n t F a t s p a c e - t i m e p o i n t B c a n b e e x p r e s s e d

b y a f o u r - d i m e n s i o n a l s p a c e - ti m e v e c t o r ,

/ OA' \3

(4) ram* ~ BD*,

w h e r e O A ' , B ' D * , a n d B D * a r e th e m s e l v e s f o u r - d i m e n s i o n a l s p a c e- t im e v e c t o rs ,

a n d M I N K O W S KI 'S n o t a t i o n ( O A ' /B * D * ) i n d i c a t e s t h e v e c t o r d i f fe r e n c e,

O A ' - B ' D * . ( H e re o n e m u s t m a k e t h e a d d i ti o n a l a s s u m p t i o n , f o r w h i c h M IN -

KOWSKI d id n o t a l e r t t he read e r , t h a t p o in t A ' i s a c tua l ly on th e l ine BD*. ) S ince

B D * i s n o r m a l t o t h e t i m e - l i k e v e c t o r O A ' , v e c t o r B D * i s a s p a c e - l i k e v e c t o r i n

t h e i n s t a n t a n e o u s re s t f r a m e o f B *. B D * m e a s u r e s t h e s p a t i a l d i s t an c e ( th e

f o u r - d i m e n s i o n a l v e c t o r w i t h t i m e h e l d c o n s t a n t ) b e t w e e n B a n d B * . T h e o n l y

n o n - z e r o c o m p o n e n t o f O A ' is ti m e . S in c e O A ' i s d e f i n e d t o b e p a r a l le l t o B ' D * ,

B ' D * i s a l s o p u r e l y t i m e - l i k e i n c h a r a c t e r . T h e r e f o r e , t h e v e c t o r ( O A ' / B * D * ) h a s

m a g n i t u d e ( t - r *) . T h u s , al l o f t h e q u a n t i t i e s i n e q u a t i o n ( 4) h a v e c o u n t e r p a r t s i n

t h e c l a s si c al e q u a t i o n ( 3 ) . T h e v e c t o r B D * i n e q u a t i o n (4) p l a y s a r o l e a n a l o g o u s

t o t h e o r d i n a r y t h r e e d i m e n s i o n a l s p a t i a l v e c t o r ~ i n e q u a t i o n ( 3 ). B e c a u s e o f t h e

r e l a t i o n

(5) x 2 + y2 + z 2 = (t - r*) 2,

t h e m a g n i t u d e ( t - ~ * )- 3 c a n b e a s s o c i at e d w i t h th e m a g n i t u d e r - 3 . ( R e l a t io n ( 5)

is j u s t r e l a t ion (2) fo r the spec ia l c a se rep r e sen ted in F ig u re 1 . I t g ive s the c on ne c t io n

b e t w e e n d i s t a n c e a n d t i m e o n t h e w a v e f r o n t o f a g r a v i t a t i o n a l w a v e e m a n a t i n g

f r o m B * w i t h v e l o c i t y e q u a l t o t h a t o f l ig h t .)

M IN K OW S KI s o u g h t a n e x p r e s s i o n f o r t h e g r a v i t a t i o n a l f o r c e a t F d u e t o F * ,

f o r a n y m a s s a t F ; t h a t i s , h e w a n t e d t o c a l c u l a t e t h e g r a v i t a t i o n a l f i e l d a t F d u e

Page 13: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 13/25

M in kow sk i a nd S pe c i al R e l a t i v i t y 83

t o m a s s m * a t F * . M I N K O W S K I l o c a t e s p o i n t F a t c o o r d i n a t e s B ( x , y , z , t ) a n d g i v e s

t o t h e m a s s m * t h e c o o r d i n a t e s (0 , 0 , 0 , -c* ). I f t is t h e p r o p e r t i m e c o o r d i n a t e a t B ,

t h e n t h e f o r c e a t p o i n t F d u e t o m a s s m * at p o i n t F * i s d e t e r m i n e d , a c c o r d i n g t o

e q u a t i o n ( 4 ) , b y t h e f o u r e q u a t i o n s :

d 2 x - m * x d 2 y - m * y

d z 2 ( t - z * ) 3 ' d ~ 2 ( t - ~ , ) 3 ,

(6) d 2 z - m * z d 2 t - m * d ( t - z * )

d z 2 ( t - z * ) a ' d z 2 ( t - ~ * ) 2 d t '

w h e r e

7 )

d x t 2 d y l 2 + d z l 2 : / d t t 2 _

d z ] + \ d z ] \ d ~ ] \ d r ) 1.

E q u a t i o n (7 ) e x p r e s s e s t h e d i f f e r e n t ia l r e l a t i o n o f t h e L O R ~ N T Z m e t r ic .

M I N K O W S K I o b s e r v e s t h a t , a c c o r d i n g t o N E W T O N IA N m e c h a n i c s , t h e f ir st th r e e

e q u a t i o n s i n e x p r e s s i o n ( 6) a r e o f t h e s a m e f o r m a s t h e e q u a t i o n s o f m o t i o n o f a

m a s s p o i n t u n d e r t h e a c c e l e r a t i o n o f a f ix e d c e n te r . H e r e c a ll s t h e c la s s ic a l e q u a t i o n s

f o r a s p a t ia l o r b i t w i t h s e m i - m a j o r a x is a , e c c e n t r ic i t y e , a n d e c c e n t r ic a n o m a l y

E . 3 4 I f T is t h e d i f f er e n c e b e t w e e n t h e p r o p e r t i m e f o r a c o m p l e t e r e v o l u t i o n i n a

r e a l, K E P L E R IA N e l l ip t i c a l o r b i t w i t h s e m i - m a j o r a x i s a a n d a c i r c u l a r o r b i t o f

r a d i u s a , a n d i f n i s t h e f r a c t io n a l e x c e ss d e f in e d b y n - -2 ~ z /T , t h e n t h e m e a n a n o m -

a l y n z i s e x p r e s s e d b y t h e K E r L ~ R e q u a t i o n

(8)

n r = E - e

s in E .

F u r t h e r m o r e , t h e ra d i u s o f a n e ll ip t ic a l o r b i t is g i v e n b y r = a ( 1 - e c o s E ). C h a n g -

i n g e q u a t i o n (7 ) t o p l a n a r , p o l a r c o o r d i n a t e s , t h e n , a n d e x p l ic i tl y r e i n t r o d u c i n g

t h e v e l o c i t y o f l ig h t c t h a t w a s a s s u m e d e q u a l t o u n i t y u n t i l t h is p o i n t i n th e

c a l c u l a t io n , M I Y KO W S g :I o b t a i n s t h e e q u a t i o n

( d r ] 2 ( d t ] 2 m * ( l [ + e c o s E )

(9) \ d z ] = \ d r - l = - - a c 2 - - e c o s "

S o l v i n g e q u a t i o n (9 ) f o r d t , a n d e x p a n d i n g t h e r e s u l t t o t e r m s i n c - 2 , M I N KO W S K I

a r r i v e s a t t h e e q u a t i o n :

{ x c o s : t

( 10 ) d t = - d r 1-~ 2

ac 2

\ l - e c o s '

M u l t i p l y i n g b o t h s id e s o f e q u a t i o n (1 0) b y n g i v e s t h e d i ff e r en t i al m e a n a n o m a l y

n d t . E q u a t i o n s ( 8) a n d (1 0 ) y i e l d

- l 1 m * ) m *

(11) n t + c o n s t a n t = ~

+ ~ - a ~ - ~ n z

+ ~ - c 2 s in E .

M I NK O W S K I c o m p u t e s t h a t i f m * is t h e m a s s o f t h e s u n , a n d a is t h e s e m i - m a j o r

a x i s o f t h e e a r t h ' s o r b i t , t h e n

m /a c 2

is o f t h e o r d e r o f 1 0 - 8 . W i t h o u t a d d i t i o n a l

3,~ See, for exa m ple , O. DZIOBBK, Mathematical Theories of Planetary Motion t r a n s l . M . W .

HARRINGTON W .J. HUSSEY (1892; New Y or k, 196 2), p. 13.

Page 14: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 14/25

84 L. PYENSON

as s u mp t i o n s , t h e p e r i o d i c an o ma l i e s i n t h e p l an e t a r y o r b i t s a r e t h u s co mp u t ed

t o b e m u ch s ma l l er t h an t h e o b s e r v ed q u an t it ie s .

MINKOWSKI'S geom et r i ca l ap pro ach to g rav i t a t i on as an ana log y to t h e

a t t r ac ti o n o f t w o o p p o s i t e l y ch a r g ed p a r t ic l e s w as n o t co n v i n c i n g f o r m an y

phys i c i s t s and m athem at i c i ans . In com par ing MINKOWSKI'Sw or k w ith POINCARffS

fo rm ula t ion in 1906 o f covar i an t , non-NEWTONIaN grav i t a t i ona l l aws , ARNOLD

SOMMERFELD con sidere d MINKOWSKI'S ap pro ac h no m ore f ru i t fu l th an that of

POINCARI~.35 MA X BERNARDWEINSTEIN, a p hy sica l sc ientist re sp ec ted for his

kno wle dge o f m athem at i cs , foun d the l as t par t o f MINKOWSKI'S ca l cu l a t ion

unintel l igible.a 6

4 . E x t e n d i n g s p e c i a l r e l a t iv i ty : N o r d s t r i im s d e f e n s e o f M i n k o w s k i

Al th oug h MINKOWSKFs g rav i t a t i ona l spec u la t ions m er i t ed l it tl e d i scuss ion ,

h is f o r mu l a t i o n o f e l ec t r o d y n ami cs w as n o n e t h e l e ss u s ed a s t h e b a s i s f o r a t tem p t s

t o ex p l a in g r av i t a ti o n . Th e r o u t e m o s t f r eq u en t l y f o l lo w ed w as an a t t emp t t o

fo rm ula t e r e l a t i v i s t i c ana log ues fo r c l ass i ca l phys i ca l no t ion s such as fo rce ,

i ner ti a , r ig id ity , and hea t . Fo rm er co l l eagues , adm i rer s , and s tuden t s o f MIN-

K O W S K I , n o t a b l y G U S T A V H E R G L O T Z , J U N I SH I W A R A , M A X V ON L A U E , M A X B O R N ,

and Gt :NNAR N O R D S T R t 3 M , a s wel l as de t rac tors of MINKOWSKI, such as MAX

ABRAHAM, a t t em pted to e l abo ra t e MINKOWSKI'S e l ec t rod ynam ica l fo rmal i sm.

GU NNA R NORDSTROM'Swork i l l t he per iod 1909-1915 may be t aken as r ep resen-

t a t i ve o f t he ex t en t t o w h ich ma ny phys i ca l t heor i s t s ac cep ted MINKOWSKfS

mat h ema t i c s an d e l ec t r o d y n ami cs a s t h e b a s i s f o r co n s t r u c t i n g n ew w o r l d p i c -

tures.3

7

In 1909, the wel l kn ow n cr i t ic o f the LORENTZ elec t ron the ory MAX ABRAHAM

publ i shed a c r i ti que o f MINKOWSKI'S express ion fo r t he e l ec t rom agne t i c en ergy

of ma t t e r . 38 In h i s pap er on the ba s i c equ a t ions o f e l ec t rodynam ics , MrNKOWSKI

h ad p o s t u l a t ed an a s y m m et r i c f o r m f o r t h e e l ec t r o mag n e t i c fo r ce , an d h e h ad n o t

inc luded mechan ica l o r e l as t i c energy t e rms wi th in t he e l ec t romagnet i c energy .

ABRaI- IaU assum ed , on the con t ra ry , t ha t t he e l ec t rom agne t i c fo rce cou ld b e

o b t a i n ed b y t h e f o u r -d i men s i o n a l co v a r i an t d i v e rg en ce o f a s y m met r i c ten s o r

quant i ty . ABRAHAM ho ug ht th at th is form ula t ion imp l ied that MINKOWSI(I'S heo ry

w o u l d g i v e r i s e t o mech an i ca l t o r q u es w h i ch co u l d n o t b e t r an s f o r med aw ay b y

a co o r d i n a t e t r an s f o r m a t i o n o f e l ec t r o mag n e t i c mo m en t u m . M ak i n g u s e o f h is

the ory of the r ig id elect ron, ABRAHAMargue d tha t MINKOWSKI'S e l ec t rom agne t i c

fo rce im pl i ed the ex i s tence o f fo rces no t o f e l ec t roma gnet i c o r ig in .

ABRAHAM'S ap pro ac h was cha l l enged by GUNNAR N O R D S T R O M , w h o h a d

s tud ied u nde r MINKOWSKI dur ing the ye ar s 1906 and 1907 and wh o s ince tha t

t ime h ad pub l i shed severa l sum ma r i es o f MINKOWSKI'S ideas on space- t ime in

a5 A. SOMMERFELD Z ur Relat ivi t~i tstheorie. II . Vier dim ensio nale Ve ktoran alysis , A n n . P h y s .

33 (1910), 649-689, esp. 684-689.

36 M. B . WE~NSTEIN,Kr i i f t e u n d S p a n n u n g Da s Gra v i t a t i o n s - u n d S t ra h l en f e l d (Braunschweig,

1914), p. 62.

37 See L. PYENSON,op. cir. (note 23), chap ter VI.

3s M. ABRAHAM, Zu r e lekt rom agne t i schen M echan ik , P h y s . Z s . 10 (1909), 737-741.

Page 15: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 15/25

M inkow sk i a nd S pe c i al R e l a t i v i t y 85

t he F in n i s h l ang uag e . 39 NORDSTROM of fe red th e op in io n tha t MINKOWSKI'S

m e c h a n i c s w e r e i n d e e d s e l f - c o n s i s t e n t . 4 ° H e f o l l o w e d M I NK O W SK I n c o n s i d e r i n g

a s t h e c o m p l e t e e l e c t r o m a g n e t i c f o r c e a q u a n t i t y t h a t w a s n o r m a l t o t h e f o u r -

d imens iona l ve loc i ty . ABRAHAMo b j e c t e d t h a t e v e n i f o n e b e l i e v ed i n t h e p r i n c i p l e

o f re l a t i v i ty , M IN K OW S KI'S o r m u l a t i o n f o r t h e e l e c t r o m a g n e t i c f o rc e w a s i n c o r r e c t

b e c a u s e , i n r e l a t i v i s t i c m e c h a n i c s , t h e i n e r t i a l m a s s h a d t o d e p e n d u p o n a l l

e n e r gi e s . 41 I n p a r t i c u l a r , i f J OU L ~ h e a t w a s d e v e l o p e d i n t h e c o u r s e o f m o v i n g a

m a t e r i a l o b j e c t , t h e o b j e c t ' s r e s t m a s s d e n s i t y w o u l d h a v e t o c h a n g e . A B R A H A M

o b s e r v e d t h a t h i s f o r m u l a t i o n o f th e e l e c t ro m a g n e t i c fo r c e s h o u l d h a v e b e e n t h e

m o r e r e a s o n a b l e o n e : A n e x p e r i m e n t a l d e c i s io n b e t w e e n t h e m s e e m s a t p r e s e n t

i m p o s s i b l e . H e n c e , t h e c h o i c e t h a t o n e m a k e s is , i n p a r t , a m a t t e r o f p e r s o n a l

t a s te . N o n e t h e l e s s , I w o u l d n o t b e c o m p l e t e l y m i s t a k e n i f I b e li e v e d t h a t t h e

m a j o r i t y o f a ll p h y s ic i s ts w h o h a v e w a t c h e d t h e d e v e l o p m e n t o f e l e c t ro d y n a m i c s

a t t e n t i v e l y w o u l d p r e f e r t h e s e c o n d i n t e r p r e t a t i o n [A BR AH AM 'S o w n ] . 42

A s a n a n s w e r t o A B R A H A M , NORDSTROM a t t e m pte d to gene ra l i z e h i s p rev io us

a r g u m e n t b y d e m o n s t r a t i n g t h a t A BR AH AM 'S e l e c t r o m a g n e t i c f o r c e c o n t r a d i c t e d

t h e c o n s e r v a t i o n o f e n e r g y .4 a A f t e r a c o m m u n i c a t i o n f r o m A BR AH AM , h o w e v e r ,

NORDSTROM w i thd rew h i s a rg um en t . 44 ABRAHAM res t a t ed h i s c a se in f avo r o f a

s y m m e t r i c a l e x p r e ss i o n f o r th e e l e c t r o m a g n e t i c e n e r g y b y r e v e a li n g a n a p p a r e n t

c o n t r a d i c t i o n i n N O R D S T R O M ' S expo s i t ion . 45 ABRAHAM a rgu es th a t M I N K O W S K I ' S

e x p r e s s i o n f o r e n e r g y c o n s e r v a t i o n d o e s n o t d e a l w i t h t h e J OU LEh e a t p h e n o m e n o n .

H e o b s e r v e s t h a t N O R D S T R O M ' S a t t e m p t t o a d d a J O U L E h e a t t e r m t o M I N K O W S K I ' S

f o r m u l a t i o n o f en e r g y c o n s e r v a t i o n i n a n o n - c o v a r i a n t f a s h i o n is s e l f -c o n t r ad i c to r y .

T h e d i f fe r e n c e b e t w e e n t h e t w o f o r m u l a t i o n s o f t h e JO U LE h e a t , A B RA HA Margues ,

is Q ABRAHAM

Q N O R D S T R O M -

1 - (v/c) 2

A BR AH AM a p p e a l s t o P L A N CK 'S a r g u m e n t t h a t b o t h e n t r o p y a n d t h e q u a n t i t y

T ( 1 - ( v / c ) 2 ) - ~ ( w h e re T is a b s o l u t e t e m p e r a t u r e ) a r e i n v a r i a n t f o r a m o v i n g

b o d y . ~6 A c c o r d i n g t o t h e s e c o n d l a w o f t h e r m o d y n a m i c s , t h e q u a n t i t y

Q

A B R A H A M

(1 - (v/c)2) - ~

w o u l d a c c o r d i n g l y h a v e t o b e a s c a la r .

N O R D S T R O M ,

h o w e v e r , a r r i v e d a t a v a l u e f o r

the JOULE hea t tha t was no t inva r i an t . ABRAHAM obse rv es tha t NORDSTROM'S

v a l u e c o n t r a d i c t e d P LA N CK 'Sr e la t iv i s ti c th e r m o d y n a m i c s . E v e n w i t h in t h e t h e o r y

o f r e l at i v it y , t h e n , A B RA HA M 'S f o r m u l a t i o n o f t h e e l e c t ro m a g n e t i c f o r c e - n o t

M I N K O W S K I 'S - - w a s

c o n s i s t e n t .

39 The d i f fe rence b e twe en MINKOWSKI'S and ABRAHAM'S express io ns for e lec t rom agne t ic force

is cons ide red by W. PAULI , T h e o r y o f R e l a t i v i t y tran sl . H. BROSE (New Y ork , 1958) , pp. 108-111.

4o G. NORDSTROM, Z ur E lekt rod yn am ik M inko ws kis ,

P h y s . Z s .

10 (1909) , 681-687.

42 M. ABRAHAM,

op. cit .

(note 38), 739.

42 Ibid.

740.

43 G. NORDSTROM, Z ur e lekt r om agn e t isch en Mec han ik , P h y s . Z s . 11 (1910) , 440-445.

4~ 1bid.

444, 445.

45 M . A BR AH AM , D i e B e w e gung sg le i c hunge n e ine s M a sse n te i l c he ns i n de r R e la t i v the o r i e ,

P h y s . Z s . 11 (1910) , 527-531. See W. PAULI, op. cit . (no te 39) , pp. 106-108.

46 M. PLANCK D a s P r inz ip de r R e la ti vi t~ it u nd d i e G r und g le i c h nng e n de r M e c ha n ik , Ver-

h a n d l u n g en d er d eu t sch e n p h ys i ka l i s ch en Gese l l s ch a f t

8 (1906), 136-141.

Page 16: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 16/25

86 L. PYENSON

B y 1 91 1 N O RD ST RO M w a s f o r c e d t o a g r e e w i t h

ABRAHAM.47

N e v e r t h e l e s s , a t

a r o u n d t h is t i m e N O RD ST RO M b e g a n t o i n v e s t i g a t e t h e p o s s i b i l i ty o f r e f o r m u l a t i n g

t h e N E W TO N IA N l a w o f g r a v i t a t i o n b y u s i n g M I N K O W S K I 'S e l e c t r o d y n a m i c s . ~ s

S e v e r a l g r a v i t a t i o n a l t h e o r i e s e m e r g e d f r o m h i s a t t e m p t t o e x t e n d M IN K OW S K I'S

n o t i o n o f a n a b s o l u t e c o n t i n u u m o f m a t t e r i n s p a c e - t im e . 49 F o l lo w i n g M I N -

K O W SK I'S s u g g e s t i o n s , N O RD ST R OM d i d n o t a t t e m p t t o c o u p l e e l e c t r o m a g n e t i c

a n d g r a v i t a t i o n a l i n t e r a c t i o n s : N O RD ST RO M i n s is t e d t h a t t h e v e l o c i t y o f li g h t

r e m a i n u n i n fl u e n c e d b y g r a v i t a t i o n a l p h e n o m e n a a n d s t a y r i g o r o u s l y c o n s t a n t

i n a v a c u u m . T o o b t a i n t h e g r a v i t a t i o n a l e q u a t i o n s o f m o t i o n , NO RD ST RO M

s i m p l y r e p l a c e d M IN K O W SK I'S f o u r - d i m e n s i o n a l e l e c t r o d y n a m i c p o t e n t i a l w i t h a

h y p o t h e t i c a l g r a v i t a t i o n a l p o t e n t ia l . A s a n u n e x p e c t e d c o n s e q u e n c e o f h is t h e o r y ,

g r a v i t a t i o n a l m a s s d e p e n d s e x p o n e n t i a l l y o n t h e g r a v i t a t i o n a l p o t e n t i a l ~b:

m = m o e xp ~ / C 2 ) ,

D e e p l y i n v o l v e d i n g e n e r a l r e l a t i v i t y , E IN S TE IN t h o u g h t t h a t N O R DS TR 6M 'S

t h e o r y l e d to t h e u n s a t is f y i n g re s u l t t h a t a r o t a t i n g s y s t e m in a g r a v i t a t i o n a l f ie ld

u n d e r g o e s a s m a l l e r a c c e l e r a t i o n t h a n a n o n - r o t a t i n g s y s t em . 5o S i n c e t h e e q u a -

t io n s o f m o t i o n w o u l d t h e r e f o r e d e p e n d o n t h e i n t e r n a l s t r u c tu r e o f m a s s s y s te m s ,

t h e p r i n c i p l e o f e q u i v a l e n c e c o u l d n o t b e s a t i s fi e d . NO R D ST R 6M d i d n o t d i s p u t e

E IN ST EIN 'S a r g u m e n t . H e c o n t i n u e d t o e x a m i n e t h e e q u i v a l e n c e p r i n c i p l e i n t h e

l ig h t o f t h e r e la t i v is t ic m e c h a n i c s o f d e f o r m a b l e b o d i e s . H e w a n t e d t o r e i n t r o d u c e

t h e n o t i o n o f m a s s i n t o t h e d i s c u s s i o n s o f M A X YO N L A U E a n d G U S TA V H E R G LO T Z ,

w h o h a d b o t h c o n s i d e r e d r e la t iv i st ic r ig i d b o d y m e c h a n i c s w i t h o u t e v e r q u e s t io n -

i n g t h e c o n c e p t o f i n e r t i a l m a s s . 51 D u r i n g J u l y 1 91 3, w h i l e v a c a t i o n i n g i n Z i i r i c h ,

N O RD ST R 6M s u b s t a n t i a l l y m o d i f i e d h i s o r i g i n a l t h e o r y . 52 H e a t t e m p t e d t o

e l i m i n a t e t h e u n u s u a l e x p o n e n t i a l b e h a v i o r o f m a s s b y a l lo w i n g t h e g r a v i t a t io n a l

c o n s t a n t t o d e p e n d o n t h e p o t e n t ia l . I n o r d e r t o d e t e r m i n e t h e f o r m f o r t h e g r a v i -

t a t i o n a l p o t e n t i a l N O RD ST R6 M f ir st c o n s i d e r e d t h e l i m i t e d c a s e w h e r e m a s s e x e c u t e s

o n l y ti m e i n d e p e n d e n t m o t i o n a n d w h e r e t h e t o t a l i m p u l s e f o r t h e s y s t e m is z e r o.

H i s e n t ir e t h e o r y c a n b e s u m m a r i z e d i n tw o s et s o f e q u a t i o n s :

[ ] 4 = c 2 v F x = - c 2 v log ~bx, e t c .

w h e r e c is a u n i v e r s a l c o n s t a n t , t h e v e l o c i t y o f l ig h t , a n d w h e r e v i s t h e r e l a t i v i s t i c

m a s s . I n a d d i t i o n , N O RD ST R6 M s h o w e d b y a m e t h o d s i m i l a r t o o n e e m p l o y e d i n

c o n s t r u c t i n g h i s f ir st t h e o r y t h a t t h e i n e r t ia l m a s s o f a b o d y v a r i e d d i r e c t l y w i t h

47 G. NORDSTROM, Zur Relativit~itsmechanikdeform ierbarer K/Srper, P h y s . Z s . , 12 (1911), 854.

48 For expositions of NORDSTROM'S heory, see M. ABRAHAM, Neuere Gravitationstheorien,

J a h r b u c h R a d i o a k t . E l e k t r . 11 (1914), 484-496. A. L. HARVEY, A Brie f Rev iew of L oren tz-C ova riant

Theo ries of Grav itation,

A m e r i c a n J . P h y s . ,

33 (1965), 449-460.

49 G.

NORDSTROM,

Relativitiitsprinzip und Grav itation, P h y s . Z s . , 13 (1912), 1126-1129.

50 NORDSTROMmen tioned EINSTEIN'S cal ar theory in a n afterword to his pa pe r,

ib id . ,

1129.

Mo st of the afterword has b een translated by G.D. BIRKHOFF, Newtonian and Other Forms of

Grav itational Th eory, II. Relativistic Theo ries, S c i e n t i f i c M o n t h l y , 58 (1944), 136, from wh ich this

quotation is taken. See also E.

GUTH, Contribution

o the History of Einstein's Geometry as a Branch

of Physics, in M. CARMELI,

t a l . ,

eds.,

R e l a t i v i t y

(New Y ork , 1970), p. 175.

51 G.

NORDSTROM,

Tr /ige und schw ere M ass e in der Relativit~itsmechanik, A n n . P h y s . , 40

(1913), 856.

s2 G. NORDSTR6M, Zu r T heo rie der Gra vitation vom Stan dpu nkt des Relativit~itsprinzips,

A n n . P h y s . ,

42 (1913), 533-554.

Page 17: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 17/25

Minkowski and Special Relativity 87

the gravitational potential, whereas the gravitational mass of a body remained a

constant. He demonstrated that both clock rates and measuring rods were inversely

proportional to the gravitational potential, and he recovered ABRAHAM'S results

for the classical electromagnetic mass of the electron and for the energy of the

electron's electric field. In 1914 he showed that the new theory did not contain

the same flaw EINSTEIN had pointed out in the old one: in the new theory the

behavior of mass in a uniform gravitational field was not structure dependent.

NORDSTR6M concluded that his theory gave a retardation instead of the observed

advance in the anomalous perihelion shift for planetary orbital precessions. 53

EINSTEIN considered NORDSTROM'S second theory more favorably than that

of any other competitor. 54 In February 1914 EINSTEIN and ADRIANDANIEL

FOKKER reformulated NORDSTROM'S second theory by using differential geom-

etry. s5 One month later, in March, NORDSTROM admitted the insufficiency of his

results. He began looking for direction to GUSTAV MIE'S electrodynamical field

theory rather than to general relativity.56 At the time, NORDSTR6M, like HILBERT,

thought that MIE'S work embodied the legacy of MINKOWSKI'Sphysics. Through-

out 1914 and 1915 NORDSTROM was intensely occupied with the search for a theory

to unify gravitation and electromagnetism. Finally, in 1916, he accepted EIN-

STEIN'S covariant formulation of general relativity and the intimation of a future

unified field theory, s7

5 C o n c l u s i o n

In the period after 1912, NORDSTROM was only one of many physicists and

mathematicians who attempted to extend MINKOWSKI'S ideas to phenomena

involving matter and gravitation. He was, nevertheless, one of the interpreters

most sensitive to the physical consequences of MINKOWSKI'S theories. Some

mathematicians thought it was entirely reasonable to base theories of electro-

dynamics and gravitation on mathematically convenient hypotheses concerning

physical structure. MINKOWSKI'S close friend and colleague DAVID HILBERT saw

his own axiomatic exposition of general relativity as equivalent to EINSTEIN'S,

anticipating a general reduction of all physical constants to mathematical

constants that would make physics a science the same as geometry. 'ss In

53 G. NORDSTROM, Die Fallgesetze und Planetbewegungen in der Relativit~itstheorie,

Ann.

Phys.,

43 (1914), 1101-1110. See also M. BEHACI~R, Der freie Fall und die Planetenbewegung in

Nordstr6ms Gravitationstheorie, Phys. Zs., 14 (1913), 989-992.

54 A. EINSTEIN to E. FREUNDLICH, 1913. Photocopy in the EINSTEIN Archives, Princeton.

55 A. EINSTEIN & A.D. FOKKER, Die Nordstr /Smsche Gravitations theorie vom Standpunkt des

absoluten Differentialkalktils,

Ann. Phys.,

44 (1914), 32t-328.

56 G. NORDSTROM, Ueber die M6glichkeit, di s elektromagnetische Feld und di s Gravita tions-

feld zu vereinigen, Phys. Zs., 15 (1914), 504-506. On MIE, see L. PYENSON,op. cir. (note 23), pp. 52-58.

57 On NORDSTROM'S later work elaborating general relativity, see, for example. H. TALLQVIST,

Gunnar Nordstr~Sm, Finska Verenskaps-Societeten Minestrecknigar och F6redrag (1924), 14pp.

separatum.

5s D. HILBERT, Die Grundlagen der Physik. I. ,

Nachr. Gesell. G tingen

(1915), p. 407. HIL-

BERT saw his treatment as an extension of MINKOWSKI'S work. PETER DEBYE, called to the chair of

theoretical physics at G6ttingen in 1913, believed that t-IILB~RT'S enti re approach to physics was

strongly influenced by MINKOWSKI'S work. Interview between DEBYE, T.S. KUHN, and G. UHLEN-

BECK, 3 May 1962, Archive for History of Quantum Physics, American Philosophical Society,

Philadelphia.

Page 18: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 18/25

88

L PYENSON

EINSTEIN'S view HILBERT'Sw o r k w as ch il dl ik e , i n t h e s en s e o f ch i ld r en w h o k n o w

no mal ice in the wor ld . ' s9 HERMANNWEYL fo rm ula t ed a f ie ld t heo ry fo r e l ec t ro -

mag n e t i s m an d g r av i t a t io n b y r eq u i ri n g t h a t f o u r - d imen s i o n a l l en g th s d ep en d o n

the i r pas t m ove m ent s ; 6° EINSTEIN rep l i ed : C ou ld one r ea l ly accu se t he L ord

G o d o f b e i n g i n co n s is t en t i f h e p a s s ed u p t h e o p p o r t u n i t y d i s co v e r ed b y y o u t o

h a r m o n i ze t h e p h y s ica l w o r l d ? I th i n k n o t . I f h e h ad ma d e t h e w o r l d acco r d i n g

t o y o u r p l an [ I w o u l d h av e s a id ] t o h i m r ep r o aeh f u l l y : ' D e a r G o d , i f i t d i d n o t l ie

wi th in T hy po w er t o g ive an ob j ec t i ve m ean ing to t he [ e qua l i t y o f s izes o f sepa ra t ed

r ig id b o d i e s ] w h y h as t Th o u , O h I n co m p r eh en s i b l e O n e , n o t d i s d a i n ed . .. t o

[p reserve t he i r shapes ] ? ' 61

In t e rven t ions by HILBERT, WEYL and o ther m athem at i c i ans i n t he t heor i es

o f r e l a t iv i t y exer t ed a p ro fou nd in f luence on theore t i ca l phys i cs a f te r t he F i r s t

W o r l d W ar . C an o n s o f ae s th e t ic s , co n s i st en cy , co mp l e t en es s , an d mean i n g f u ln es s

t h a t w e r e cu r r en t i n t h e d is c ip l in e o f p u r e m a t h em a t i c s f o u n d a r ecep t iv e au d i en ce

in phys i c i s t s wh o we re conf ron t ed wi th a p i c tu re o f m icrosco p ic r ea li t y t ha t

s eemed i n c r ea si n g ly i n co m p a t i b l e w i t h p h y s i ca l w o r l d v iew s f o r mu l a t ed acco r d i n g

to e s tabl i sh ed p r incip les in theo ret ical physics . EINSTEIN'S f r iend an d co l lab ora tor

ERWIN FINLAY FREUNDLICH exag gera t ed wh en~ in 1920 , he sa id t ha t genera l

r e la t iv i ty , a g r ea t t r iu m p h f o r p u r e m a t h ema t i c s , w as d ev e l o p ed b y s h ee r ma t h e -

m atic al skil l. '61

EINSTEIN'S a n d MINKOW SKI'Sv iews on the spec i a l t heory o f r e l a t iv i t y r e f lec t ed

t h e m e t h o d o l o g i ca l p r e fe r en ces o f o t h e r s w h o w er e f o r mu l a t i n g p h y s i ca l t h eo r ie s

in t he l a t e W i lhe lmian per iod . EINSTEIN se l f - consc ious ly adh ered t o a nd cam e to

exem pl i fy the d iscip l ine of theore t ical physics . 63 MINKOWSKI, g i f ted wi th a pu re

m athem at i c i an ' s i n s igh t , p rov id ed insp i r a t ion fo r m athem at i c i ans wh o were l ess

concerned wi th syn thes i z ing new phys i ca l wor ld p i c tu res t han wi th fo rmula t i ng a

ma t h ema t i ca l l y e l eg an t ex p o s i t io n o f k n o w n p h y s i ca l law s acco r d i n g t o e s t ab li s h ed

p h y s i ca l u n d e r s t an d i n g . D u r i n g t h e p e r i o d b e f o r e t h e F i r s t W o r l d W ar ma t h e -

ma t i c i ans i ncreas ing ly thoug h t , a long w i th t he h i s to r i an o f m athem at i cs W I L H E L M

LOREY, that

mathematical physics the

f i e ld t ha t i nc luded a l l mathemat i ca l

t r ea t men t s o f p h y s i ca l r e a l i t y - l a y h a l fw ay b e t w een ma t h em a t i c s an d p h y s ic s .

The ore t i ca l phys i cs i n LOREY'S v i ew was a subse t o f mathe m at i ca l phys i cs . H e

no te d i n 1916 tha t MINKOWSKI and HILBERT show ed h ow pure m athem at i cs was

re l a t ed t o ma them at i ca l phys i cs . 64 Th e end o f m athem at i ca l phys i cs i s no t

m ere ly t o fac i li ta t e t he numer i ca l ca l cu l a t i on o f cer t a in c ons t an t s o r t he i n t eg ra t i on

of cer tain diffe rent ial equ at io ns , no te d H ENR I POINCARI~,a m a t h e m a t ic i a n w h o s e

59 EINSTEIN to HERMA NNW E Y L , 2 3 N o v e m b e r 1 9 16 . P h o t o c o p y i n t h e E IN S TE IN A r c h i v e s a t

P r i n c e t o n .

60 H. WEYL, R a u m - Z e i t - M a t e r i e (Ber l in , 1918) .

61 EINSTi~IN to WEY L, 1918. T ra ns la te d in B. HOFFMANN, op. cir . (n o t e 6 ), p . 2 2 4. B ra ck e ts an d

e l l ip ses a r e g iv en b y HOFFMANN.

62 E. FREUNDLICH, F o u n d a t i o n s o f E i n s t e i n s T h e o r y o f G r a v i t a ti o n , t r a n s l . H . L . B RO SE ( C a m -

b r id g e , 1 9 2 0 ) , p . x v .

63 T h e v a l u e s o f G e r m a n t h e o r e t i c a l p h y s i c is t s i n t h e l at e n i n e t e e n t h c e n t u r y h a v e b e e n d i s c u s s e d

i n R . M c CO R M M A CH , E d i t o r ' s F o r e w o r d , His t . S tu d . Ph ys . S c i . , 3 (1971) , ix-xxiv .

64 W. LOREY, Da s S tu d iu m d er Ma th e ma t ik a n d en d eu tsch en Un iversi tg t ten se i t An fa n g d es

1 9 . Ja h rh u n d er ts . A b h a n d lu n g en f ib er d en ma th em a t i sch en Un te rr ich t in Deu tsch la n d , Ba n d 3 , He f t 9

(Le ip z ig , 1 9 1 6 ) , p p . 2 6 0 -2 6 3 .

Page 19: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 19/25

Minkowski and Special Relativity 89

w o r k M IN K O W S K I f o l l o w e d c l o s e ly . " I t is a b o v e a l l t o d i s c l o s e to t h e p h y s i c i s t t h e

c o n c e a l e d h a r m o n i e s o f t h in g s b y f u r n i s h i n g h i m w i t h a n e w p o i n t o f v i ew . '6 5

A s u n d e r s t o o d b y P O I N C A ~ m a t h e m a t i c a l p h y s i c s is a s u b d i s c ip l in e o f m a t h e -

m a t i c s . I n t h i s pe r spe c t i ve t h e EIN STEIN -MI NK O WSK Id i f fe r e n c e m a y i l lu s t r a te h o w

a s c i e n ti f ic t h e o r y is r e c e i v e d b y b r a n c h e s o f t w o d i f f e r e n t d i sc i p li n e s . 66

M IN K O W SK fS p h y s i c s w a s th e p r i s m t h r o u g h w h i c h m a n y r e s e a r c h e r s s a w

E IN ST EIN 'S s p e c i a l t h e o r y o f r e la t i v i t y in t h e l a t e W i l h e l m i a n p e r i o d , a n d f r o m

w h i c h m a n y t r ie d t o i n t e r p r e t a n d e x t e n d g r a v i t a t io n a l t h e o r y i n t h e l ig h t o f E IN -

ST EIN 'S g e n e r a l r e l a ti v i ty . B y t h e e n d o f t h e F i r s t W o r l d W a r M IN K O W S K I'S w o r k

c a m e t o b e s e e n b y m a t h e m a t i c i a n s s u c h a s K L E I N , H IL B ER T , a n d W E Y L n o t

m e r e l y a s a g e o m e t r i c a l e x p r e s s i o n o f EIN ST EIN 'S i d e a s b u t a l s o a s a n e x a m p l e o f

h o w p u r e m a t h e m a t i c s m i g h t s u c c e s sf u ll y r e s o lv e p r o b l e m s i n p h y s i c a l th e o r y .

Acknowledgments For their criticisms of one or another draft of this paper I than k PAULFOEMAN

THOMAS HAWKINS MARTIN KLEIN THOMAS KUttN RUSSELL McCORMMACH JOHN NORTH and LILY

R/3DENBERG. I am grateful to Mrs . RODENBERG for permission to cite the MINKOWS~ papers. A por tion

of this research was sponsored by the

Deutscher Akademischer Austauschdienst

Appendix

Minkowski's Funktionentheorie Manuscript

T h e u n d a t e d m a n u s c r i p t is t y p e d o n t e n si ng le , ~ ± " 1 3 "x shee t s . I t ha s no t

b e e n c o r r e c t e d o r a d d e d t o b y h a n d , a n d i t is t h e o n l y t y p e w r i t te n m a t e r i a l i n c l u d e d

i n te n b o x e s o f le c t u r e n o t e s, c a l c u l a ti o n s , a n d p r e l i m i n a r y v e r s i o n s o f o t h e r w o r k s

c o n t a i n e d i n t h e M I N ~O W S K I p a p e r s a t t h e N i e l s B o h r L i b r a r y o f t h e A m e r i c a n

I n s t i tu t e o f P h y s i c s i n N e w Y o r k . T h e m a n u s c r i p t i s h e a d e d b y t h e s t r u c k - o u t

w o r d

F u n k t i o n e n t h e o r i e .

A s m a l l e r, a , , 8 "

, 2 x s h e et a p p e a r s n e x t t o t h e m a n u s c r i p t , c o n t a i n i n g c o m m e n t s

w h i c h o b v i o u s l y r e fe r t o p a ge s in th e m a n u s c r i p t . T h e u n k n o w n c r i t i c - f o r t h e

h a n d w r i t i n g i s d e f in i t e l y n o t M I N KO W S K fS - - f r e q u e n t l y q u e s t i o n e d t h e p h y s i c a l

m e a n i n g o f s e c ti o n s in th e m a n u s c r i p t w h i c h h a v e d i s a p p e a r e d . A c c o r d i n g t o h i s

c o m m e n t s , t h e c o m p l e t e m a n u s c r i p t w a s a t le a s t 4 3 p a g e s l o n g . T y p i c a l r e m a r k s

a r e :

1 4 n ) V e r s t e h e i c h n i c h t

2 7, 2 8 ) P h y s i k a l . B e d e u t u n g ?

3 2) F i g u r e n a n g e b e n w o h i n . ..

4 1) H i e r f e h le n p h y s i k a l. A n w e n d u n g e n

4 3 ) F i g u r 1 , S o n s t u n v e r s t i in d l i c h .

S i n d n i c h t l a u t e r p h y s i k a l i s c h e . . .

6s H. POINCARI~"The Relations of Analysis and M athem atical Phy sics," transl. C.J.KEYSER

Bulletin o f the American Mathem atical Society,

4 (1898), 251.

66 That mathem atical and theoretical physicists tak e different approac hes to physical laws has

been suggested by T.S . KUHN,et al . , Sources for the History o f Quantum Physics. M emoirs of the

American Philosophical Society, Ph iladelp hia, 68 (1967), 146; L. PYENSON, L a r~ception de la re lati-

vit6 g6naralis6e: disciplinarit6 et institutionalisation en phy sique ,"Rev ue d histoire des sciences, 28

(1975), 61-73 .

Page 20: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 20/25

90 L PYENSON

A lower limit on the date of the manuscript may be given with certainty,

since MINKOWSKI cited a paper delivered by MAX PLANCK before the Berlin

Academy of Sciences on 13 June 1907. Similarities between the manuscript and

MINKOWSKI'S first public address on the principle of relativity imply, as I have

argued in the text, that the manuscript was completed around October 1907.

What follows is a transcript of the "Funkt ionentheor ie" manuscript. Original

pagination is indicated by a line containing only a number placed between

hyphens, e.g., - 2 - . In the original manuscript, many blank spaces exist for

symbols or formulae which MINKOWSKI later intended to write in by hand.

These have been completed in brackets for those cases where the meaning is

evident. Other blanks are indicated by the symbol [b]. A blank line intended

for a mathematical expression is represented by the symbol [bL]. The manuscript

contains strike-outs, run-ons, and misspellings which (provided the manuscript

was typed by MINKOWSKI)are interesting from a psychological point of view, and

they have all been retained.

-1-

M. H. Sie kennen bereits von der Differential- und Integralrechnung her

die groBe Bedeutung des Funktionsbegriffs im Reiche der Mathematik. Die

spezielle Vorlesung unter dem Titel Funktionentheorie hat als h6chstes

Zieldarzutun, mit welchen Waffen der Kampf zwischen formale-mr Rechnung

und gedanklichem Jnhalt auf weitem Felde siegreich zu Gunsten des letzteren

durchgek~impft wird. Vor allem sind es bestimmte Methoden, um deren Aus-

bildung CAUCHY, RIEMANN und WEIERSTRASS sich die Hauptverdienste

erworben haben, die den Feind mathematischen Fortschritte[s], die blinde

Rechnung, auf's Haupt getroffen haben, denn Methoden h~ingen eng mit der

Ausdehnung ver/inderlicher Beziehungen yon reellen auf komplexe Werte

zusammen, weshalb man unter dem Titel Funktionentheorie in erster Linie und

vielfach sogar ausschliesslich die Theorie der Funktionen einer komplexen Ver-

~inderlichen versteht. Ich will mein Thema hier etwas allgemeiner in einem

Sinne, den ich schon andeutete, nehmen.

Ein Hauptziel in der Funktionenlehre ist es, die zu behandelnden Funktionen

durch einfache Eigenschaften, nicht durch schwerf~illige rechnerische Ausdriicke

zucharakterisieren. Ich will einleitend davon sprechen, inwelcher Weise sol-ches

ftir die wichtigste Klasse yon Funktionen, zu der alle Ihnen aus den Elementen

bekannten Funktionen geh6ren.

-2-

unternommen wird. Es ist das eine Klasse von Funktionen, fiir welche verschie-

dene Namen im Gebrauch sind. Die inexakteste Bezeichnung ftir sie ist wohl

Funkt ionen einer komplexen Ver~inderlichen, die am hiiufigsten gebrauchte, aber

auch anzufechtende Bezeichnung ist analytische Funktionen eine treffende, aber

weniger eingebtirgerte Bezeichnung ftir dieselbe Klasse ist synektische Funk-

tionen. Um das Wesen dieser Funktionen zu erfassen, miissen wir zweierleiAus-

Page 21: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 21/25

Minkowski and Special Relativity 91

fiihrungen voranschicken. Erstens die Verwendung komplexer Gr/Sssen als

Argumente yon Funktionen. Nehmen wir als Beispiel folgende Funktion, die

durch einen bestimmten Ausdruck definiert ist: w= f z) =[ b] . z Argument,

w Funktionszeichen.) Zun~ichst wiirde die Funktion eine Bedeutung ftir jeden

reelen Wert z haben. Wir k6nnen aber weiter fiir z beliebige komplexe Werte

in Betracht ziehen. Einen solchen Wert setzen wir in der Form an: z=x [+] iy,

dabei sindxundy reele GriSssen und i steht ftir I l l - - l ] . Wir nennen x den reellen,

iy den imagin~iren Teil yon z. Wir berechnen nun unter Benutzung der Rechnungs-

regeln ftir komplexe Gr6ssen, also vor allem [b], Fb]. Das Resultat ist wieder

eine komplexe Gr6sse, wir schreiben sie u[+]iv, wobei also der reele Teil

u=[b], der imagin~ire [b] ist. Wir haben so indem Ausdrucke w=u[+]iv

eine Funktion des komplexen Arguments z =x [ +] iy definiert.

Der zweite Punkt, den wir vorweg zu nehmen haben, ist, wie wir uns eine

solche Funktion als iLn Ding zurechtlegen, yon dem wir sofort die Empfindung

haben: wir werden es beherrschen k6nnen. Dazukommen wir, wie fast immer,

wenn wir Dinge begreifen wollen, durch Heranziehung

-3-

geometrischer Vorstellungen. Zun~ichst handelt es sich darum, eine Vorstellung

vonder Ver~inderlichkeit eines komplexen Arguments zu gewinnen. Da denken wir

uns einfach x und y als gew6hnliche rechtwinklige Koordinaten in einer Ebene.

e

Nebenbei wollen wir ein fiir allemal feststzen, dass die y-Axe links yon der

x-Axe gezeichnet werden soll.) Es entspricht nunmehr jeder komplexen Gr6sse

z = x [ + l iy, d.i. jedem Wertepaare x,y ein Punkt der Ebene und umgekehrt

jedem Punkte der Ebene ein Wertepaar x,y und damit eine bestimmte komplexe

Gr6sse z=x[+] iy; dies ist bereits die beriihmte GAUSSische geometrische

Darstel lung der komplexen Gr6ssen. Das wichtigste dabei ist, dass wirein be-

stimmtes riiumliches Bild haben, ,~enn wir yon einer komplexen Gr6sse sprechen:

wir denken dabei einfach an einen bestimmten Punkt in unserer Ebene, die wir

nun als die Ebene der komplexen Gr6ssen bezeichnen, und alle Aussagen, die

wir irgend tiber komplexe Gr/Sssen formulieren k6nnen, mtissen sich jedesmal

sofort auch als S~itze tiber Punkte in der Ebene und also in als geometrische

S~itze darstellen. Jetzt handelt es sich um die Vorstellung yon einer Funktion

einer komplexen Ver~inderlichen. Dabei wird nun aus einer komplexen Gr6sse

nach einem bestimmten Gesetze eine zweite komplexe Gr6sse hergeleitet. Von

dieser entwerfen wir nun ein ~ihnliches geometrisches Bild wie von d er ersten

Gr6sse z. Um aber deutlicher auseinander zu halten, was Funktion und was

Argument betrifft, verfahren wir zweckm~issigso, dass wir uns eine zweite Ebene

anlegen, in dieser zwei rechtwinklige Koordinaten u, v annehmen,

-4-

die u-Axe wieder links vonder v-Axe), und dem komplexen Funktionswert

w--u [ +] iv einene Punkt u,v in dieser Ebene entsprechen lassen.

Nun entspric~t jedem Punkt der z-Ebene ein Punkt der w-Ebene. Eine

Funktion bedeutet dadurch ftir uns eine Abbildung der ersten Ebene auf die

Page 22: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 22/25

92 L. PYENSON

zweite Ebene. Indem jedem Punkt z ein Punkt w entspricht, wird weiter jeder

Kurve aus Punkten in der z-Ebene eine Kurve aus Punkten in der w-Ebene

entsprechen. Nun stellt sich eine fundamentale Eigenschaft dieser Abbildung

heraus, die darin ihren Grund hat, dassder Ausdruck z die beiden Gr6ssen x,y

nicht beliebig, sondern eben nur in der Verbindung x [ + ] iy enth~ilt. Diese

Eigenschaft kommt unter sehr viel allgemeineren Umst~inden zur Geltung.

Denken wir uns allgemein eine Funktion in folgender Weise hergestellt: Es soll

ein Ausdruck gebildet werden, indem wir ausgehen von z= x [ + ] iy und dazu

yon irgend welchen komplexen Konstanten und in diesem zu Grunde gelegten

Bereich yon Gr6ssen irgend wie eine endliche Anzahl yon Malen nach einander

eine der vier elementaren Rechnungsoperationen, Addition, Subtraktion, Multi-

plikation, Division durch eine von Null verschiedene Zahl Gr6sse ausftihren;

einen jeden Ausdruck, den wir auf solche Weise aus z herleiten k6nnen, bezeich-

nen wir als eine rationale Funktion yon z; ein Ausdruck dieser Art ist z, des-

gleichen l/z, u.s.w. Nehmen wir nun ein solches f(z) , setzen es wieder

= w-- u [ + ] iv, so giebt es jedesmal zu einer Abbildung der z- Ebene auf die

w- Ebene Anlass und dabei stellt sich jedesmal die Eigenschaft heraus, die ich

jetzt nennen will und far welche den Beweis zu liefern hernach eine wich-

-5-

tige Aufgabe ftir uns sein wird.

Ziehen wir in der z-Ebene yon einem Punkte z zwei Kurven aus 1 und 2,

so entsprechen ihnen yon dem zugeh6rigen Punkte w der w-Ebene zwei Kurven

wl und w2. Dabei stellt sich heraus, dass wenn z2 rechts yon zl lag, auch w2

rechts yon wl zu liegen kommt und dass dabei der Winkel lw2 genau dem

Winkel zlz2 gleichwird. Diese Eigenschaft der Abbildung wird Konformit~it

genannt. Die Eigenschaft gilt allgemein, es finden jedoch Ausnahmen in einzelnen

Punkten statt. Singul~ire Punkte. Sie sind in endlicher Anzahl bei einer rationalen

Funktion vorhanden. Die Verteilung der singul~iren Punkte macht gerade das

Wesen der einzelnen rationalen Funktion aus.Grund der Bezeichnung konformr

Abbildung: ein Dreieck in der ersten Ebene gem in ein Kurvendreieck der

wEbene iiber, bei einem unendlich kleinen Dreie ck kann letzteres angeniihert

als geradlinig aufgefasst werden alsofolgt: Unendlich kleine geradlinige Dreiecke

sind sich ~ihnlich. Aehnlichkeit inden kleinsten Teilen. Eine Ausnahme ntm ftir

z--0 bei der Funktio n w = z, daselbst Verdoppelung der Windel.

Dieses ist eine differentielle Eigenschaft der analytischen Funktionen, sie

driickt sich durch Differentialgleichungen aus: CAUCHY-RIEMANN-sche Dif-

ferentialgleichungen. Ihr entspricht eine gewisse Umkehrung, eine Integral-

eigenschaft, das ist der beriihmte CAUCHY-sche Integralsatz. Dieser bildet

sozusagen die Quintessenz der Natur der analytischen Funktionen (icherziihle

nur, um Ihnen dann eine ungef ~ihre Vorstellung yon der Materie zu geben, die

uns besch~iftigen wird). Der Gang der Theorie

-6-

stellt sich dannso: Definition der synektischen Funktionen durch Konformit~it,

Charakterisierung spezieller Funktionen durch ihre Ausnahmestellen, Herstel-

Page 23: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 23/25

M inkow ski and Spec ia l Re la t iv i ty 9

l un g y o n A u s d r ti c k e n ftir j e d e F u n k t i o n d u r c h V e r w e n d u n g d e s C A U C H Y - s c h e n

In t eg ra l t heorems . Dieses l e t z t e re Theorem f t i h r t i n sbesondere mi t g r6ss t e r

Lei ch t igke i t zu den j en igen Fo rm eln d i e f iir d i e r ee l en Fu nk t ione n a l s d i e

T A Y L O R S C H E s c h e R e ih e be k a n n t sin d.

G a n z e r s t au n l ich i st d e r K r e i s d e r A n w en d u n g en d i e s er e in z ig en F o r me l d i e

a l s d a s C A U C H Y - s ch e I n t eg r a l b eze i ch n e t w i r d . W i r w e r d en s eh en d as s s i ch

b e r e i t s f a s t d i e g e s ammt e F u n k t i o n en t h eo r i e u md i e v e r s ch i ed en en A n w en d u n -

gen d ieser e inen im G run de ~ iussers t e in fachen For m el g rupp ier t . I ch ka nn

Ihnen n i ch t l ebhaf t genug d i e gewa l t ige Einhe i t l ichke i t d er Le hre yon den a na ly t i -

schen Fun k t ion en r t i hmen d i e dah er en t sp r ing t dass d i e Que l l e der ti e f st en

Eigenschaf t en d i eser Funk t ione n sosc har f vo r Au gen lieg t.

D a s w u n d e r b a r e an d e r Th eo r i e d e r an a l y t is ch en F u n k t i o n en is t w i e k l a r

b a n

u n d d u r ch s i ch t i g d e r Zu s ammen g a l l e r E i g en s ch a f t en d i e s e r F u n k t i o n en w i r d

e

a ll ei n d u r ch d en U ms t an d d as s m an d as V e r h a l t en d e r F u n k t i o n n au ch ffir d i e

k o m p l ex en W er t e in B e t r ach t z ieht. D u r ch d i e sen W eg ti b e r k o m p l ex e B ez i ehu n -

gen e rgeben s i ch h6chs t merkwt i rd ige Aufsch l t i s se auch t i ber Funk t ionen im

ree l en Geb ie t . E ine der fund am enta l s t en Tat sach en d i e zu Tag e t r it t i s t der

Z u s a m m e n h a n g z w i s c h e n d e r E x p o n e n t i a l - u n d d e n t r i g o n o m e t r i s c h e n F u n k -

t io n en w e l ch e r zu e r s t y o n E U L E R en t d eck t w u r d e u n d w e l ch e r b i e r s o h e r v o r -

t r e t en wi rd dassd i ese zweier le i Fu nk t ion en s i ch

- 7 -

gew issermassen a l s Zweige e iner e inhe i tl ichen Fu nk t ion dar s t e ll en .

c

N e u es u n d t ib e r r a s ch en d es L i ch t v e rb r e i t en d i e M e t h o d n d e r F u n k t i o n en l eh r e

zun / ichs t wie i ch schon sag t e f i ber d i e wich t igs t en Funk t ionen dass s ind d i e

r a t i o n a l en F u n k t i o n en . W i ih r en d d i e A u s f i ih r u n g d es D i f f e ren t i a ti o n s p r o zes se s

n i ch t au s d em B er e i ch e d i e s e r F u n k t i o n en h e r au s f t i h r t k o mmt man d u r ch d en

P r o zes s d e r I n t eg r a ti o n w i e I h n en j a s ch o n y o n d e r A n a l y s i s h e r b ek an n t i s t

be i Geg el egenhei t des S tud iums des In t eg ra l s zu e iner g~ inz lich neua r t i gen Fu nk -

t io n d em l og . u n d d a k an n i ch s ch o n h i e r h e r v o r h eb en d as s d i e s e F u n k t i o n l o g .

i n ~ iu ss ers tem G r a d e d i e g an ze F u n k t i o n en t h eo r i e b eh e r r s ch t . M an k an n g e r ad ezu

s ag en meh r o d e r w en i g e r s t eh en a l l e F r ag en u n d P r o b l eme d e r F u n k t i o n en -

t h eo r ie i n in t i ms t e r V e r w an d s ch a f t zu r F u n k t i o n lo g. D i e s e F u n k t i o n i st d i e

a l l e s b e l eb en d e S o n n e d e r F u n k t i o n en t h eo r i e .

Z u m R u h m u n d P r ei s d e r F u n k t io n e n t h e o r i e i st n o c h d i e g r o ss e B e d e u t u n g

h e r v o r zu h eb en w e l ch e i h re M e t h o d en u n d B e t r ach t u n g s w e i s en ftir d i e an g e -

w a n d t e M a t h em a t i k g ew o n n en h ab en . Es t r it t d a r in e i ne p r ii s tab i li e rt e H a r m o n i e

der mathe m at i sche n W issenszweige zu Tage dass d i e n~ml i chen Begr if fs -

u n d P r o b l e m e

b i ldungen welche ff ir d i e Wei t e r f f ih rung der T heor i e s ich a ls we r tvo l l e rwei sen

au ch d u r ch d i e En t w i ck l u n g d e r p h y s i k a l i s ch en Th eo r i en s i ch a l s f u n d amen t a l

au fd r~ ingen . So werde n w i r f inden dass der r ee l le Te i l u e iner ana ly t i schen Fu nk -

Page 24: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 24/25

94 L PYENSON

t i o n d e r D i f f e r e n t i a l g l e i c h u n g

[ b L ]

g e n t i g t . D i e s e O l e i c h u n g s t e h t d a n n i m M i t t e l p u n k t d e r T h e o r i e . E s z e i g t

- 8 -

s i ch n u n a n d e r e r s e i t s , d a s s e b e n d i e s e l b e D i f f e r e n t i a l g l e i c h u n g e i n e f u n d a m e n t a l e

R o l l e in d e r g a n z e n P h y s i k s p i e lt . Sie h~ in gt e n g m i t d e n T h e o r i e n d e r G r a v i t a t i o n ,

d e r H y d r o d y n a m i k u sw . z u sa m m e n .

I c h w i ll n i c h t u n t e rl a s s e n , a u f e in e n n e u e n T r i u m p h d e r M a t h e m a t i k h i n z u -

w e i s e n , d e r s i c h v o r z u b e r e i t e n s c h e i n t u n d v i e l e i c h t z u d e n g r 6 s s t e n E r f o l g e n

z u z ~ih len se in w i r d , w e l c h e di e A n w e n d u n g d e r M a t h e m a t i k a u f N a t u r w i s s e n -

s c h a f t e n j e g e z e it i g t h a t . E s h a n d e l t s i ch d a u m e i n P r i n z i p , w e lc h e s n e u e r d i n g s

f o r m u l i e r t w o r d e n is t, d a s d e n N a m e n P r i n z ip d e r R e l at iv i t ii t e r h a l te n h a t u n d

das , w enn e s s ich t a ts~ ich li ch bew~ih rt , gee ign e t is t , a l l e b i she r igen A ns ch au un ge n

d e r M e c h a n i k t o t a l u m z u w e r f e n . I c h sp r e c h e n o c h e t w a s a u s f fi h r li c h e r v o n

j e n e m P r i n zi p e , w ei l e s g e e ig n e t i st , d e n W e r t d e r V e r w e n d u n g k o m p l e x e r G r 6 s s e n

v o n e i n e r n e u e n S e i te z u b e l e u c h t e n . J e n e s P r i n z i p w i i r d e a n d i e S t e ll e d e s T r i ig -

h e i t s p r i n z i p e s d e r P h y s i k t r e t e n , w e l c h e s d a n n a b g e w i r t s c h a f t e t h ~ i t t e . D a s T f i i g -

h e i t s p r i n z i p h a t w e s e n t l i c h f o l g e n d e n I n h a l t : D i e G e s e t z e d e r M e c h a n i k w e r d e n

a u f ei n a b s o l u t r u h e n d e s K o o r d i n a t e n s y s t e m b e z o g e n ; w t i r d e m a n s ie a u f ei n

K o o r d i n a t e n s y s t e m b e z ie h e n , d a s e i ne g l e ic h f 6 r m i g e T r a n s l a t i o n i m R a u m e

b e s i t z t s o w i i r d e n d i e F o r m e l n d i e s e r G e s e t z e s i c h i n k e i n e r W e i s e v e f i i n d e r n .

N u n d a s n e u e P r i n z i p is t a u f d e m B o d e n d e r O p t i k e r w a c h s e n. N a c h e i n em y o n

M A X W E L L h e r r i i h r e n d e n A n s a t z e ft ir d i e O p t i k b e w e g t e r M e d i e n w ~ ire a u f d i e

F o r t p f l a n z u n g d e s L i c h t e s , w e l c h e s v o n i r d i s c h e n L i c h t q u e l l e n a u s g e h t , e i n

E i n f l u s s d u r c h d i e B e w e g u n g d e r E r d e z u e r w a r t e n g e w e s e n , s o d a s s m a n d i e

M / S g li ch k ei t h a b e n s o ll te , d u r c h o p t i s c h e V e r s u c h e i m L a b o r a t o r i u m d i e R i c h -

t u n g d e r B e w e g u n g d e r E r d e i m W e l ta l l z u e r k e n n e n . D o c h a ll e i n d ie s e r A b s i c h t

a n g e s t e l l t e n V e r s u c h e h a t t e n e in n e g a t iv e s E r g e b n i s s , es w u r d e d e s h a l b d i e T h e o r i e

i n e in e r zu n ~i ch st s e h r k t ih n e n W e i se y o n H . A . L O R E N T Z i n s o l ch e r W e i s e

m o d i f i z i e r t , d a s s v o n v o r n h e r e i n e i n E i n f l u s s e i n e r g l e i c h f 6 r m i g e n F o r t b e w e g u n g

a u f d ie B e o b a c h t u n g d e r F o r t p f l a n z u n g d e s L i c h t e s a u s g e s c h lo s s e n s e in m u s s t e .

D u r c h e i n e l ~ i n g e r e E n t w i c k l u n g h a t s i c h d a n n a u s d e n L o r e n t z - s c h e n A n s ~ i t z e n

s c h l is s l ic h i n e i n e r m a t h e m a t i s c h s e h r e i n f a c h e n F o r m d a s P r i n z i p d e r R e l at iv i t~ i t

e n t w i c k el t, d a s v i e ll ei ch t d i e g a n z e M a t h e m a t i k P h y s i k b e h e r r s c h t u n d d a n n i n

d e r T a t i n h 6 c h s t e m G r a d e z u r V e r h e r r l ic h u n g d e r M a t h e m a t i k g e s c h a ff e n i st .

D a s P r i n z i p , d e s s e n A u s a r b e i t u n g e b e n n o c h i m F l u s s e i s t , w t i r d e e t w a s o z u

f o r m u l i e r e n s ei n. E s s e ie n x , y , z K o o r d i n a t e n i m R a u m e u n d t d i e Z e it , w ie m a n

s ie im m e r b e i d e r B e s c h r e ib u n g d e r B e w e g u n g e n z u G r u n d e z u l eg e n g e w o h n t is t

( als a b s o l u t e K o o r d i n a t e n v o n R a u m u n d Z e i t, f e rn e r b e d e u t e c d i e L i c h tg e s c h w i n -

d i g k e it im l ee r en R a u m e , c = 29 8 3 00 k m / s e k . , m a n n e h m e n u n d e n A u s d r u c k

[ b L ]

he r ; de r se lbe ve re in fach t s i ch ~ ~ ~ . . . . . .4

. . . . . . . . . . w e n n m a n d ie Z e i te in h e it s o a b -

[ ~ in ] d er t, d a s s c = 1 w i r d . U n t e r w i r f t m a n n u n x , y , z , t e i n e r T r a n s f o r m a t i o n , w o b e i

Page 25: Hermann Minkowski and Einstein´s Theory of Relativity

8/10/2019 Hermann Minkowski and Einstein´s Theory of Relativity

http://slidepdf.com/reader/full/hermann-minkowski-and-einsteins-theory-of-relativity 25/25

Minkowski and Special Relativity 95

jener Ausdruck in sich selbst fibergeht, so lauten die Gesetze der Physik fiir das

neue System yon Koordinaten genau so wie ffir das alte. Das ist zun~ichst eine

einfache mathematische Formulierung, die aber in ihren Folgerungenmt deren

Ausarbeitung jetzt namhafte Physiker besch~iftigt sind, h6chst merkwfirdig ist.

Ich kann nur ganz andeutungsweise einiges berfihren;

-10-

wie PLANC K neulich ausgeffihrt hat, (Berl. Akad. 13. Juni.), wiirde schon der

Begriff der Masse eine totale Umw~ilzung erfahren. Fernerist mathematisch zu

sagen, dass die Zeit die Rolle einer imaginiiren L~inge spielen wfirde. Das w~ire

nicht bloss eine Spekulation, sondern es wfirde dem eine Reihe ganz bestimmter

Erfahrungstatsachen einen bestimmten Sinn verleihen. Der Mathematiker wfirde

sich weiter so ausdrticken ktinnen, was ich far Kenner gewisser Gebiete noch

hinzusetze: Die Welt ist eine nichteuklidische Mannigfaltigkeit von 4 Dimen-

sionen, und es wfirde das Merkwfirdige zu Tage treten, was ich eben als riesigen

Triumph der Mathematik bezeichnen m6chte dass die Mathematiker rein in

Ihrer Phantasie grosse Gebiete Egeschaffen] haben, die ohne dass dies erwartet

women [in] der Natur eine reale-Ex[pression] [g]efund[en] haben.

Indem ich reich nun yon diesen Tr~iumen oder eher Hoffnungen zu unserer

Wirklichkeit der komplexen Grtissen wende, m6chte ich den Wunsch ausspre-

chen, (Ausarbeitung ftirs Lesezimmer). Ich nenne Ihnen einige Literatur, die

vorteilhaft neben der Vorlesung bisweilen konsultiert werden kann: Beliebt ist

das kleinere Werk von H. Burkhardt, Einleitung in die Theorie der analytischen

Funktionen einer komplexen Ver~inderlichen.

Vollst~indige Angabe der Lehrbticher finden Sie in dem Artikel: Encyklopiidie

r6misch 2 B 1. W.F. Osgood: Analytische Funktionen kompl Gr6ssen.

Nungehe ich zum ersten Kapitel fiber:

Kapitel 1. Geo metrische arstellungen und Interpretati

{Manuskript bricht hier ab }

Institut d histoire et de

sociopol itique des sciences

Universit6 de Mont r6al

Case posta le 6128

Montreal 101

Received May I, I976)


Recommended