+ All Categories
Home > Documents > Hershey Thesis v05 - Auburn University

Hershey Thesis v05 - Auburn University

Date post: 04-Nov-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
78
Quantifying fish swimming performance and behavior in two diverse environments: a multifaceted approach. by Henry James Hershey A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 3, 2019 Key words: fisheries, fish passage, dams, Alabama River, migratory fish, paddlefish Copyright 2019 by Henry Hershey Approved by Dr. Dennis DeVries, Co-chair, Professor and Assistant Director of Research Programs Dr. Russell Wright, Co-chair, Extension Specialist and Associate Professor Dr. Joseph Tomasso, Director and Professor Dr. David Smith, Research Ecologist and Affiliate Faculty
Transcript
Page 1: Hershey Thesis v05 - Auburn University

Quantifyingfishswimmingperformanceandbehaviorintwodiverseenvironments:amultifacetedapproach.

by

HenryJamesHershey

AthesissubmittedtotheGraduateFacultyofAuburnUniversity

inpartialfulfillmentoftherequirementsfortheDegreeof

MasterofScience

Auburn,AlabamaAugust3,2019

Keywords:fisheries,fishpassage,dams,AlabamaRiver,migratoryfish,paddlefish

Copyright2019byHenryHershey

Approvedby

Dr.DennisDeVries,Co-chair,ProfessorandAssistantDirectorofResearchProgramsDr.RussellWright,Co-chair,ExtensionSpecialistandAssociateProfessor

Dr.JosephTomasso,DirectorandProfessorDr.DavidSmith,ResearchEcologistandAffiliateFaculty

Page 2: Hershey Thesis v05 - Auburn University

ii

Abstract

InthesoutheasternUnitedStates,low-headdamsarecommonandtheeffectsofthese

structuresonmigratoryfishesarerelativelyunknown.Studyinghowmigratoryfishbehavein

habitatsalteredbydamssuchastheupstreamimpoundmentsthatareformedandthe

downstreamtailraceareasisimportantforunderstandingandpredictingtheoverallbiological

andecologicalimpactsofdamsonriverinefishpopulationsandecosystems.HereIquantifieda

varietyofaspectsofbehavior,movement,physiology,andhematologyofthreespeciesoffish

intwodistinctsystems--asmallimpoundmentthatisreflectiveofupstreamhabitatcreatedby

adam,andinthetailraceofadamontheAlabamaRiver.

Inthesmallimpoundment,Iquantifiedbehavioroftwospecies(Americanpaddlefish

Polyodonspathula,ariverinefish,andlargemouthbassMicropterussalmoides,alacustrine

fish)inanenclosedsmallimpoundmentusingacombinationofacousticandradio

biotelemetry.Anarrayofacousticreceiversallowedmetoquantify2-dimensionalmovement

throughouttheimpoundmentandtheradioreceiverallowedmetocollectdatafrom

electromyogram(EMG)tagsquantifyingfishmuscleactivity.Ifoundthatpaddlefishswam

constantlythroughouttheimpoundment,andmovedfasteratnight,whilelargemouthbass

weremuchlessactive,andshowednodielbehavioralpattern.Incontrasttomyexpectations,

activitydatafromtheEMGtagswerenotcorrelatedwith2-dimensionalmovementcalculated

fromtheacoustictrackingdata,evenwhenthetwodatastreamsweremergedatthefinest

Page 3: Hershey Thesis v05 - Auburn University

iii

time-scalepossible.TheEMGdataIcollectedmaynotberepresentativeofaverageswim

speed,butratherofveryfine-scalelocomotoractivitieswhichareundetectableintheacoustic

trackingdata.Althoughtheseresultsmaynotbedirectlyapplicabletopaddlefishinariverine

setting(e.g.,duetoeffectsofflow),theydospeaktosituationswherepaddlefisharecultured

orareusedinareservoirranchingenvironment,aswellasforlentichabitatssuchas

backwaterswhereriverinefishesmayspendasubstantialamountoftheirlives.

Thesecondaspectofmyresearchinvolvedstudyofthebehaviorofpaddlefishand

smallmouthbuffalo(Ictiobusbubalus)inthetailraceofalow-headdamontheAlabamaRiver

usingthesametelemetrytechniquesasinthesmallimpoundment,butatamuchlargerscale

aswellaswiththeadditionofquantifyingphysiologicalstatesoffishastheystagedand

potentiallypassedthedamduringperiodsofspillwayinundationusinghematology.Intotal,88

of330taggedfishpassedthedam.Iwasabletotriangulateover46,000positionsinthetailrace

from35paddlefish,and22smallmouthbuffalo.Additionally,EMGtransmissionswerelogged

from180uniquefishinthetailrace,includingfrom22individualsduringtheactualtime

windowswhentheypassedthedam.Ifoundthatpaddlefishslightlyincreasedtheiractivity

(EMG)abovetheirnormalaveragetopassthedam,whilesmallmouthbuffalowereabletopass

withlessthanaverageactivity.Activityinthetailracewashighestforbothspeciesatagage

heightofapproximately10.7m.Finally,althoughpaddlefishwereabletopassthedam,I

measuredunprecedentedlyhighconcentrationsofcortisolintheirplasma.Levelsofallblood

parametersforsmallmouthbuffalowererelativelyconsistenttothosemeasuredinother

migratorycatostomidsintailracesettings.

Page 4: Hershey Thesis v05 - Auburn University

iv

Differencesinthepassageratesandphysiologicalstatesofthesespeciescouldbedue

tomicrohabitatpreferencesinthetailrace,andswimmingperformance.Theresultsofthis

riverineportionofmyworkwillprovidevaluableinformationforusebytheUSArmyCorpsof

Engineersandaquaticconservationand/ormanagementorganizationsindeterminingand

designingspecies-specificmitigationmeasuresforlow-headlock-and-damstructuresacrossa

widearrayofriversnationwide.

Page 5: Hershey Thesis v05 - Auburn University

v

Acknowledgments

Iwouldliketothankmyadvisorsfortheirmentorshipandcontinuouseffortstoimprove

myscience,andmycommitteemembers,forbeingsowillingtosharetheirexpertiseand

advice.IalsothankmycolleaguesattheIrelandCenterfortheirhelpinthefield,inthelab,and

fortheirendlesslyentertainingstudybreaks.I’dalsoliketothankChristaWoodleyforsharing

herexpertisewithtaggingandtelemetry,andTammyDeVriesforthesnacksandforbeingnot

justthegreaseonthewheels,butoftenthewheelsthemselves.Finally,I’dliketothankmy

familyforencouragingmetopursuemydreamsingraduateschool.

Page 6: Hershey Thesis v05 - Auburn University

vi

TableofContents

Abstract........................................................................................................................................ii

Acknowledgments......................................................................................................................iii

ListofTables.................................................................................................................................v

ListofFigures..............................................................................................................................vi

Chapter1:Introduction................................................................................................................1

Chapter2:Characterizingthebehaviorandactivitypatternsofpaddlefishandlargemouthbass

inasmallimpoundmentusingacoupledbiotelemetrysystem.....................................11

Chapter3:Quantifyingtheactivityandhematologyofpaddlefishandsmallmouthbuffaloina

fishpassagescenario......................................................................................................21

References.................................................................................................................................59

Page 7: Hershey Thesis v05 - Auburn University

vii

ListofTables

Table1.......................................................................................................................................19

Table2.......................................................................................................................................20

Table3.......................................................................................................................................21

Table4.......................................................................................................................................22

Table5.......................................................................................................................................23

Table6.......................................................................................................................................52

Table7.......................................................................................................................................53

Table8.......................................................................................................................................54

Table9.......................................................................................................................................55

Table10.....................................................................................................................................56

Page 8: Hershey Thesis v05 - Auburn University

viii

ListofFigures

Figure1......................................................................................................................................24

Figure2......................................................................................................................................25

Figure3......................................................................................................................................26

Figure4......................................................................................................................................27

Figure5......................................................................................................................................28

Figure6......................................................................................................................................29

Figure7......................................................................................................................................30

Figure8......................................................................................................................................31

Figure9......................................................................................................................................32

Figure10....................................................................................................................................57

Figure11....................................................................................................................................58

Figure12....................................................................................................................................59

Figure13....................................................................................................................................60

Figure14....................................................................................................................................61

Page 9: Hershey Thesis v05 - Auburn University

1

Chapter1:Introduction:

Organismsinloticsystemscandependonenergyinputsfrombothupstreamand

downstreamenvironments,makingconnectivityveryimportant.Energygenerallyflows

downstreamandisusedbyspecializedaquaticcommunitiesthatareadaptedtothe

longitudinallyorganizedecologicalnichesofariverecosystem(Vannoteetal.1980).However,

energycanalsomoveupstream,andinfact,manyecosystemsdependonresourcepulsesfrom

downstreamenvironments(Schindleretal.2013).Assuch,riverineecosystemfunctioning

dependsupontheoveralllongitudinalconnectivityofmainchannels,andinterruptionofthis

connectivitycancausebasin-widebioticandabioticchanges(Ward1989).

Inoverhalfoftheworld’srivers,connectivityhasbeendisruptedbydams(Nilssonetal.

2005).Althoughdamscanbenefithumansinmanyways(e.g.,facilitatingnavigation,providing

watersupply,recreation,hydroelectricpowergeneration,andfloodcontrol),theirpresence

fragmentsandeveneliminateshabitatbyalteringhydrology(changingfromlotictolentic

systems)andsedimentationpatterns.Theyalsohavedirecteffectsonaquaticorganisms,

particularlythosethatrequiremigrationtospawn.Whendamsinterruptfishmigrations,

populationscanbereducedduetothepreventionofspawning(BunnandArthington2002;

Braatenetal.2015).

Tomitigatetheeffectsofdams,anumberofsolutionshavebeenimplemented,

includingtrappingandhaulingfishbeyondthedam,andinstallationofstructuressuchas

ladders,lifts,vertical-slotpassages,andevenlaunchingfishoverthedamusingcannons(Geist

etal.2016).Theseengineeredsolutionshaveservedtoincreaseratesofmovementof

Page 10: Hershey Thesis v05 - Auburn University

2

migratoryspeciespastdams(Noonanetal.2012).However,theydonotentirelyre-createpre-

impoundmentconditions,andfishdoincurcostswhenpassingdams(RoscoeandHinch2010).

Migratingadultfishcanincurtwokindsofcostswhenpassingdamsthatincludetwo

distinctaspects(Roscoeetal.2011;Cooketal.2011).Oneisthecostofatemporaldelaybelow

adam,whichisoftentheresultoffailuretofindfishwayentrancesduetoalackofdirectional

cuesorattractionflows(RoscoeandHinch2010;Izzoetal.2016).Fishhaveevolvedprecise

timingofmigrationssoiftheyexperienceadelay,theymaynotarriveattheirspawningsites

whenconditionsallowforeggsurvivalanddevelopment(Caudilletal.2007).Thesecondcostis

physiological.Passagecaninducephysiologicalstressresponses,andincreaseenergeticcostsof

migrationwhichcanultimatelyimpactsurvival.Althoughacutestressresponsescanbe

beneficialforpredatorescapescenarios(c.f.,spawningmigrations),theycanbeenergetically

demanding.Ifananimalhasafiniteamountofenergy,thenstressresponsesmightreallocate

energythatwouldotherwisebeusedforgonaddevelopment,migration,and/orspawning

(Wingfieldetal.1998;RicklefsandWikelski2002;Cooketal.2011).Iftheenergeticcostsof

migrationaretoohighduetothepotentiallyexhaustiveactivityrequiredforpassageovera

dam,thenthefishmightnotspawnthatyear,choosinginsteadtousetheirenergyforsurvival

versusreproduction.Giventhis,artificialfishwayshavebeendesignedtominimizestressand

energeticeffortrequiredtopassinanefforttomitigateenergeticcosts(Peakeetal.1997;Haro

etal.2004).

Tounderstandtheimpactsofpassageonfish,researchershaveusedtechniquesranging

fromlaboratoryexperimentsonswimmingperformancetolargescaletelemetrystudieson

movementandbehavior.Anadvantageoflaboratoryexperimentsisthatperformance,stress,

Page 11: Hershey Thesis v05 - Auburn University

3

andrespirationcanbemeasuredpreciselyinacontrolledenvironment.However,theydonot

necessarilyreplicateconditionsfacedbyanimalsinthefield.Telemetryoffersresearchersa

waytostudymovement,behavior,andevenphysiologyofanimalsinsitu.Numeroussuchfield

studieshavebeenconductedrelativetofishpassage,andwithrecentadvancesintagging

technology,researcherscanmoreaccuratelydescribefine-scalebehavioralpatternsand

estimatephysiologicalcostsofthosebehaviors(Cookeetal.2004).

Electromyogramtransmittersmeasurefishmuscleactivity,reportingthedataviaradio

oracousticsignals.Earlyiterationsofsuchtransmittersworkedbysamplingelectricalimpulses

fromfishmuscleandtransmittingpulsedsignals.Thepulserateofthetransmissionwas

correlatedwithswimmingspeed.Morerecentversionsintegratevoltagemeasurementsovera

setintervalandtransmitanarbitrarycodedsignal(from0to50)thatcorrespondstoarelative

indexofthemuscleactivitymeasuredoverthatinterval.Researchershaveused

electromyogramtelemetrytoestimateactivitylevelsandswimmingspeedsofmigratingfish

throughbothartificialandnaturalpassages(e.g.,Hinchetal.1996,Quintellaetal.2004,2009,

Ponetal.2009a,Alexandreetal.2013,),toestimatediscretebehaviors(Berejikianetal.2007),

aswellastoestimatestressandrespiration(e.g.Hinchetal.1996,Cookeetal.2004,2002,

Geistetal.2003,Chandrooetal.2005,Lemboetal.2008).

Artificialfishwaysarenottheonlywaypastdams.Otherwaystopassexist,andthe

physiologicalcostsofusingthosepathwaysarenotwellunderstood.Somedamson

navigationalcorridorshavelockstoallowforboatstopass,andtheoperationoftheselocks

canalsoallowfishtopass(Keeferetal.2004;Brownetal.2006).Atsomedams,speciallock

operationshavebeenconductedforthesolepurposeofenhancingfishpassageopportunities

Page 12: Hershey Thesis v05 - Auburn University

4

(Moseretal.2000;Youngetal.2012;Simcoxetal.2015).Anotherwayfishcantravelupstream

withoutafishwayisoverfixed-crestspillways,althoughthesuccessofthisapproachdepends

ontheheightofthewatercomingoverthedam(i.e.,the“head”).Passageviathese

“alternativefishways”hasbeendocumentedforseveralspecies(Metteeetal.2005;Simcoxet

al.2015),butlittleisknownaboutthephysiologicalcostsincurredduringtheprocess.

Tobetterunderstandtheimpactsofpassageusingalternativefishwaysatlow-head

dams,Istudiedthebehavior,activity,andphysiologyofmigratoryfishpassingalow-headdam

usingasuiteoftechniques,includingacoustictelemetry,codedelectromyogramtelemetry,and

hematology.HereIcombinetwoseparatebutcomplementarystudiesonthebehaviorand

physiologyoftwomigratoryfishspeciesastheyrelatetostagingbelowandpassageoveralow-

headdamintheAlabamaRiver.Thefirststudyhadtwoaims:toestablishacoupled

biotelemetryobservationsystemandtoquantifythebehaviorandactivityofpaddlefish

Polyodonspathulainalargelenticsystemascomparedtoalessactivespecies,thelargemouth

bassMicropterussalmoides.Thesecondstudyalsohadtwoaims:usethesamecombined

biotelemetryobservationsysteminthetailraceofalow-headdamforthestudyofpaddlefish

andsmallmouthbuffaloIctiobusbubalusbehaviorandactivity,aswellastodescribethe

physiologicalstateofthesefishesduringstagingandpotentialpassageusinghematology.

Theeffectsofdamsonpaddlefishhavebeenwellstudiedinmanysystems(Purkett

1961;Paschetal.1980;RosenandHales1980;PaukertandFisher2001;Zigleretal.2004;

FirehammerandScarnecchia2007)butinAlabama,theyhavebeenlessstudied,withpassage

overlow-headdamsonlyrecentlydocumented(Metteeetal.2005,2006;Simcoxetal.2015).

Thesmallmouthbuffaloisalsoalong-livedmigratoryspeciesnativetolargeriversofNorth

Page 13: Hershey Thesis v05 - Auburn University

5

America.Althoughitisnotofthesameconservationconcernasthepaddlefish,itisstill

imperiledbydamsforthesamereasons.Ichosethesetwospeciesfortheirsimilarlifehistories,

butcontrastinghabitatuses.Whilepaddlefishmaintainpositioninthemiddleofthewater

columntofilterfeed(AllenandRiveros2013),smallmouthbuffaloarebenthophilicandtendto

occupymorelittoralhabitatswithslowerwater(AdamsandParsons1998).Ipredictedthat

thesefishwouldexperiencedifferentenergeticcostsfromoneanotherastheymigrateupto

andoverthedam,whichcouldbeduetodifferencesinswimmingperformance,microhabitat

preferences,runtiming,oracombinationoffactors.

Inaddition,littleisknownaboutseasonalchangesinbaselineactivitylevelsand

metabolicprocessesofthesestudyspecies.Thatmigrationisenergeticallydemandingiswell

established,butlittleisknownaboutthephysiologicalchangesundergonebymigratory

species,letaloneastheyrelatetothechallengeofpassingalow-headdam(Cookeetal.2008).

ThisiswhyIsampledandanalyzedbloodchemistryofbothspeciesthroughoutthemigration

seasonandindifferentlocations,rangingfromthetailracetoareasdownstreamofthedam.I

predictedthatbothspecieswouldexperienceincreasedbaselinelevelsofbiochemicalslinked

tostressandrespirationastheyfreedupenergystoresformigrationandspawning.

Establishingbaselinelevelsofthesebloodparametersiskeytolayingthegroundworkfor

furtherstudyontheirphysiologyandswimmingperformance.Thedataassembledand

analyzedhereinprovideaninsightfullookattheimpactsofalow-headdamonmigratory

fishes.

Page 14: Hershey Thesis v05 - Auburn University

6

Chapter2:Characterizingthebehaviorandactivitypatternsofpaddlefishandlargemouth

bassinasmallimpoundmentusingacoupledbiotelemetrysystem.

Introduction

TheAmericanpaddlefishPolyodonspathulaisapotamodromousfishnativetothelarge

riversofcentralNorthAmericathatisexploitedcommerciallyandrecreationallythroughout

theirrange.Likeotheracipenseriforms,itischaracterizedbyalonglife-span,slowgrowth,

delayedmaturation,andinfrequentspawning,whichmakeitintoleranttodisturbancesand

amplifiesitsriskofextinction(Trippetal.2019).Paddlefishpopulationsareindeclinebecause

ofoverfishing,pollution,andtheconstructionofdams(CarlsonandBonislawsky2011).Dams

candestroyspawninghabitat,blockmigrations,isolatepopulations,anddisrupttheflowcues

thattriggerthestartofthepaddlefishmigration.However,despitethesechallengespaddlefish

stillpersistinthesealteredenvironments.

Whenadamisconstructed,largereachesoftheriverarefloodedandchangedfrom

lotictolentichabitats.Dependingonthehydrographyoftheriverandthetypeofdam

structuresbuilt,therelativeavailabilityofriverineandbackwaterhabitatscanchange

drasticallypost-impoundment.Multipleaspectsofpaddlefishpopulationshavebeencompared

betweenloticandlenticenvironmentswithinthesameimpoundedsystems,includingtheirage

structure,abundance,growth,condition,andexploitation(Reedetal1992;LeinandDeVries

1998;Leoneetal.2012),andtheirmovementandhabitatuse(HoxmeierandDeVries1997;

PaukertandFisher2000).Ingeneral,habitatselectionisthoughttobedrivenbyseasonal

changesinproductivity,andabioticfactors,butlittleisknownabouthowpaddlefishbehaveat

finespatiotemporalscaleswhentheyoccupythesedifferentenvironments.

Page 15: Hershey Thesis v05 - Auburn University

7

Infree-flowingrivers,paddlefisharefreetomovebetweenlenticandlotic

environments.However,whenpathwaysbetweenthesehabitatsareblockedbydams,

paddlefishmaybeunabletoaccesspreferredhabitats.Furthermore,foraram-ventilating,filter

feeding,migratoryfishthatdependsonflowforfeeding,navigation,andspawning,reducingor

eliminatingflowmayhaveconsequencesforgrowthandsurvival.

Ihadauniqueopportunitytostudythebehaviorandactivityofadultpaddlefishthat

hadbeenstockedinaresearchpondmorethan20yearsago.Thissystemiscomparableto

lenticsystemsinthewild,andalsorepresentativeofsomeaquaculturalvenuesusedtoraise

paddlefishforcaviarproduction(“reservoirranching”:Mimsetal1999,Mims2001;Onderset

al2001).Theobjectiveofthisstudywastoquantifybehaviorandactivitypatternsofpaddlefish

inalargelenticsystem,andcomparethemtothoseofalenticspecialist,thelargemouthbass

Micropterussalmoides.Iusedacoupledbiotelemetrysystem(anacoustic2Dreceiverarray,

andaradioantenna)toquantifytheirmovementandmuscleactivityoveraperiodofoneyear.

Bydouble-taggingfishwithacoustictransmittersandelectromyogramradio

transmitters,Iwasabletosimultaneouslytrackthestudyanimalsintwo-dimensionalspace

whilemonitoringtheirmuscleactivity.Thisallowedmetomeasuretheiractivitybothinterms

ofphysicaldisplacementandswimmingspeed,aswellasintermsofelectricaloutputfromthe

muscle.WhileseveralstudieshavecorrelatedEMGoutputwithswimmingspeedinthelab,

onlyoneotherstudyhastriedtocorrelateactivitydatafromEMGtagswithswimmingspeedas

measuredwithpositionaltelemetry(Demersetal1996).

Ipredictedthatpaddlefishwouldexhibitbothseasonalanddielpatternsinmovement,

andthatthosepatternswouldalsobereflectedinthemuscleactivitydata.Furthermore,I

Page 16: Hershey Thesis v05 - Auburn University

8

hypothesizedthatpaddlefishwouldmovemoreandbemoreactivethanlargemouthbass,with

differencesvaryinginmagnitudewithseasonanddielperiod.

StudySite

Thesiteforthisstudyisan8haimpoundmentattheEWShellFisheriesResearchCenter

inAuburn,Alabama.Itreachesamaximumdepthof4.5m,withanaveragedepthof~2m.The

stockinghistoryoftheimpoundmenthasbeenhaphazard,butithassupportedasmall

populationofpaddlefishformorethan20years,andareproducingpopulationoflargemouth

basssinceitsconstructioninthe1940s.

Methods

Intotal,sixlargemouthbassandsixpaddlefishweretaggedwithacombinedacoustic

andradiotransmitter(LOTEKWirelessCARTtagmodelsMM-MC-11-45andMM-MC-16-50).Of

thosefish,fivepaddlefishandfourlargemouthbasswerealsoimplantedwithacoded

electromyogramtransmitter(LOTEKWirelessCEMGtagmodelsR11-35andR16-50).Tocapture

paddlefishandlargemouthbass,Iusedalarge-meshgillnetandaboatelectrofisher

respectively.Tagsizewaschosenbasedonfishsize,andiffishweredouble-taggedthe

combinedtag-weightneverexceeded2%oftheindividual’sbody-weight.Isurgicallyimplanted

thetagsthroughoneincisionintheleftventralsideofthebelly,approximately5cmanteriorto

thepelvicgirdleinpaddlefish,and5cmposteriortothepelvicgirdleinbass.Fishwere

anesthetizedinalivewellwithdiluteMS222solutionandlivewellwaterwaspumpedoverthe

gillsforthedurationofthesurgery.Surgeriesdidnotlastlongerthan5min,andallthebass

Page 17: Hershey Thesis v05 - Auburn University

9

wereallowedtorecoverinalive-wellcontainingfreshpondwaterbeforerelease.Paddlefish

wererevivedinthepondbymanuallymovingwaterthroughtheirgillsuntiltheyswamoff

voluntarily.Thetwogold-tippedCEMGelectrodeswereinsertedintothemuscleat

approximately70%oftheeye-to-forklengthalongthelaterallinewith10mmspacingbetween

electrodes.ThelargeandsmallCARTtagsIusedtransmitasignalonceevery20seconds,the

miniCARTtagsevery8secondsandtheCEMGtagsevery3sec.

ThefirstfishtaggedweretwopaddlefishinMarch2017.Nextweretwolargemouth

bassimplantedwithCARTtagsinJuly2017.Then,inSeptember2017twolargemouthbassand

twopaddlefishweredouble-taggedwithCARTandEMGtags.Finally,inMay2018two

additionallargemouthbassandtwoadditionalpaddlefishweredouble-tagged,andoneofthe

fishthathadbeentaggedinMarch2017wasalsoimplantedwithanEMGtransmitter.See

Table1fortagmodelsused,andTables2and3fortagginghistoryanddetectionsummariesfor

eachindividual.

Atthebeginningofthestudy,Irecordedindividualfishpositionswithanarrayof3

submersibleacousticreceivers(LOTEKWirelessWHS3250L).InAugust2017,Iaddedthree

morereceiverstoincreasethecoverage,andimprovetriangulationprecision.IrecordedEMG

tagtransmissions(henceforthcalledEMGscores)usingastationary4elementYAGIantenna

positionedontheponddamandconnectedtoaradioreceiver(LOTEKWirelessSRX800)bya

30mcoaxialcable.PositionsweretriangulatedusingUMAPsoftwarefromLOTEKWireless,

filtereddowntoadilutionofprecisionof2,andspatiallyclippedtothepondboundaryusing

programR.Positionswithduplicatetimestampsweredeleted.Also,positionswerefiltered

basedonthepingintervalofeachtransmitter;ifthenumberofsecondselapsedbetweentwo

Page 18: Hershey Thesis v05 - Auburn University

10

consecutivepositionswasnotamultipleofthepingintervalforthattransmittertype,thenthe

laterofthetwopositionswasdeleted.

Mortalitywasdeterminedbyexaminingpositionaldata,andidentifyingfishwhose

movementbecamesuddenlyrestrictedtoaverysmallareaandremainedinthatareaforthe

durationofthestudy.Becausetagsdidnotstoptransmittingaftermortality,theexacttimeof

deathofafishwasdeterminedusingpiece-wiseregressiononthecumulativedistance

traveled,andallpositionsafterthebreakpointoftheregressionweredeletedfromthe

dataset.Iffishweredouble-tagged,EMGscoreswerealsodeletedafterthebreakpoint.

Activityrateswerequantifiedusingthedatastreamsfrombothtransmittertypes(CART

andCEMG).Iquantifiedmovement-basedactivitywithtwoindices:minimumdisplacementper

hour(MDPH)andminimumaverageswimmingspeedperhour(MASS)(RogersandWhite

2007).MDPHwascalculatedasthesumoftheEuclideandistances(inm)betweenconsecutive

relocationsforeachhourofthestudy,whichwasthenlogtransformed.Distanceswereonly

usedintheanalysisifthetimeelapsedbetweenrelocationsdidnotexceedonehour.Minimum

averageswimmingspeed(MASS)wascalculatedasthedisplacementbetweenrelocations

dividedbythetimeelapsedbetweenthoserelocations.IcomparedMDPHandMASSbetween

dielperiodsforbothspeciesusingpairedt-tests.Duetomortalitiesanddifferencesintag

batterylife,therewasonlya1-monthwindowwhenallofthetagswereactiveand

transmitting,soseasonalcomparisonscouldnotbeperformed.EMGscoreswereaveragedfor

eachhour,andeachindividualovertheentirestudyperiod.Dielcomparisonswerethenmade

forbothspeciesusingpairedt-tests,byaveragingtheEMGscoresfornightanddayhoursfor

eachindividual.

Page 19: Hershey Thesis v05 - Auburn University

11

IalsousedlinearregressiontotestforcorrelationbetweenEMGscores(standardizedto

theZdistribution–thusscalingthebetween-observationvariationtothetotalvarianceforeach

individual,andeliminatingthebetween-individualdifferencesinbothrawandscaledEMG

scores),andmovement(displacementandspeed).BecauseEMGscoreandmovementwere

notmeasuredatthesametimeintervals,thedatafromthetwotransmittertypescouldnotbe

mergedatthefinesttimescale.Thatis,EMGscoresweremeasuredevery3sec(atminimum),

whilethelocationofthefishcouldonlybeknownevery20sec(atminimum).Therefore,Iused

twoseparatemergingtechniquesandshowtheresultsforboth.

ThefirstapproachwastoaveragetheEMGscoresovertimeintervalsspecifiedbytwo

consecutiveacoustictransmitterpositions.Forexample,ifadouble-taggedfishwasdetectedin

oneplaceattime=t0andinanotheratt0+20sec,thenallitsEMGscoresthatwererecorded

duringthattimeintervalwereaveraged.Thus,theaverageEMGscoreforthatintervalcouldbe

directlycorrelatedwiththeminimumdisplacementandaveragespeedoverthatinterval.

Thesecondapproachwastouseastandardtimeinterval–onehour–andcorrelatethe

averageEMGactivityineachhourofthestudywiththeminimumdisplacementduringthat

hourofthestudy.Forexample,from7:00:00AMto8:00:00AMonDecember14th,2019

PaddlefishXmayhavemovedatotalof200mwithanaveragescaledEMGscoreof0.14.

Results

Allbutonefishsurvivedtagging,andtherewasalsoonedelayedmortality.Onefish

(LargemouthBass28684)wasnotdetectedbytheacousticarraybeyond4dayspost-release.

Becausedatawereonlyavailableforashorttimeafteritsrelease,datafromthisfishwere

Page 20: Hershey Thesis v05 - Auburn University

12

excludedfromallanalyses.Delayedmortalityoccurredinonepaddlefish.Usingapiece-wise

regressionapproach,IestimatedthatPaddlefish28690diedapproximately1monthafteritwas

tagged(onOctober27th2017at19:51:24)(Figure1).Alldetectionsfromthisfish’s

transmittersloggedafterthattimestampwereexcludedfromanalysis.

Ingeneral,paddlefishhadhigherdetectionfrequenciesthanlargemouthbass,likely

becausetheirmovementscarriedthemthroughoutthepond,increasingthelikelihoodoftheir

detectionbythereceivers.Largemouthbassrelocationstendedtobemorelocallyintensewith

verysmallareasofhigherdensity,whilepaddlefishtendedtohavemuchlargerareasofhigher

density.Furthermore,paddlefishwerelocatedmoreofteninthemiddleofthepondthan

largemouthbass,whichweremorecommonlylocatedinlittoralhabitat(Figures2,3).

Movement

Usingthefiltereddata,Ifoundthatpaddlefishmovedatanaveragerateof223.9m*hr-1

(106.1-472.8;lower-upper95%CI)overthecourseofthestudy.Thisdidnotdifferfromthat

oflargemouthbass,whichmovedatanaveragerateof171.7(69.1-426.2;lower-upper95%

CI)m*hr-1(Figure4).Intotal,Paddlefishswamdistancesrangingfrom381kmin43daysto

4,967kmin436days(Table2).Largemouthbassswamtotaldistancesrangingfrom74kmin19

daysto1,351kmin313days(Table2).

Minimumdisplacementperhour(MDPH)ofpaddlefishdifferedbetweennightversus

dayhours(P=0.0027).Theaveragelog(day-night)differencewas-0.39(-0.61–-.017;lower–

upper95%CI)forpaddlefish.Backtransformedtothenaturalscale,paddlefishmoved

approximately129.57mmoreduringnightthanday(Figure5).Incontrast,largemouthbass

meanMDPHdidnotdifferbetweendayandnight(Figure5).Aswithdisplacement,paddlefish

Page 21: Hershey Thesis v05 - Auburn University

13

minimumaverageswimmingspeed(MASS)differedsignificantlybetweendayandnight(log

(dayMASS–nightMASS)=-0.048[-0.075–-0.021;lowerandupper95%CI]P=0.0026),but

thedifferencewasnotsignificantforlargemouthbass(P=0.68).Backtransformedtothe

naturalscale,paddlefishswamapproximately6cm*s-1fasteratnightthanduringtheday.

Giventhattherewasnodifferencebetweennightversusdaymovementinlargemouth

bass,Ialsotestedforadifferenceinmovementbetweencrepuscularhours(1hourbeforeand

aftersunriseandsunset)andnon-crepuscularhours.Thet-testshowednostatistically

significantdifferenceinMDPH(P=0.52).

EMGActivity

AfterexcludingEMGtransmissionsafterthedeathofPaddlefish28690,Ifoundthat

EMGactivityvariedgreatlybothamongandwithinindividualsacrosstime.AveragescaledEMG

scoresrangedfrom0.12to0.99whilethecoefficientsofvariationrangedfrom4%to62%

(Table4).LargemouthBass28692hadanaveragescaledEMGscoreof0.99,whichisprobably

duetofaultytagelectrodeimplantation,soitwasexcludedfromtheanalysis(thedatafrom

theacoustictransmitterwereretained).

EMGactivitydidnotdifferbetweennightversusdayforeitherspecies(Figure6).Also,

LargemouthBassEMGactivitydidnotdifferbetweencrepuscularandnon-crepuscularhours

(Figure6).AlthoughpaddlefishEMGactivitywasnothigheratnightversusday–despitethe

factthattheymovedsignificantlymoreandswamsignificantlyfaster–Itestedforadirect

correlationbetweenEMGactivityandswimmingspeed.Inordertotestforarelationship

betweenEMGactivityandswimmingspeed,IstandardizedtherawEMGscorestoaZ

Page 22: Hershey Thesis v05 - Auburn University

14

distributionforeachtransmitter.Zscorerangesforeachindividualrangedfrom2.94SDto

20.42SD(Table5).

Usingapproach1tomergethedata,EMGZscoreswerepositivelyrelatedtologmean

displacementandlogspeedforpaddlefish,butnegativelyrelatedforlargemouthbass(Figure

7).Usingapproach2,EMGZscoreswerenegativelyrelatedtologmeandisplacementandlog

speedforbothspecies(Figure8).However,r2valueswerelessthan1%foreachofthe

regressionsperformed,indicatingapoorfit,andthatstatisticalsignificancewaslikelyan

artifactoftheveryhighsamplesize,andislikelynotbiologicallysignificant.Despitethese

apparentrelationshipsbetweenEMGscoreandswimmingspeed,mostofthehighEMGZ

scores(>2standarddeviations)wererecordedatlowswimmingspeeds(<1m/s)(Figure9).

Discussion

Allpaddlefishmovedconstantlyovertheentirestudyperiod,althoughtheymoved

slowerduringthedayversusatnight.Dielpatternsinpaddlefishmovementhavebeen

recordedinoneotherstudyinNavigationPool8ontheUpperMississippiRiverinWisconsin,

althoughthatstudywaslimitedtolocationsoffishevery3hroveraselectednumberofdays

acrossseasons(Zigleretal.1999).Paddlefishbehaviorhasnotbeenmeasuredatthefine

spatiotemporalscaleaswasusedinthisstudyaswellasbeingconductedinamorecontrolled

environmentsuchasasmallimpoundment.Althoughnomeasurementofzooplankton

productivityortemperatureweretaken,Iexpectthatincreasedactivityatnightwaslikelydue

todecreasedwatertemperaturecombinedwithincreasedfoodavailability.Thevertical

Page 23: Hershey Thesis v05 - Auburn University

15

migrationofzooplanktonpreyintotheupperwatercolumn(Hutchinson1967)combinedwith

coolertemperaturecouldleadtomoreefficientforagingatnightforpaddlefish.

Thepaddlefishisahighlyvagilespecies,andindividualshavebeendocumented

travelinghundredsofkilometersayearacrossvarioushabitattypes(e.g.backwaters,

reservoirs,rivers,etc.).Paddlefishmovementinbackwaterhabitatsisrelativelyunderstudied,

particularlyatfinescales,somygoalwastodocumenttheirbehaviorandcompareitto

previousfindingsinriverinesystems.Accordingtomyresults,somepaddlefishcoveredtotal

distancesofmorethan3,000kminlessthanayear.ArecentstudybyTrippetal.(2019)

showedthatthemaximumdistancetraveledbyanyof77taggedpaddlefishintheMississippi

RiverBasinoveraten-yearperiodwasonly807km.Inariverinehabitat,paddlefishcan

maintainpositioninflowandpassivelytrapfoodandabsorboxygenfromthewatermoving

throughtheirmouthsandovertheirgills.However,inapondwithoutflow,thepaddlefishmust

movetoactivelyram-ventilateandfilterwaterforfood(BurggrenandBemis1992),which

couldexplainwhytheymovedsomuchandsoofteninthisstudy.Althoughpaddlefishmaynot

becapableofthesameamountofmovementinariverineenvironmentforanumberof

reasons(i.e.,passagebarriers,flow,etc.),additionalcomparisonsofmovementinloticvs.lentic

systemsareneededtodetermineifthetruedistancethattheseanimalsarecapableof

swimmingisbeingunderestimated.

Withoutcalibratingstudyfishinarespirometer,littlecanbesaidabouttheabsolute

energeticcostsofthebehaviorsthatIobservedinthissystem(Alexandreetal2013).However,

inasmallerimpoundment,orinanimpoundmentwithlesspelagichabitat(withmorestructure

orobstructionstomovement)theconstantmovementthatpaddlefishrequiretofeedand

Page 24: Hershey Thesis v05 - Auburn University

16

ventilatecouldberestricted,whichwouldhaveconsequencesforgrowth.Ifforagingabilityis

restricted,paddlefishmaynotbeabletotakeinenoughenergytogrow,letaloneforageand

ram-ventilate.Futureworkshouldidentifythedegreetowhichventilationand/orforaging

requirementsactuallydrivehowmuchpaddlefishmove,andquantifytherelativeenergetic

costsofswimmingatvariousspeeds.Ifarelationshipexistsbetweenimpoundmentdesign

(size,depth,etc)andmovement,andthesemovementshavepredictableconsequencesfor

growth(basedonbothintakeandexpenditures),thenimpoundmentscouldbedesignedthat

optimizepaddlefishproduction,particularlyforreservoirranchingsituationsorinnatural

backwaterhabitatsalongloticsystems.Assuch,thisbehaviormaybereplicableinlentic

habitatsinthewild,wherepaddlefishmightsufferfromchangesinhabitatavailabilitythat

restricttheirmovement.

Largemouthbassmovedlessthanpaddlefish,andshowednodielorcrepuscular

patternsinbehavior.However,theiraveragescaledEMGscoreswerehigherthanthoseof

paddlefish.Previousstudieshavedescribedbothdiurnalanddielpatternsinbassactivity,as

wellasseasonalshiftsinthosepatterns(WardenandLorio1975;MesingandWicker1986;

Cookeetal.2002).Seasonalcomparisonswerenotfeasibleforfishinmystudybecause

individualsweretaggedduringdifferentseasonsandwerenotalldetectedinallseasons.

Averageswimmingspeedsoflargemouthbassdocumentedinthisstudywerelowerthanhave

beenpreviouslydocumented(Hansonetal.2007).

IexpectedtofindacorrelationbetweenEMGactivityandswimmingspeed,butno

strongcorrelationwasevidentforeitherspecies.However,asmallpositivetrendwas

statisticallysignificantforpaddlefish,whichcouldmeanthatpaddlefishareabletoswim

Page 25: Hershey Thesis v05 - Auburn University

17

relativelyquicklywithrelativelylowenergeticoutputs.Neithertheobservednorpredicted

EMGZscoresthatcorrespondedwithlongmovementsweremuchhigherthanforlower

speeds,meaningthatpaddlefishcouldtravelathigherspeedswithoutgreatlyincreasingtheir

energeticoutput.

AlthoughsmallcorrelationsbetweenEMGscoreandswimmingspeedweredetected,

mostofthehighEMGZscores(>2standarddeviations)wererecordedatlowswimming

speeds(<1m/s)(Figure9).ThiscouldbeduetothefactthattheEMGtransmittersmaybe

measuringtheoutputofburstswimmingactivityatfinetemporalscales(every3seconds),but

thesebehaviorswerenotdetectablebytheacoustictags,whichmeasurelocationevery20

seconds.Thisproblemwaslikelyexacerbatedbytheseconddata-mergingapproachwhich

aggregatedEMGandmovementoveranhourlytimescale.Otherexperimentshavealsofailed

tofindacorrelationbetweenactivityandswimmingspeed,andalsocitethedifferencein

spatiotemporalscalesasthecruxoftheproblem.Demersetal.(1999)locatedEMG–tagged

largemouthbassandsmallmouthbassMicropterusdolomieuat30-minintervalsandfoundno

correlationbetweentheiraverageswimmingspeedsandmuscleactivity.Lucasetal.(1991)

usedheartratetelemetrytostudytheactivitymetabolismofnorthernpikeEsoxluciusand

foundthatactivitymetabolismasmeasuredfromtheheartratetagswasmuchhigherthan

estimatesbasedonmeanswimmingspeed.Furthermore,theyfoundthatmostoftheactivity

metabolismwastheresultoflocalizedburstsofactivity,notlarge-scalemovements.Assuch,

measurementsofmovementwillneedtobemadeatafinescaleinordertodrawinferencesas

totheactivitymetabolismoffishes.

Page 26: Hershey Thesis v05 - Auburn University

18

Futureworkinbiotelemetryshouldprioritizemeasuringenergeticoutputand

movementatthefinestspatiotemporalscalepossible.Thiswouldallowfortheestimationof

themetaboliccostsofactivitiesthatoccuratveryfinespatialscales,whichcouldaccountfora

significantportionofafish’senergybudget,especiallyforlessmobilespecieslikethe

largemouthbass.Accordingtomyfindings,20-sectrackingintervalsmaystillnotbefine

enoughtoaccuratelydescribetheenergeticoutputoflargemouthbassorpaddlefish.

Reservoirranchersandpaddlefishaquaculturiststhatculturepaddlefishin

impoundmentsshouldremovestructureandsubmergedobstaclesfromtheirhabitatsoasto

maximizetheswimmingspaceavailable.Furthermore,managersofriverinebackwaterhabitats

whowishtoenhancepaddlefishpopulationsmayremoveobstaclesforthesamereason.

Connectivitybetweenlargeareaswithinbackwatersmaybeimportantforpaddlefishtoswim

freely,andmeetforagingandventilationrequirementsforsurvivalandgrowth.

Page 27: Hershey Thesis v05 - Auburn University

19

Table1.Transmittermodelsusedinthisstudy,withspecificationsonexpectedbatterylife,andtotalweight.Transmitter BatteryLife(Days) TransmitterTotalWeight(g)CARTMM-MC-11-45 479 16CARTMM-MC-16-50 1409 37CEMG2-R11-35 143 15CEMG2-R16-50 490 33

Page 28: Hershey Thesis v05 - Auburn University

20

Table2.Detectionsummariesforcombinedacousticandradiotransmittersafterfilteringthedata.Datesoffirstandlastdetectionsaregiven,aswellasthedurationofthetag'slife,thenumberofdetections(N),thedetectionfrequency(F)indetectionsperday,andthetotaldistancethefishtraveledoverthecourseofthestudyperiod(totaldist).*Thisistheestimateddeathdateofpaddlefish28690.**Thisfishwasexcludedfromanalysesduetotaggingmortality.

Species IDs first last duration N F(#/day)

totaldist(km)

Paddlefish ID28506 9/19/17 6/15/18 269 302356 1125 3258 ID28600 4/4/17 6/15/18 436 369568 847 3750 ID28602 4/4/17 6/15/18 436 427554 980 4967 ID28690 9/19/17 10/27/17* 39 34608 898 397 ID28996 5/2/18 6/15/18 44 21571 493 381 ID29000 5/2/18 6/15/18 44 25098 573 439Largemouth ID28692 9/18/17 6/8/18 263 25086 95 215 ID28694 7/20/17 5/30/18 314 44166 141 149 ID28696 7/20/17 5/30/18 313 160536 512 1351 ID29070 5/2/18 6/1/18 30 25605 853 144 ID29072 5/2/18 5/21/18 19 21637 1127 74 ID28684** 9/19/17 9/22/17 3 1058 401 NA

Page 29: Hershey Thesis v05 - Auburn University

21

Table3.Detectionsummariesforallcodedelectromyogramtransmittersdeployedinthestudy.Datesoffirstandlastdetectionsaregiven,aswellasthedurationofthetaglife,thenumberofdetectionslogged(N),andthedetectionfrequency(D)indetectionsperday.

EMGID FirstDetection

LastDetection

Duration(days)

N F(#/day)

Paddlefish 12 10/5/17 10/15/17 10 65579 6557.9 31 10/5/17 12/21/18 442 1928722 4363.6 59 5/2/18 12/21/18 233 433490 1860.5 60 5/2/18 12/20/18 232 279718 1205.7 62 5/2/18 12/21/18 233 632487 2714.5Largemouth 11 10/5/17 12/20/18 441 1505758 3414.4 29 10/5/17 12/20/18 441 17374 39.4 61 5/2/18 12/21/18 232 657479 2834.0 63 5/2/18 12/20/18 232 400230 1725.1

Page 30: Hershey Thesis v05 - Auburn University

22

Table4.ScaledEMGdatasummarizedbytheaveragescaledEMGscoreforeachindividual,aswellasthecoefficientofvariation.Thisfishwasrejectedfromtheanalysis.

ID species ScaledEMGmean CVID28684* largemouthbass 0.60 56.73ID28692 largemouthbass 0.99 4.61ID29070 largemouthbass 0.12 62.74ID29072 largemouthbass 0.43 27.12ID28506 paddlefish 0.21 22.81ID28600 paddlefish 0.41 26.48ID28690 paddlefish 0.27 39.11ID28996 paddlefish 0.35 31.16ID29000 paddlefish 0.28 32.94

Page 31: Hershey Thesis v05 - Auburn University

23

Table5.EMGZscoresummary.Eachindividual’saveragerawEMGscorewasconvertedto0,andallotherEMGscoresweregivenaZscorecorrespondingtothenumberofstandarddeviationsawayfromthemean(±).Therange(instandarddeviations)isgivenforeachindividual.Rangesvariedconsiderablyacrossindividuals.

ID species min max rangeID28506 paddlefish -4.38 16.03 20.42ID28600 paddlefish -3.78 5.40 9.17ID28690 paddlefish -2.56 6.95 9.51ID28996 paddlefish -3.21 5.97 9.18ID29000 paddlefish -3.04 7.64 10.68ID28684 largemouth

bass-1.76 1.18 2.94

ID29070 largemouthbass

-1.59 11.26 12.85

ID29072 largemouthbass

-3.69 4.89 8.58

Page 32: Hershey Thesis v05 - Auburn University

24

Figure1.CumulativedistancetraveledovertimeforPaddlefish28690.Theverticalblacklinedelineatesthebreakpointinthepiecewiseregression,andthedatethatthisfishwasassumedtohavedied.Allpointstotherightofthelinewereremovedfromanalysis.

Page 33: Hershey Thesis v05 - Auburn University

25

Figure2.Kerneldensityplotsfortherecordedpositionsofeachpaddlefishovertheentirestudyperiod.BandwidthfordensityestimationwasselectedusingDigglecrossvalidation.Thewhitelinedenotesthepondboundary.Notethatthecolorscalediffersacrossplots,withwarmercolorsdenotingincreaseddensity.

Page 34: Hershey Thesis v05 - Auburn University

26

Figure3.Kerneldensityplotsfortherecordedpositionsofeachlargemouthbassovertheentirestudyperiod.Numberofdetectionsforeachindividualaregiveninthepaneltitles.Thewhitelinedenotesthepondboundary.Notethecolorscalediffersacrossplots,withwarmercolorsdenotingincreasingdensity.

Page 35: Hershey Thesis v05 - Auburn University

27

Figure4.Box-and-whiskerplot(box=median±25%quartiles,whisker=dataextremes)showingthevariationinaverageminimumdisplacementperhourfortaggedindividualsofbothspecies.

Page 36: Hershey Thesis v05 - Auburn University

28

Figure5.BoxandwhiskerplotsshowingthedifferenceinlogMDPH(above)andlogMinimumAverageSwimmingSpeed(MASS)(below)betweennightanddaytimehoursforbothspecies.Replicatesaretheaverageforeachindividual.BoxesandwhiskersrepresentthesamemetricsasinFigure4.

log(MAS

S)

log(MDP

H)

Page 37: Hershey Thesis v05 - Auburn University

29

EMGScore(scaled)

Figure6.BoxandwhiskerplotsshowingthelackofdifferencesinEMGscoresbetweennightanddayhours(above)andcrepuscular/non-crepuscularhours(belowforlargemouthbassonly).BoxesandwhiskersrepresentthesamemetricsasinFigure4,exceptthatonly3largemouthbasswereusedintheanalysis,sotheboxesencapsulateboththe25%quartilesandtheextremesofthedata.

EMGScore(scaled)

Page 38: Hershey Thesis v05 - Auburn University

30

Figure7.UsingthemergeddatafromApproach1,theuppertwopanelsshowtherelationshipbetweenEMGZscoreandaverageswimmingspeedmeasuredoverthesametimeintervals.ThelowerpanelsshowEMGZscoreagainstdisplacement.Bothindependentvariableswerelogtransformedwiththeminimummeasurementaddedtoavoidlogtransformingzerovalues.Theredlinesaretheslopesofthecorrelations.

Page 39: Hershey Thesis v05 - Auburn University

31

Figure8ThesamefigureasFigure7,butusingApproach2withthehourlyaggregatedapproach,insteadofthefine-scaleapproachtomergetheEMGandmovementdata.

Page 40: Hershey Thesis v05 - Auburn University

32

Figure9.EMGZscoreplottedagainstswimmingspeed.MostoftheZscoresover2standarddeviationscorrespondedtotimeperiodsinwhichanimalswereswimmingatrelativelylowspeeds.Thiscouldbebecausethefishes’movementswereunderestimatedforthoseperiods,orbecausetheyhadstrongmusclecontractionswithoutmovingquickly.

Page 41: Hershey Thesis v05 - Auburn University

33

Chapter3:Quantifyingtheactivityandhematologyofpaddlefishandsmallmouthbuffaloina

fishpassagescenario.

Introduction

Damshavecauseddeclinesinfishpopulationsbyalteringanddestroyingimportant

habitat,isolatingpopulations,andblockingmigrations(BunnandArthington2002;Braatenet

al.2015).Inordertomitigateeffectsofisolatingpopulationsorblockingspawningmigrations,

fishby-passstructureshavebeendesignedandinstalled(e.g.,ladders,slottedspillways)that

allowfishtoswimpastthesebarriers.Theabilityofmigratoryfishtopassdamsviathese

structureshasbeenwellstudied,andnumerousstudieshaveindicatedastrongpositive

relationshipbetweenfishswimmingperformanceandpassagesuccessatthesemitigation

structures(Jonesetal.1974;Peakeetal.1997;Haroetal.2004;Brownetal.2006;Ponetal.

2009b;Noonanetal.2011).However,mostofthispreviousworkhasbeenconductedatdams

thatcannotbeinundated,andrelativelylittleresearchhasbeenconductedonfishpassageat

low-headdams,whichallowfishtopassundercertainflowconditionswithoutadditional

mitigationstructures.

Afterheavyrains,low-headdamscanbecomeinundated,andinadditiontoswimming

throughtheopenedspillwaygates,fishcansometimesswimoverthetopofthespillway,

dependingontherelativeupstreamanddownstreamwaterlevels.Thetailraceareasbelowa

damcanrepresenthydraulicallyhostileenvironmentsforfish,withhighwatervelocitiesand

turbulencethatmaymakeitdifficulttoholdpositionornavigateupstream.Littleisknown

abouttherelativeeffortrequiredtosuccessfullypasslow-headdams,thephysiologicaleffects

Page 42: Hershey Thesis v05 - Auburn University

34

ofmovingthroughtailraces,ortherelativeabilitiesofdifferentfishspeciestonavigatethis

environment.

Moststudiesontheenergeticoutputrequiredforfishpassagehavebeenusedto

informthedesignofartificialfishwaysforlargedams(e.g.,Peakeetal.1997;Ponetal.2009b;

Cocherelletal.2011;Alexandreetal.2013;Burnettetal.2014).However,suchresearchhas

generallynotbeenappliedtolow-headdams,perhapsbecausetheexactpathwaysthatfish

mightusetomovethrough/overthemarenotaswellunderstood,sosimulatingpassage

conditionsinthelabremainschallenging.Therefore,insteadofsimulatingconditions,studiesof

fishpassageatlow-headdamshaveusedfieldtechniquessuchastelemetrytostudythe

animalsinsitu(Linniketal.1998;BeasleyandHightower2000;Zigleretal.2004;Butlerand

Wahl2010).Whiletechniquessuchasradiotelemetry,acoustictelemetry,andultrasonic

telemetryhaveallbeenusedtotrackfishmovementsaroundandpastlow-headdam

structures,otherpowerfulbiotelemetrytechniquesexistthatremainrelativelyunused.

Apopularbiotelemetrytoolthathasbeenusedtoestimateenergeticcostsoffish

passageatlargehydroelectricdamsiselectromyogram(EMG)telemetry.Electrodesmeasure

thebioelectricvoltageofaxialmuscletissuecontractions,andthetagthenbroadcaststhose

dataviaradiofrequency.Whenthese“muscleactivity”valuesarecalibratedwithmetabolic

rateorswimmingspeed,theenergeticcostsofactivitycanbeestimatedfortaggedfishinthe

field(Oklandetal.1997;Geistetal.2003;Almeidaetal.2007).Whenuncalibrated,these

valuescanbeusedasascaledindexofrelativeactivity(Alexandreetal.2013).Severalstudies

haveusedEMGtagstoquantifytheenergeticcostsofpassagethroughfishwaysorother

velocitybarriers.HinchandBratty(2002)foundthatsockeyesalmonOncorhynchusnerkathat

Page 43: Hershey Thesis v05 - Auburn University

35

successfullypassedareachoftheFraserRiverinBritishColumbiathatisnotoriousforimpeding

migrationhadslowerswimspeedsandshorterresidencetimesthanthosethatdidnotpass

successfully.Ponetal.(2009b)foundthatEMGtelemeteredsockeyesalmonthatsuccessfully

passedafishwayexhibitedavarietyofbehaviors(e.g.,burst-coastswimming,andsteady

swimming)andquantifiedtheenergeticcostofthesebehaviorsusinganequationdescribedin

Healeyetal.(2003).Alexandreetal.(2013)usedEMGtelemetrytodeterminewhenburst

swimmingwasrequiredforIberianbarbelLuciobarbusbocageitopassapool-typefishway.And

Quintellaetal.(2004)quantifiedthenumberofswimmingburstsrequiredforsealamprey

PetromyzonmarinustopassspecificbarriersintheRiverMondegoinPortugal.Thetechniques

usedinthesestudiescouldalsobeextendedtostudiesonpassageinvolvinglow-headdams.

Acoustictelemetryisacommontoolusedtoquantifyfishmovementandbehavior,and

itsuseisincreasingduetoitsdiverseapplicabilitytofisheriesquestions(Crossinetal.2017).

Positionalacoustictelemetry(redundantlylocatingfishandtriangulatingtheirpositionsintwo

dimensions,c.f.,documentingpresence/absenceatasinglesite)isapowerfulapplicationofthe

technology,butithasrarelybeenusedtoestimatefine-scalebehavioralpatternsoractivity

levelsoffishastheyapproachandpossiblypassdams.Thisisprobablyduetotheextreme

challengesposedbyinstallingandmaintaininganarrayofreceiversinthehydraulic

environmentthatexistsinthetailraceofadam.Inthischapter,Idescribethesecondand

largesteverimplementationofsuchanarray(seealsoSuzukietal.2016),andhowIusedthe

datatolocatefishandestimatetheiractivityratesbeforeandduringpassage.

IntheAlabamaRiver,thelowermostdamisarelativelylargelow-headdamatwhich

fishpassagehasbeendocumentedforseveralspecies(Metteeetal.2006;Simcoxetal.2015).

Page 44: Hershey Thesis v05 - Auburn University

36

HereIstudiedthebehaviorandactivityofbothAmericanpaddlefishPolyodonspathula,and

smallmouthbuffaloIctiobusbubalusastheyapproachedandpassedthislow-headdamusinga

combinationofredundantacousticandelectromyogramtelemetry.Irelatedmeasuresoffish

movementandmuscleactivitytothehydraulicfactorsthatmaycontributeorberelatedto

passagesuccessatthedam,andIalsoperformedhematologicalassaysonthesespeciesto

quantifycorrelatesofstressandrespiration(i.e.,fishphysiologicalstates).

StudySite:

ClaiborneLockandDamisthelowermostimpoundmentintheAlabamaRiverBasin,and

thusthefirstbarrierencounteredbymigratingfish.Itwasconstructedinthe1970sforflood

control,navigation,andrecreation,butisrelativelylesstraffickedcomparedtolow-headdams

intheMississippiRiver.With6gatedspillwaysanda100mwidecrestedspillway,waterflows

throughthetailraceconstantly,withriverlevelsdependingonreleasesfromimpoundments

upstream.Duringtherainyseason,DecemberthroughApril,thedamcanbecomeinundated,

withwaterreachingalmost7.6movertheheadofthedam.Lockuseissporadic,and

infrequent,withmosttrafficbeingrecreationalboatersandsomecommercialbarges.Aflow

attractanthasbeenusedinthepasttotrytoencourageupstreampassageoffishthroughthe

lockchamber.

Methods:

FishtaggingbeganinJanuary2017andcontinuedthroughFebruary2019.Intotal,330

combinedacousticandradiotransmitters(CART)weredeployedoverthecourseofthestudy,

Page 45: Hershey Thesis v05 - Auburn University

37

165ofwhichwereimplantedinadultpaddlefish,and165inadultsmallmouthbuffalo(SBF).Of

thoseCART-taggedfish,89paddlefishand92SBFwerealsoimplantedwithcoded

electromyogramtransmitters(CEMG).Bothspecieswerecapturedwithlarge-mesh(150-200

mmstretch)multi-filamentgillnetsduringOctoberthroughApril,allowinga4-weekgapfora

commercialfishingseasoninFebruaryintwoconsecutiveyears.Aftercapture,fishwere

sedatedwithMS-222orCO2(forpaddlefishcapturedwithin21daysofthestartofthe

commercialfishinggiventhatMS-222wouldmakethemunsafeforconsumption(Trushenskiet

al.2013).

Aftersedation,surgicaltoolsthathadbeensterilizedin2%chlorohexidinegluconate

solutionandrinsedwithdistilledwaterwereusedtomakea2-3cmincisionintheleftventral

sideofthefish,approximately6cmanteriortothepelvicfinbase,throughwhichIinserteda

CEMGtagand/oraCARTtag.Totaltagburdenneverexceededtherecommended2%ofthe

fish’swetweight.Onceinserted,thetagantennawaspassedthroughaseparateholemade

witha14-gaugeneedle1cmanteriortotheincision.CEMGtransmitterelectrodeswere

insertedapproximately1cmapartinthelateralmuscleofthefishatapproximately70%ofthe

individual’sstandardlengthwitha14-gaugeneedleandplunger.Incisionswereclosedwith

simpleinterruptedPDSIIsuturesandgluedwithveterinary-gradeliquidsurgicaladhesive(3M

Vetbond).Finally,taggedfishwereimplantedwithauniquelynumberedexternalanchortagon

therightventralsideforexternalidentificationincaseofrecapture.Immediatelyfollowing

surgery,fishwereheldinarecoverytankuntilequilibriumwasregained,afterwhichfishwere

releasedwitharecordedGPSpointandtimestamp.mostwereinthetailraceofClaiborneLock

andDam.

Page 46: Hershey Thesis v05 - Auburn University

38

Anarrayof17submersibleacousticreceivers(LOTEKWirelessModelWHS3250L)

wasinstalledinthetailraceinDecember2018,usingreinforcedconcreteparkingbumper

moorings,galvanizedsteelcable,andacousticreleaseswithbuoys.Receiverswereplacedclose

enoughtoredundantlydetecttagsfortriangulationbytheUMAPsoftwarefromLOTEK

Wireless.Datafromthereceiversweredownloadedandmooringsmaintainedasregularlyas

possiblewhenconditionsweresafe,butduetoextremelywetseasonsretrievingthereceivers

wasnotalwayspossiblebeforetheirbatteriesdied.Also,2receiverswerelostinextremely

highwaters.Therefore,severaldetectiongapsoccurredoverthecourseofthestudy.

Inadditiontotheacousticreceivers,anarrayof5stationaryYagiantennasand2radio

receivers(LOTEKWirelessSRX800)wereinstalledonthecatwalkofthedam.Eachantennawas

positionedtocoveranadjacentpie-shapedarea,coveringintotala300mradius360degrees

aroundthedam.TransmissionsfromboththeCEMGandCARTtagsweredetectedbythe

antennaeandrecordedbyindependentreceiversforthedurationofthestudy.EMGtag

transmissionswerethenscaledusingtwomethods.Theywere(1)convertedtothepercentof

eachindividual’smaximumEMGscore,and(2)standardizedtothemeanforeachindividual

(i.e.,convertedtoZscoresforeachindividual).ScaledEMGscoresandEMG-Zscoreswereboth

usedintheanalysesofspatialandtemporalactivitypatterns.

Post-processingoftheacousticpositionaldatawasminimal.Becauseoftheturbulent

environment,andthenoisecreatedbyflowingwater,ahigherthresholdofdilutionofprecision

(DOP)wasusedtofilterthedata.DOPisaratioofthereceivers’measurementprecisiontothe

errorinthegeometryofthearray.TriangulatedpositionswithahighDOParerelatively

imprecise.ValuesofDOPcloseto1areconsideredexcellent,whilevaluescloserto10areonly

Page 47: Hershey Thesis v05 - Auburn University

39

moderate.PositionsinthisstudywerefiltereddowntoaDOPof8,whichishigherthanwould

betypicallyusedinanoiselesssystem,butstillmoderatelyprecisegiventhe“noisy’system,

andclippedtotheboundaryoftheriver’sedgeatmaximumfloodstage.

Hematology

DuringOctober2017throughMarch2019,bloodsampleswerecollectedfromfield-

caughtfishfromthreehabitattypes:insidetheClaibornelock,inthetailrace,and>1km

downstreamofthedam,toassesslevelsofstressindicatorsandrespiratorybyproducts.Fish

werecapturedusingthesamemultifilamentgillnetsandhandlingtimewasmeasuredfromthe

timethenetenteredthewateruntilthetimebloodwassampledfromthefish(Hoxmeierand

DeVries1997).Handlingtimeneverexceeded40min,andaveraged16±0.7min.Oncea

capturedfishwasonboardtheboat,4mLofwholebloodwasdrawnfromthecaudal

vasculaturewitha17-gaugeneedleandsyringe(Bartonetal.1998),andcollectedintoeachof

twotubestreatedwith:1)heparintostopclotting,and2)sodiumfluoridetostop

gluconeogenesis(Dumanetal.2019).Hematocritwasmeasuredasapercentageofpackedcell

volume(Bartonetal.1998)usingaHematastatcentrifuge.Pairsofwholebloodsampleswere

centrifugedfor5min,afterwhichplasmawasseparatedandstoredinpairsof2mLcryotubes

ondryiceinapolystyrenecooler(Dumanetal.2019).Whilethebloodwasbeingpreserved,

labelledandprocessed,thefishwasmeasured,weighed,andpromptlyreleased,minimizingair

exposurepost-sampling.

Afterreturningtothelab,plasmasampleswerestoredat-80°Cuntiltheycouldbe

analyzedforasuiteofbiochemicals.Cortisolconcentrationwasdeterminedbyanenxyme-

linkedimmunoassayaccordingtotheanalyticalkitmanufacturer’sinstructions(DRG,

Page 48: Hershey Thesis v05 - Auburn University

40

Springfield,NJ).Serumsampleswere10µLandtheloweststandardincludedinthestandard

curvewas5ng/mL.TheaverageR2ofthestandardcurvesinthefourrunswas.96anda

commonsampleanalyzedineachoftherunshadacoefficientofvariationof2.5%.Plasma

glucosewasdeterminedon10µLsamplesusingtheglucoseoxidaseendpointassayaccording

totheinstructionsprovidedbytheanalyticalkitmanufacturer(PointeScientific,Canton,MI).

Recoveryofstandardadditionsofglucosetofishplasmaaveraged99.9%bythismethod.

Plasmalactatewasalsodeterminedon10µLsamplesusingthelactateoxidaseendpointassay

accordingtotheinstructionsfromPointeScientific.Lactatestandardwasrecoveredat101%on

averagewhenaddedtofishplasma.Finally,osmolalitywasmeasuredwiththeVapro®5600

vaporpressureosmometer(Wescor®,Logan,UT).

DataAnalysis

Locationsonanx-ycoordinateaxiswereusedtocalculateminimumdisplacementper

hour(MDPH)foreachindividualoverthecourseofthestudy.Trackswereexcludedwhenmore

than1hrelapsedbetweenpositions.Minimumaverageswimspeed(MASS)couldnotbe

accuratelyestimatedasitwasinthesmallimpoundment(seeChapter2methods)becauseof

theconfoundingeffectofwatervelocity;theEuclideandistanceafishtraveleddividedbythe

timeittooktotravelwouldnotberepresentativeoftheactualeffortoftravelingthatdistance

becausethefish’sover-groundspeeddoesnotfactorinthevelocityofthewaterflowingover

theirbody.ScaledEMGscoresandMDPHwerecomparedbetweennightanddaytimehoursfor

bothspeciesusingpairedt-tests.Then,EMGscoreswerestandardizedtotheZdistribution(see

methodinChapter2)andcomparedtogageheightoverthewholestudyperiod.Ialso

comparedEMG-Zscoresbetweenpassageandpre-passagetimeperiods–passageperiods

Page 49: Hershey Thesis v05 - Auburn University

41

weredefinedastheintervalbetweenthelasttimeafishwasdetecteddownstreamofthedam,

andthefirsttimeitwasdetectedupstreambyanyreceiver.Anewmergingtechniquewasused

todeterminewhethertherewerespatialpatternsinEMGactivityinthetailrace.EMG-Zscores

foreachindividualwereassignedtothepositionsthatwererecordednearestintime,and

mappedtoshowareasofincreasedswimmingeffortorburstswimming.Finally,IusedANOVA

andTukeypairwisecomparisonstocomparethelevelsofmeasuredbloodparametersbetween

speciesandthreehabitatsthatweresampled.

Results:

DetectionSummary

DuringMay2017throughJanuary2019,88taggedfishweredetectedupstreamof

ClaiborneLockandDam,afterbeingdetectedinthetailrace,indicatingsuccessfulpassage.The

averagegageheightduringthepassageperiodsforpaddlefishwas37.57ft,whichwas1.53ft

higher(0.51–2.55;lower–upper95%CI)thantheaverageforpassingsmallmouthbuffalo

(P=0.0038).

Intotal,Iwasabletotriangulate46,856positionswiththeacousticarraydetections

duringJanuarythroughAugust2018.Atotalof35paddlefishand22smallmouthbuffalowere

trackedinthearray,withsomefishbeinglocatedonlyonetime,uptoasmanyas10,000times.

NofishweretrackedinJunebecausethereceiverbatteriesdiedsometimeinlateMay.

ReceiverswereretrievedandbatteriesreplacedonJuly1st,whenriverlevelsweresafeenough

towork(Table6).

Page 50: Hershey Thesis v05 - Auburn University

42

Ofthe57fishthatweretrackedinthetailrace,17passedthedamin2018(11

paddlefishand6smallmouthbuffalo).Ofthosefish,mostweredetectedbyareceiver

upstreamofthedaminAprilorMayof2018.Someofthosefishweredetectedinthetailrace

justhourspriortoshowingupontheupstreamreceiver,whileotherstooklongertomaketheir

wayupstream(Table7).

Movement

LogMDPHdidnotdifferbetweenspecies,orbetweenfishthatpassedthedamand

thosethatdidnot.Onaverage,paddlefishmovedatarateof252.12(218.11–291.49;lower–

upper95%CI)m*hr-1.smallmouthbuffalomovedatarateof242.26(181.82–322.79;lower–

upper95%CI)m*hr-1.Interestingly,estimatesoflogMDPHforpaddlefishwerenearlyidentical

toestimatesfromthepondstudyinChapter2(223.9m*h-1).Becausetheseestimatesreflect

displacementovergroundperhour,theydonotreflectthenetswimmingspeedofthe

individual,giventhatweareunabletomeasurewatervelocityinthetailrace.Furthermore,the

directionofflowisspatiallyvariablewithinthetailracesowhetherwaterflowopposedfish

movementatanygivenpointisimpossibletotellwithoutverydetailedhydrodynamic

modeling.

InordertocompareMDPHtogageheight,Itooktheminimumdisplacementofeach

fishduringanhourofthestudyandplottedthosevaluesagainstthegageheightduringthe

correspondinghour.Ifoundthatathighergageheights,fishcoveredlessdistance(Figure10).

Becausetherewasnosignificantdifferencebetweenpaddlefishandbuffaloactivityrates,both

speciesareaggregatedinFigure10toseetherelationshipbetweenMDPHandgageheight.

EMGActivity

Page 51: Hershey Thesis v05 - Auburn University

43

Althoughtheacousticarraywasonlyabletotriangulatepositionsfor57uniquetagIDs

in2018,theradioarrayonthedamloggedEMGtransmissionsfrom180uniquetags,89

paddlefishand91SBF.TheaveragescaledEMGscoreforSBFwas11.7percentagepoints

(11.66–11.78;lower–upper95%CI)higherthanforpaddlefish(P<0.001).OftheEMG-tagged

fishdetectedbytheradioarrayinthetailrace,54paddlefishand34SBFwerealsodetected

upstreamofthedambyacousticreceiversatsomepointbetweenDecember2017to

December2018.Usingthescaled(notstandardized)EMGscores,Ifoundthattheactivityrate

ofpaddlefishthatpassedthedamwas7.96percentagepointslower(7.85–8.07;lower–upper

95%CI)thanfishthatwereneverdetectedupstream(P<2.2e-16).Smallmouthbuffaloshowed

theoppositerelationship,wherefishthatpassedthedamhadanaveragescaledEMGscore

thatwas12.10percentagepointshigher(11.98–12.22;lower–upper95%CI)thanthatoffish

thatwereneverdetectedupstream.Downstreamactivityratesreflecttheaveragesinthe

tailraceduringstaging,notduringpassage.

UsingtheZ-scorestandardizedEMGscores,IexaminedtheEMGdataintermsofabove

andbelowaverageactivitytoseewhetheractivitywashigherduringpassagethanstaging.Of

thetaggedfishthatpassed,only22(12paddlefishand10smallmouthbuffalo)loggedEMG

transmissionsduringtheirpassagewindows.ThemeanZscoreforpaddlefishEMGactivity

duringpassagewas0.017SDaboveaverage,whilethemeanforsmallmouthbuffalowas-0.16

SDbelowaverage(Figure11).

SpatialAnalysis

AlthoughEMGsignalscannotbetriangulated,allfishwithEMGtransmitterswerealso

taggedwithCARTtransmitters.Someofthesedouble-taggedfishweredetectedbythe

Page 52: Hershey Thesis v05 - Auburn University

44

acousticarray,andpositionsweretriangulatedwhiletheEMGtransmissionsweremeasured

simultaneouslybytheradioarrayonthedam.Giventhis,IwasabletoassociatesomeEMG

scoreswithspatiallocations.TriangulatedpositionsforeachfishwereassignedanEMGscore

thatwasdetectedbytheradioarrayattheclosesttimestamp.Intotal,17,241positionsand

EMG-Zscoresweremapped.TovisualizethespatialdistributionoftheEMG-Zscores,I

rasterizedthedata,averagingtheEMG-Zscoresineachofthe5,000gridcellsintowhichI

dividedthestudyarea.RelativeEMGactivitywasspatiallyvariable.Therewerenolargeareas

foreitherspecieswhereEMGactivitywasparticularlyhighorlow.Mostcellsintherasterhad

EMG-Zscoresthatwerewithin0.5SDofaverage.The“hottest”areasforpaddlefishwereinthe

westernpartofthecrestedspillwaypoolwherethedirectionofflowisactuallyupstream,and

acrossthewidthoftheriverdownstreamofthelockwall(Figure12).

Hematology

Plasmawassampledfrom81paddlefishand29smallmouthbuffaloatthreelocations

downstreamofClaiborneLockandDam.Duetounsaferiverconditions,anddifferencesinthe

seasonaldistributionoffishintheriver,fishcouldnotbesampledatalllocationsacrossall

seasons.Isampled25paddlefishand29smallmouthbuffalointhetailrace<1kmdownstream

ofthedam(Table8).Allweretakenwithintherangeofdetectionbythearray.Also,Isampled

28paddlefishinsidethenavigationallock,and28paddlefish>1kmdownstreamofthedamin

backwaterpoolsbehindjettiesanddykes.PaddlefishweresampledduringNovember2017

throughApril2018,whilesmallmouthbuffaloweresampledduringFebruary2019through

March2019(Table9).

Page 53: Hershey Thesis v05 - Auburn University

45

Forpaddlefish,levelsofglucoseandlactateweresignificantlylowerinsamplingareas

downstreamofthedamthaninsidethelockorinthetailrace(P<0.001,DF=2)(Figure13).

Cortisolandosmolalityweresignificantlylowerdownstreamthaninthetailrace(P=0.027,P<

0.001respectively,DF=2).TherewerenodifferencesinHematocritlevelsamongsampling

areas(Figure13).Averageconcentrationsofplasmalactateandglucosedidnotdifferbetween

paddlefishandsmallmouthbuffalo.However,averageosmolalityandhematocritwere

significantlylowerthaninsmallmouthbuffalo.Cortisolwasbelowdetectablelevels(###ng/mL)

insmallmouthbuffaloplasmasamples(Table10).

Therewasasignificantincreaseof0.076units(±0.043|95%CI)oflactatewitheach

additionalminuteofhandlingtimeinpaddlefish(P=0.000834).Therewasalsoamarginally

significanteffectofhandlingtimeoncortisolconcentrations,wherecortisolincreased4.18

units(±4.18|95%CI)perminuteofhandlingtime(P=0.053).Insmallmouthbuffalo,handling

timeonlyaffectedplasmaglucose.Glucoseconcentrationsrose0.98units(±0.61|95%CI)

witheachadditionalminuteofhandlingtime(P=0.00383)(Figure14).

Discussion:

Movement

Interestingly,despitebeinginacompletelydifferentenvironment,paddlefishmovedin

thetailraceatalmosttheexactsamerateastheydidinthesmallimpoundmentfromChapter

2.Previouslydocumentedestimatesofpaddlefishmovementatthehourlytimescalearealso

similartotheonesrecordedinthisstudy.Zigleretal.(1999)estimatedthatpaddlefish0.6to

1.2meye-fork-lengthswambetween150andabout450eye-fork-lengthsperhourin

Page 54: Hershey Thesis v05 - Auburn University

46

NavigationPool8oftheUpperMississippiRiverdependingontheseasonandtimeofday.

Theseestimatesarelikelyconservativebecausetheyhaddifficultylocatingthestudyfishmore

thanonceperhour.Incontrast,wewereabletolocatesomefishthousandsoftimesinan

hour.However,ourfishwerenotdetectedinthetailraceyear-round,becausewewere

passivelytrackingthefishwithacousticreceiversthatwereonlyfunctional/retrievableduring

narrowtimewindowsduringwinterandspring2018.

Inpreviousstudiesoffishpassage,fishmigrationshavebeendelayedconsiderablyby

theirinabilitytofindpassageways,althoughthesepassagewaysareoftennarrowgatestofish

ladders,lifts,orslottedspillways(Burnettetal.2013,Izzoetal.2016).Furthermore,Caudillet

al.(2007)foundaninverserelationshipbetweenthetimeittooksalmonidstomigratepast

ColumbiaRiverdamsandthelikelihoodofsuccessfullyreachingspawninggrounds.Fishstaging

indownstreamareaspreparingforpassagetendtomovethroughoutthetailraceenvironment

searchingforpassageways,whichiswhyattractionflowshaveincreasedpassagesuccessat

numerousfishpassagestructures(Buntetal1999,2012).However,ifthemovementsthatI

observedinthetailraceofClaiborneLockandDamareduetosearchingbehavior,thenitwas

certainlynotimportantforpassageofourtargetspecies.Wefoundthatfishmovementwas

highestatagageheightofabout10.7m,whichcouldbetheoptimalheightforpassage.

However,neitherpaddlefishnorsmallmouthbuffalothatpassedthedammovedmoreinthe

tailracethanthosethatdidnot.So,ifmovementinthetailraceisnotanimportantpredictorfor

passageatClaiborneLockandDam,thenwhatis?

EMGActivity

Page 55: Hershey Thesis v05 - Auburn University

47

TherelationshipbetweenEMGactivitylevelsandpassagesuccessiscomplicatedinthe

literature.HinchandBratty(2000)reportedthat“hyperactivity”wasinverselycorrelatedwith

passagesuccess,wherefishthatswamtoofastfortoolongbecameexhaustedanddied

downstreamofanareaofdifficultpassage.Ponetal.(2009)showedthatEMGactivitydidnot

differbetweenfishthatpassedordidnotpassaslottedfishwayintheSetonRiver,British

Columbia.Brownetal.(2006)foundthat82%ofEMGtaggedChinooksalmonsuccessfully

passedtheBonnevilleDamfishways,andthatswimspeeds(asmeasuredbyEMGtelemetry)

werehigherinthetailracethaninthefishways,butdidnotshowaneffectofaverageswim

speedonindividualpassagesuccess.Incontrast,Gowansetal.(2003)showedthatthreeEMG

taggedAtlanticsalmonhadelevatedEMGsignalsduringfishwaypassageversuswhilestagingin

thetailrace.Inourstudy,paddlefishthatpassedthedamhadlowerEMGactivitylevelsinthe

tailracethanfishthatdidnotpass,andthoseindividualsincreasedtheiractivityaboveaverage

levelsduringactualpassage.Incontrast,smallmouthbuffalothatpassedthedamhadhigher

activitylevelsduringstaging,butsomehowdecreasedtheiractivityduringpassage.These

differencesinswimmingbehaviorsmaybeexplainedbyspeciesspecificdifferencesin

swimmingperformance.

Althoughnopublishedstudiesofpaddlefishswimmingperformanceexist,smallmouth

buffalohavebeenshowntohaveincreasedswimmingperformanceinwinterandspring

months,aswellashigherswimmingefficiency(AdamsandParson1998).Eithersmallmouth

buffaloareusingadifferentpassagewaythanpaddlefish,ortheirswimmingperformanceand

efficiencyaresohighthattheyareabletopassthedamwithoutexertingthemselves.Future

Page 56: Hershey Thesis v05 - Auburn University

48

workshouldprioritizequantifyingpassagebehaviorofthesetwospecieswithanothertypeof

activitytransmitterthatdoesnotrequirecalibration.

Becausethespeciesusedinthisstudyarelargefishes,andIhadtouseadultsofmature

sizetoensuretheywouldattempttopassthedam,Iwasunabletocalibrateeachindividual

fish’sEMGtransmitterwiththeirswimmingspeedasisrecommendedbymanystudies(Okland

etal.1997,Thorstadetal.2000,Brownetal.2006,Almeidaetal.2007,Lemboetal.2008,

Quintellaetal.2009).Therefore,Iamunabletomakeclaimsabouttheabsoluteenergeticcosts

ofthebehaviorsIobservedinthisstudy.However,theZ-scorestandardizationtechniqueIused

allowedmetoquantifyeachindividualfish’sactivityscoresintermsoftheiraverageindividual

activity.Thestudiesnotedabovethatusedcalibratedtagshaveshownstrongpositive

correlationsbetweenEMGactivityandswimmingspeed,andthatveryhighEMGscoresare

oftenindicativeofenergeticallycostlybehaviorslikeburstswimming.Therefore,Iamfairly

confidentthatthesestandardizedscoresarerepresentativeofrelativeswimmingeffort.

SpatialAnalysis

Thisstudymarksthefirsttimethatinstantaneousactivityratesoffisheshavebeen

mappedatsuchafinespatialscale.EMGtagstransmittheirdataviaradiofrequencysothey

arenoteasytopreciselylocate(c.f.acoustictransmitters).ComparisonsinEMGactivity

betweenfishusingdifferenthabitatsorstructuresofadamhavebeenmadebefore(e.g.,

Brownetal.2006),butnostudyhaseverbeenabletomaprelativeswimmingeffortintwo

dimensions.BecauseIdouble-taggedtheEMGtaggedfish,Iwasabletoassociateeachfish’s

EMGscoreswithtwo-dimensionalpositionsandcreateamosaicofrelativeswimmingeffort.

AlthoughtheEMGdatagatheredarecertainlynotperfectrepresentationsofenergyuse,I

Page 57: Hershey Thesis v05 - Auburn University

49

believethatsuchatechniquecanbeappliedinthefuturetoidentifyareasofhighenergyuse,

andareaswheremitigationstructuresmightproviderefugeorpotentiallyenhancepassage

successofmigratingfishes.Thesecouldrepresentareaswithparticularlychallenginghydraulic

conditions,wherefishareexertingthemselvesathigherthanaverageswimmingspeeds.

Hematology

Thisstudyisthefirsttimeplasmahasbeensampledandanalyzedfromsmallmouth

buffaloandthesecondtimefrompaddlefishintheMobileRiverBasin.DavisandParker(1986)

collectedadultpaddlefishinthetailracesofMillersFerryandJonesBluffdamsontheAlabama

Riverandsampledbloodimmediatelyaftercaptureviaelectrofishing,andagainafter2-3hours

oftransportinahaulingtank.Theydocumentedanincreaseincortisolfrom11±1.9ng/mLto

72±12.5ng/mL.SuchanincreasewasalsoobservedbyBartonetal.(1998),whoexposed

juvenilehatchery-raisedpaddlefish(ofMissouriRiverorigin)to6hrsof“severeconfinement

withhandling”inalab.Theyfoundthatcortisolincreasedfrom6.2±1.6ng/mLto74±

6.3ng/mL.Inmywork,Imeasuredcortisollevelsupto384ng/mLwhichisanorderof

magnitudehigherthantheconcentrationsfoundpreviouslyinextremelystressedpaddlefish.

Furthermore,theaverage(178±13.8ng/mL)ofthefishIsampledwastwoordersof

magnitudegreaterthantheunstressedconcentrationspreviouslydocumented.Incontrast,the

glucose,lactate,andhematocritlevelsmeasuredinthisstudywereallwithintheranges

reportedinBartonetal.1998.

Theabnormallyhighcortisollevelsobservedinthepaddlefishsampledinthisstudy

couldbeduetoanumberoffactors.Handlingstresscanberuledoutbecauseeventhe

interceptofthecortisolvs.handlingtimeregressionwasover100ng/mL.Oneexplanationis

Page 58: Hershey Thesis v05 - Auburn University

50

thatthefishwithelevatedcortisollevelswerecapturedduringtheirspawningmigration,and

thatcortisolwaselevatedtoupregulategluconeogenesistofueltheincreasedmetabolic

requirementsofmigration(Carruthetal.2000,Barton2002,Birnie-Gauvinetal.2019).In

addition,paddlefishwithelevatedcortisollevelsmayhavebeenswimmingatexhaustive

speedsbeforetheywerecaptured.ZelnikandGoldspink(1981)showedthatcortisollevels

increasedduringperiodsofexerciseinlaboratoryswimmingexperimentsonrainbowtrout

Oncorhynchusmykiss.Futureworkshouldprioritizemeasuringtheswimmingperformanceand

physiologicalcorrelatesofpassagesuccessinadultpaddlefish,perhapsinacontrolled

laboratorysetting.

Therearenopublishedrangesofthemeasuredbloodparametersforsmallmouth

buffalo,butotherstudieshavemeasuredplasmaglucoseofmigratorycatostomidsincluding

thewhitesuckerCatostomuscommersonii(MackayandBeatty1968)andseveralspeciesof

redhorseMoxostomaspp.(Hatryetal.2013).Thelevelsofplasmaglucose,andlactatethatI

measuredareallwithinthenormalrangesreportedinthosestudies.

AnimportantlimitationofmystudywastheutilityoftheEMGdatawithoutcalibrating

thetags.Althoughtherawdatafromthetransmittersarenotmeaningless,theylackthe

informationthatisattainablewithcalibration,whichcouldincludeswimmingspeed,andeven

metabolicrate.Anotherlimitationofthestudywasthatplasmawasnotsampledfromtagged

fish,solevelsofthebloodparametersmeasuredcouldnotbeusedtopredictpassagesuccess

atthedam.Finally,Iwasnotabletotriangulatepositionsforalargeproportionofthefishthat

Itagged.Althoughenvironmentalconditionsareunpredictable,thearraydesignmightbe

improvedtoincreasethelikelihoodofdetectionduringhighflows.

Page 59: Hershey Thesis v05 - Auburn University

51

FutureworkshouldexpandthesetechniquesandrelatethebehaviorsthatIobservedto

thefitnessandvitalratesoffishpopulationsbytrackingfishtotheirspawninggrounds.

Survivalrateforthoseindividualsthatpassdamsversusthosethatdonotcouldbeestimated

usingmodelingtechniquessuchasthosedescribedinHightowerandHarris(2017).

Understandinghowdamsimpactfishonanindividuallevelisimportantfordesigningefficient

fishpassagestructuresandmanagingflows,butuntilweunderstandhowmanyfisharepassing

low-headdams,howmanyofthosefisharereproducing,andhowthepopulationsmaybe

affectedbyincreasedpassage,wemaynotknowwhetheritisworthaddingexpensive

mitigationmeasurestocurrentstructures.Furthermore,thisworkshouldbeexpandedtomore

species,includinginvasivespecies,todeterminethegeneralityoffishpassagecharacteristics

acrossarangeofspeciesofvaryingsize,behavior,andlife-historyatlow-headlock-and-dam

structures.

Page 60: Hershey Thesis v05 - Auburn University

52

Table6.AcousticarraydetectionsummaryforthemonthsofJanuarytoAugust2018.NotagsweredetectedinJuneduetobatterieshavingdied.Thecolumnsontherightshowtheminimumandmaximumgageheightsatwhichfishweredetected.Theydonotreflectthehydrographfortheentiremonth.Notagsweredetectedwhenwaterlevelexceeded41feetorwaslessthan33feet. GageHeightMonth TotalDetections UniqueTags min mean maxJanuary 14976 14 33.95 35.04 36.10February 4 1 34.76 34.76 34.76March 98 16 34.84 34.91 35.29April 13053 40 34.37 36.65 40.63May 5704 11 33.72 34.99 35.91June NA NA NA NA NAJuly 11637 5 33.49 34.95 35.90August 1384 4 33.45 35.01 35.88

Page 61: Hershey Thesis v05 - Auburn University

53

Table7.ImportantdetectiondatesforthefishIwasabletotrackinthetailrace:thelastdateeachfishwastrackedinthearraybeforeitpassedthedam,andthedayitwasfirstdetectedabovethedam.Taggingdatesforeachfisharealsolisted.**ID28752wasnotdetectedbythearraybeforeitwasdetectedupstream.Itwasdetectedinthearrayafterithadalreadybeendetectedupstream.“Paddlefish”and“SmallmouthBuffalo”areabbreviatedinthefirstcolumnas“PDF”and“SBF”respectively.Species tagID TaggingDate LastTimeinArray FirstTimeUpstream Duration

(days)PDF ID28580 2017-12-13 2018-04-2310:43:56 2018-04-2312:32:36 0.1PDF ID28584 2017-12-13 2018-01-1622:06:29 2018-04-1221:28:19 86.0PDF ID28586 2017-12-14 2018-04-1811:28:14 2018-04-1820:07:39 0.4PDF ID28662 2018-01-03 2018-02-0120:18:39 2018-04-0219:38:32 60.0PDF ID28752 2018-01-19 NA** 2018-04-0601:42:43 NASBF ID28770 2018-01-21 2018-01-2104:32:27 2018-04-2514:35:22 94.4SBF ID28772 2018-01-21 2018-04-1523:08:08 2018-04-1610:42:34 0.5SBF ID28942 2018-01-21 2018-01-2111:26:42 2018-05-0912:04:09 108.0PDF ID28776 2018-01-27 2018-05-0619:06:50 2018-05-1504:47:36 8.4PDF ID28796 2018-03-08 2018-04-1709:55:40 2018-04-1720:32:26 0.4PDF ID28806 2018-03-08 2018-05-1703:37:04 2018-06-0319:52:44 17.7SBF ID28876 2018-03-12 2018-04-1600:43:51 2018-04-1612:15:37 0.5SBF ID28896 2018-03-13 2018-04-0901:48:27 2018-04-1616:03:47 7.6PDF ID28904 2018-03-13 2018-04-1714:21:31 2018-04-1723:29:17 0.4PDF ID28908 2018-03-13 2018-04-1802:53:43 2018-04-1810:02:29 0.3SBF ID28916 2018-03-13 2018-04-1605:02:45 2018-04-1617:09:11 0.5PDF ID28918 2018-03-13 2018-04-1819:45:53 2018-04-1902:21:58 0.3

Page 62: Hershey Thesis v05 - Auburn University

54

Table8.Numbersofpaddlefishandsmallmouthbuffalocapturedateachsamplelocationforhematology. Paddlefish Smallmouth

Buffalotailrace 25 29lock 28 0downstream 28 0

Page 63: Hershey Thesis v05 - Auburn University

55

Table9.Numbersofpaddlefishandsmallmouthbuffalosampledineachmonthineachyearforhematology.Year 2017 2018 2019 Month Nov Jan Mar Apr Feb MarPaddlefish 9 25 22 25 SmallmouthBuffalo 18 11

Page 64: Hershey Thesis v05 - Auburn University

56

Table10.Meansandstandarderrorsofplasmaconcentrationsofeachmeasuredbloodparameterforbothspecies,aswellasthePvalueoftheTtestscomparingthem.Thecortisolassayforsmallmouthbuffalofailed.**Thetruedifferenceinthemeansisstatisticallysignificantlydifferentfrom0.

Paddlefish SmallmouthBuffalo

Mean SE Mean SE ttestpvalueLactate 1.83 0.15 2.56 0.42 0.11Glucose 31.12 1.30 33.30 3.04 0.51Osmolality 246.81 1.95 287.79 4.45 2.40E-10**Hematocrit 0.21 0.01 0.25 0.01 1.47E-05**Cortisol 177.97 13.78 NA NA NA

Page 65: Hershey Thesis v05 - Auburn University

57

Figures:

Figure10.Eachpointrepresentstheminimumdisplacementofafishinacertainhourofthestudy.Each“fish-hour”isplottedagainstthegageheightduringthathour.Thereisaslightnegativerelationshipbetweenactivityandgageheight,wherefishdonotmoveasmuchathighgageheights.

Page 66: Hershey Thesis v05 - Auburn University

58

Figure11.AverageZscoresforthe12paddlefishand10smallmouthbuffalothatloggedEMGtransmissionsastheypassedthedam.Errorbarsrepresentthe95%confidenceintervalaroundthemean.

Page 67: Hershey Thesis v05 - Auburn University

59

Figure12.AmapshowingthespatialdistributionofEMGactivityZscoresinthetailraceofClaiborneLockandDam,separatedbyspecies.Cellswithareddishhuerepresentareaswherefish’sEMGtransmittersemittedhigherthanaverageactivitycodevalues,whilegreenindicatesbelowaverageactivitylevels.Circledareasontheleftshow“hot”areasforpaddlefish,wheremuscleactivityreadingsseemedtobehigherthanaveragefortheindividualstrackedinthoselocations.

Page 68: Hershey Thesis v05 - Auburn University

60

Figure13.Barplots(x̄ ±1.96*SE) showingbloodparameterconcentrationsacrosssamplelocationsforpaddlefish.

Cortisol(n

g/mL)

Osm

olality

(osm

ol/kg)

Page 69: Hershey Thesis v05 - Auburn University

61

Figure14.Scatterplotsshowingthesignificanteffectofstresstime(thenumberofminutesfromthetimethatthegillnetwassettothetimethatbloodwasdrawnfromeachindividual)ontheconcentrationsofthemeasuredbloodparameters.

Page 70: Hershey Thesis v05 - Auburn University

62

LiteratureCited

Adams,S.R.,andG.R.Parsons.1998.Laboratory-basedmeasurementsofswimmingperformanceandrelatedmetabolicratesoffield-sampledsmallmouthbuffalo(Ictiobusbubalus):astudyofseasonalchanges.PhysiologicalZoology71(4):350–358.

Alexandre,C.M.,B.R.Quintella,A.T.Silva,C.S.Mateus,F.Romão,P.Branco,M.T.Ferreira,andP.R.Almeida.2013.UseofelectromyogramtelemetrytoassessthebehavioroftheIberianbarbel(LuciobarbusbocageiSteindachner,1864)inapool-typefishway.EcologicalEngineering51:191–202.

Allen,J.B.,andG.Riveros.2013.HydrodynamicCharacterizationofthePolyodonspathularostrumusingCFD.JournalofAppliedMathematics2013:346173.

Almeida,P.R.,I.Póvoa,andB.R.Quintella.2007.Laboratoryprotocoltocalibratesealamprey(PetromyzonmarinusL.)EMGsignaloutputwithswimming.Pages209–220inP.R.Almeida,B.R.Quintella,M.J.Costa,andA.Moore,editors.DevelopmentsinFishTelemetry.SpringerNetherlands.

Barton,B.A.,A.B.Rahn,G.Feist,H.Bollig,andC.B.Schreck.1998.Physiologicalstressresponsesofthefreshwaterchondrosteanpaddlefish(Polyodonspathula)toacutephysicaldisturbances.ComparativeBiochemistryandPhysiologyPartA:Molecular&IntegrativePhysiology120(2):355–363.

Barton,B.A.2002.StressinFishes:adiversityofresponseswithparticularreferencetochangesincirculatingcorticosteroids.IntegrativeandComparativeBiology42(3):517–525.

Beasley,C.A.,andJ.E.Hightower.2000.Effectsofalow-headdamonthedistributionandcharacteristicsofspawninghabitatusedbystripedbassandAmericanshad.TransactionsoftheAmericanFisheriesSociety129(6):1316–1330.

Berejikian,B.A.,R.C.Endicott,D.M.VanDoornik,R.S.Brown,C.P.Tatara,andJ.Atkins.2007.SpawningbyfemaleChinooksalmoncanbedetectedbyelectromyogramtelemetry.TransactionsoftheAmericanFisheriesSociety136(3):593–605.

Birnie-Gauvin,K.,H.Flávio,M.L.Kristensen,S.Walton-Rabideau,S.J.Cooke,W.G.Willmore,A.Koed,andK.Aarestrup.2019.CortisolpredictsmigrationtimingandsuccessinbothAtlanticsalmonandseatroutkelts.ScientificReports9(1).

Braaten,P.J.,C.M.Elliott,J.C.Rhoten,D.B.Fuller,andB.J.McElroy.2015.Migrationsandswimmingcapabilitiesofendangeredpallidsturgeon(Scaphirhynchusalbus)toguidepassagedesignsinthefragmentedYellowstoneRiver.RestorationEcology23(2):186–195.

Page 71: Hershey Thesis v05 - Auburn University

63

Brown,R.S.,D.R.Geist,andM.G.Mesa.2006.UseofelectromyogramtelemetrytoassessswimmingactivityofadultspringChinooksalmonmigratingpastaColumbiaRiverdam.TransactionsoftheAmericanFisheriesSociety135(2):281–287.

Bunn,S.E.,andA.H.Arthington.2002.Basicprinciplesandecologicalconsequencesofalteredflowregimesforaquaticbiodiversity.EnvironmentalManagement30(4):492–507.

Bunt,C.M.,C.Katopodis,andR.S.McKinley.1999.Attractionandpassageefficiencyofwhitesuckersandsmallmouthbassbytwodenilfishways.NorthAmericanJournalofFisheriesManagement19(3):793–803.

Bunt,C.M.,T.Castro-Santos,andA.Haro.2012.Performanceoffishpassagestructuresatupstreambarrierstomigration.RiverResearchandApplications28(4):457–478.

Burnett,N.J.,S.G.Hinch,M.R.Donaldson,N.B.Furey,D.A.Patterson,D.W.Roscoe,andS.J.Cooke.2014.Alterationstodam-spilldischargeinfluencesex-specificactivity,behaviourandpassagesuccessofmigratingadultsockeyesalmon.Ecohydrology7(4):1094–1104.

Butler,S.E.,andD.H.Wahl.2010.Commoncarpdistribution,movements,andhabitatuseinariverimpoundedbymultiplelow-headdams.TransactionsoftheAmericanFisheriesSociety139(4):1121–1135.

Carlson,D.M.,andP.S.Bonislawsky.1981.Thepaddlefish(PolyodonSpathula)fisheriesofthemidwesternUnitedStates.Fisheries6(2):17–27.

Carruth,L.L.,R.M.Dores,T.A.Maldonado,D.O.Norris,T.Ruth,andR.E.Jones.2000.Elevationofplasmacortisolduringthespawningmigrationoflandlockedkokaneesalmon(Oncorhynchusnerkakennerlyi).ComparativeBiochemistryandPhysiologyPartC:Pharmacology,ToxicologyandEndocrinology127(2):123–131.

Caudill,C.C.,W.R.Daigle,M.L.Keefer,C.T.Boggs,M.A.Jepson,B.J.Burke,R.W.Zabel,T.C.Bjornn,andC.A.Peery.2007.SlowdampassageinadultColumbiaRiversalmonidsassociatedwithunsuccessfulmigration:delayednegativeeffectsofpassageobstaclesorcondition-dependentmortality?CanadianJournalofFisheriesandAquaticSciences64(7):979–995.

Chandroo,K.P.,S.J.Cooke,R.S.McKinley,andR.D.Moccia.2005.Useofelectromyogramtelemetrytoassessthebehaviouralandenergeticresponsesofrainbowtrout,Oncorhynchusmykiss(Walbaum)totransportationstress.AquacultureResearch36(12):1226–1238.

Cocherell,D.E.,A.Kawabata,D.W.Kratville,S.A.Cocherell,R.C.Kaufman,E.K.Anderson,Z.Q.Chen,H.Bandeh,M.M.Rotondo,R.Padilla,R.Churchwell,M.L.Kavvas,andJ.J.Cech.2011.Passageperformanceandphysiologicalstressresponseofadultwhitesturgeonascendingalaboratoryfishway:Passageperformanceandphysiologicalstressresponseofadultwhitesturgeon.JournalofAppliedIchthyology27(2):327–334.

Page 72: Hershey Thesis v05 - Auburn University

64

Cook,K.V.,S.H.McConnachie,K.M.Gilmour,S.G.Hinch,andS.J.Cooke.2011.Fitnessandbehavioralcorrelatesofpre-stressandstress-inducedplasmacortisoltitersinpinksalmon(Oncorhynchusgorbuscha)uponarrivalatspawninggrounds.HormonesandBehavior60(5):489–497.

Cook,K.V.,G.T.Crossin,D.A.Patterson,S.G.Hinch,K.M.Gilmour,andS.J.Cooke.2014.Thestressresponsepredictsmigrationfailurebutnotmigrationrateinasemelparousfish.GeneralandComparativeEndocrinology202:44–49.

Cooke,S.J.,D.P.Philipp,andP.J.Weatherhead.2002.Parentalcarepatternsandenergeticsofsmallmouthbass(Micropterusdolomieu)andlargemouthbass(Micropterussalmoides)monitoredwithactivitytransmitters.CanadianJournalofZoology80(4):756–770.

Cooke,S.J.,E.B.Thorstad,andS.G.Hinch.2004.Activityandenergeticsoffree-swimmingfish:insightsfromelectromyogramtelemetry.FishandFisheries5(1):21–52.

Cooke,S.J.,S.G.Hinch,A.P.Farrell,D.A.Patterson,K.Miller-Saunders,D.W.Welch,M.R.Donaldson,K.C.Hanson,G.T.Crossin,M.T.Mathes,A.G.Lotto,K.A.Hruska,I.C.Olsson,G.N.Wagner,R.Thomson,R.Hourston,K.K.English,S.Larsson,J.M.Shrimpton,andG.VanderKraak.2008.Developingamechanisticunderstandingoffishmigrationsbylinkingtelemetrywithphysiology,behavior,genomicsandexperimentalbiology:aninterdisciplinarycasestudyonadultFraserRiversockeyesalmon.Fisheries33(7):321–339.

Crossin,G.T.,M.R.Heupel,C.M.Holbrook,N.E.Hussey,S.K.Lowerre-Barbieri,V.M.Nguyen,G.D.Raby,andS.J.Cooke.2017.Acoustictelemetryandfisheriesmanagement.EcologicalApplications:1031–1049.

Davis,K.B.,andN.C.Parker.1986.Plasmacorticosteroidstressresponseoffourteenspeciesofwarmwaterfishtotransportation.TransactionsoftheAmericanFisheriesSociety115(3):495–499.

Demers,E.,R.S.Mckinley,A.H.Weatherley,andD.J.McQueeN.1996.Activitypatternsoflargemouthandsmallmouthbassdeterminedwithelectromyogrambiotelemetry.TransactionsoftheAmericanFisheriesSociety125:434-439.

Firehammer,J.A.,andD.L.Scarnecchia.2007.Theinfluenceofdischargeonduration,ascentdistance,andfidelityofthespawningmigrationforpaddlefishoftheYellowstone-Sakakaweastock,MontanaandNorthDakota,USA.EnvironmentalBiologyofFishes78(1):23–36.

Geist,D.R.,R.S.Brown,V.I.Cullinan,M.G.Mesa,S.P.VanderKooi,andC.A.McKinstry.2003.Relationshipsbetweenmetabolicrate,muscleelectromyogramsandswimperformanceofadultchinooksalmon.JournalofFishBiology63(4):970–989.

Page 73: Hershey Thesis v05 - Auburn University

65

Geist,D.R.,A.H.Colotelo,T.J.Linley,K.A.Wagner,andA.L.Miracle.2016.EffectsofanovelfishtransportsystemonthehealthofadultfallChinooksalmon.JournalofFishandWildlifeManagement7(2):347–358.

Gowans,A.R.D.,J.D.Armstrong,I.G.Priede,andS.Mckelvey.2003.MovementsofAtlanticsalmonmigratingupstreamthroughafish-passcomplexinScotland.EcologyofFreshwaterFish12(3):177–189.

Hanson,K.C.,S.J.Cooke,C.D.Suski,G.Niezgoda,F.J.S.Phelan,R.Tinline,andD.P.Philipp.2007.Assessmentoflargemouthbass(Micropterussalmoides)behaviourandactivityatmultiplespatialandtemporalscalesutilizingawhole-laketelemetryarray.Pages243–256inP.R.Almeida,B.R.Quintella,M.J.Costa,andA.Moore,editors.DevelopmentsinFishTelemetry.SpringerNetherlands.

Haro,A.,T.Castro-Santos,J.Noreika,andM.Odeh.2004.Swimmingperformanceofupstreammigrantfishesinopen-channelflow:anewapproachtopredictingpassagethroughvelocitybarriers.CanadianJournalofFisheriesandAquaticSciences61(9):1590–1601.

Hatry,C.,J.D.Thiem,T.R.Binder,D.Hatin,P.Dumont,K.M.Stamplecoskie,J.M.Molina,K.E.Smokorowski,andS.J.Cooke.2014.Comparativephysiologyandrelativeswimmingperformanceofthreeredhorse(Moxostomaspp.)species:associationswithfishwaypassagesuccess.PhysiologicalandBiochemicalZoology87(1):148–159.

Healey,M.C.,R.Lake,andS.G.Hinch.2003.Energyexpendituresduringreproductionbysockeyesalmon(Oncorhynchusnerka).Behaviour140(2):161–182.

Hinch,S.G.,andJ.Bratty.2000.Effectsofswimspeedandactivitypatternonsuccessofadultsockeyesalmonmigrationthroughanareaofdifficultpassage.TransactionsoftheAmericanFisheriesSociety129(2):598–606.

Hinch,S.G.,R.E.Diewert,T.J.Lissimore,A.M.J.Prince,M.C.Healey,andM.A.Henderson.1996.Useofelectromyogramtelemetrytoassessdifficultpassageareasforriver-migratingadultsockeyesalmon.TransactionsoftheAmericanFisheriesSociety125(2):253–260.

Hoxmeier,R.H.J.,andD.R.Devries.1997.Habitatuse,diet,andpopulationstructureofadultandjuvenilepaddlefishinthelowerAlabamaRiver.TransactionsoftheAmericanFisheriesSociety126(2):288–301.

Hutchinson,G.E.,1967.ATreatiseonLimnology.Volume2.Wiley

Izzo,L.K.,G.A.Maynard,andJ.Zydlewski.2016.UpstreammovementsofAtlanticsalmoninthelowerPenobscotRiver,Mainefollowingtwodamremovalsandfishpassagemodifications.MarineandCoastalFisheries:Dynamics,Management,andEcosystemScience8:448–461.

Page 74: Hershey Thesis v05 - Auburn University

66

Jones,D.R.,J.W.Kiceniuk,andO.S.Bamford.1974.EvaluationoftheswimmingperformanceofseveralfishspeciesfromtheMackenzieRiver.JournaloftheFisheriesResearchBoardofCanada31(10):1641–1647.

Keefer,M.L.,C.A.Peery,T.C.Bjornn,M.A.Jepson,andL.C.Stuehrenberg.2004.Hydrosystem,dam,andreservoirpassageratesofadultChinooksalmonandsteelheadintheColumbiaandSnakeRivers.TransactionsoftheAmericanFisheriesSociety133(6):1413–1439.

Lein,G.M.,andD.R.Devries.1998.PaddlefishintheAlabamaRiverdrainage:populationcharacteristicsandtheadultspawningmigration.TransactionsoftheAmericanFisheriesSociety127(3):441–454.

Lembo,G.,P.Carbonara,M.Scolamacchia,M.T.Spedicato,J.E.BJøRNSEN,B.Holand,andR.S.Mckinley.2008.Introductionofanewphysiologicalacousticelectromyogramtransmitter.FisheriesManagementandEcology15(5–6):333–338.

Leone,F.J.,J.N.Stoeckel,andJ.W.Quinn.2012.DifferencesinpaddlefishpopulationsamongimpoundmentsoftheArkansasRiver,Arkansas.NorthAmericanJournalofFisheriesManagement32(4):731–744.

Linnik,V.D.,L.K.Malinin,M.Wozniewski,R.Sych,andP.Dembowski.1998.MovementsofadultseatroutSalmotruttaL.inthetailraceofalow-headdamatWloclawechydroelectricstationontheVistulaRiver,Poland.Hydrobiologia371(0):335–337.

Lucas,M.C.,I.G.Priede,J.D.Armstrong,A.N.Z.Gindy,andL.D.Vera.1991.Directmeasurementsofmetabolism,activityandfeedingbehaviourofpike,Esoxlucius,inthewild,bytheuseofheartratetelemetry.JournalofFishBiology39(3):325–345.

Mackay,W.C.,andD.D.Beatty.1968.Plasmaglucoselevelsofthewhitesucker,Catostomuscommersonii,andthenorthernpike,Esoxlucius.CanadianJournalofZoology46(4):797–803.

Mesing,C.L.,andA.M.Wicker.1986.Homerange,spawningmigrations,andhomingofradio-taggedFloridalargemouthbassintwocentralFloridalakes.TransactionsoftheAmericanFisheriesSociety.115:286–295.

Mettee,M.F.,P.E.O’Neil,T.E.Shepard,andS.W.McGregor.2006.Paddlefish(Polyodonspathula)movementsintheAlabamaandTombigbeeriversandtheMobile-TensawRiverDelta.

Mettee,M.,P.O’Neil,andS.Rider.2009.PaddlefishmovementsinthelowerMobileRiverbasin,Alabama.

Mims,S.D.2001.AquacultureofpaddlefishintheUnitedStates.AquaticLivingResources14(6):391–398.

Page 75: Hershey Thesis v05 - Auburn University

67

Mims,S.D.Onders,R.J.,Shelton,W.L.2009.PropagationandCultureofPaddlefish.In:PaddlefishManagement,Propagation,andConservationinthe21stCentury.Editors:Paukert,C.P.andScholten,G.D.

Moser,M.L.,A.M.Darazsdi,andJ.R.Hall.2000.ImprovingpassageefficiencyofadultAmericanshadatlow-elevationdamswithnavigationlocks.NorthAmericanJournalofFisheriesManagement20(2):376–385.

Nilsson,C.,C.A.Reidy,M.Dynesius,andC.Revenga.2005.Fragmentationandflowregulationoftheworld’slargeriversystems.Science308:405–408.

Noonan,M.J.,J.W.A.Grant,andC.D.Jackson.2012.Aquantitativeassessmentoffishpassageefficiency.FishandFisheries13(4):450–464.

ØKland,F.,B.Finstad,R.S.McKinley,E.B.Thorstad,andR.K.Booth.1997.Radio-transmittedelectromyogramsignalsasindicatorsofphysicalactivityinAtlanticsalmon.JournalofFishBiology51(3):476–488.

Onders,R.J.,S.D.Mims,C.Wang,andW.D.Pearson.2001.Reservoirranchingofpaddlefish.NorthAmericanJournalofAquaculture63:179–190.

Pasch,R.W.,P.A.Hackney,andJ.A.Holbrook.1980.EcologyofpaddlefishinOldHickoryReservoir,Tennessee,withemphasisonfirst-yearlifehistory.TransactionsoftheAmericanFisheriesSociety109(2):157–167.

Paukert,C.P.,andW.L.Fisher.2000.Abioticfactorsaffectingsummerdistributionandmovementofmalepaddlefish,Polyodonspathula,inaprairiereservoir.TheSouthwesternNaturalist45(2):133–140.

Paukert,C.P.,andW.L.Fisher.2001.CharacteristicsofpaddlefishinasouthwesternU.S.reservoir,withcomparisonsoflenticandloticpopulations.TransactionsoftheAmericanFisheriesSociety130(4):634–643.

Peake,S.,F.W.Beamish,R.S.McKinley,D.A.Scruton,andC.Katopodis.1997.Relatingswimmingperformanceoflakesturgeon,Acipenserfulvescens,tofishwaydesign.CanadianJournalofFisheriesandAquaticSciences54(6):1361–1366.

Plaut,I.2001.Criticalswimmingspeed:itsecologicalrelevance.ComparativeBiochemistryandPhysiologyPartA:Molecular&IntegrativePhysiology131(1):41–50.

Pon,L.B.,S.G.Hinch,S.J.Cooke,D.A.Patterson,andA.P.Farrell.2009.Physiological,energeticandbehaviouralcorrelatesofsuccessfulfishwaypassageofadultsockeyesalmonOncorhynchusnerkaintheSetonRiver,BritishColumbia.JournalofFishBiology74(6):1323–1336.

Page 76: Hershey Thesis v05 - Auburn University

68

Pon,L.B.,S.G.Hinch,S.J.Cooke,D.A.Patterson,andA.P.Farrell.2009.Acomparisonofthephysiologicalcondition,andfishwaypassagetimeandsuccessofmigrantadultsockeyesalmonatSetonRiverDam,BritishColumbia,underthreeoperationalwaterdischargerates.NorthAmericanJournalofFisheriesManagement29(5):1195–1205.

Purkett,C.A.1961.Reproductionandearlydevelopmentofthepaddlefish.TransactionsoftheAmericanFisheriesSociety90(2):125–129.

Quintella,B.R.,N.O.Andrade,A.Koed,andP.R.Almeida.2004.Behaviouralpatternsofsealampreys’spawningmigrationthroughdifficultpassageareas,studiedbyelectromyogramtelemetry.JournalofFishBiology65(4):961–972.

Quintella,B.R.,I.Póvoa,andP.R.Almeida.2009.Swimmingbehaviourofuprivermigratingsealampreyassessedbyelectromyogramtelemetry.JournalofAppliedIchthyology25(1):46–54.

Reed,B.C.,W.E.Kelso,andD.A.Rutherford.1992.Growth,fecundity,andmortalityofpaddlefishinLouisiana.TransactionsoftheAmericanFisheriesSociety121(3):378–384.

Ricklefs,R.E.,andM.Wikelski.2002.Thephysiology/life-historynexus.TrendsinEcology&Evolution17(10):462–468.

Rogers,K.B.,andG.C.White.(2007).AnalysisofMovementandHabitatUsefromTelemetryData.In:AnalysisandInterpretationofFreshwaterFisheriesData.Editors:Guy,C.S.,Brown,M.L.AmericanFisheriesSociety

Roscoe,D.W.,andS.G.Hinch.2010.Effectivenessmonitoringoffishpassagefacilities:historicaltrends,geographicpatternsandfuturedirections.FishandFisheries11(1):12–33.

Roscoe,D.W.,S.G.Hinch,S.J.Cooke,andD.A.Patterson.2011.Fishwaypassageandpost-passagemortalityofup-rivermigratingsockeyesalmonintheSetonRiver,BritishColumbia.RiverResearchandApplications27(6):693–705.

Rosen,R.A.,andD.C.Hales.1980.OccurrenceofscarredpaddlefishintheMissouriRiver,SouthDakota-Nebraska.TheProgressiveFish-Culturist42(2):82–85.

Schindler,D.E.,J.B.Armstrong,K.T.Bentley,K.Jankowski,P.J.Lisi,andL.X.Payne.2013.Ridingthecrimsontide:mobileterrestrialconsumerstrackphenologicalvariationinspawningofananadromousfish.BiologyLetters9(3):20130048.

Simcox,B.L.,D.R.DeVries,andR.A.Wright.2015.MigratorycharacteristicsandpassageofpaddlefishattwosoutheasternU.S.lock-and-damsystems.TransactionsoftheAmericanFisheriesSociety144(3):456–466.

Page 77: Hershey Thesis v05 - Auburn University

69

Suzuki,F.M.,J.B.Dunham,L.G.M.Silva,C.B.M.Alves,andP.S.Pompeu.2017.Factorsinfluencingmovementsoftwomigratoryfisheswithinthetailraceofalargeneotropicaldamandtheirimplicationsforhydropowerimpacts.RiverResearchandApplications33(4):514–523.

Thorstad,E.B.,F.ØKland,A.Koed†,andR.S.McKinley.2000.Radio-transmittedelectromyogramsignalsasindicatorsofswimmingspeedinlaketroutandbrowntrout.JournalofFishBiology57(3):547–561.

Tripp,S.J.,Q.E.Phelps,R.N.Hupfeld,D.P.Herzog,D.E.Ostendorf,T.L.Moore,R.C.Brooks,andJ.E.Garvey.2019.Sturgeonandpaddlefishmigration:evidencetosupporttheneedforinterjurisdictionalmanagement.Fisheries.

Trushenski,J.T.,J.D.Bowker,S.J.Cooke,D.Erdahl,T.Bell,J.R.MacMillan,R.P.Yanong,J.E.Hill,M.C.Fabrizio,J.E.Garvey,andS.Sharon.2013.Issuesregardingtheuseofsedativesinfisheriesandtheneedforimmediate-releaseoptions.TransactionsoftheAmericanFisheriesSociety142(1):156–170.

Vannote,R.L.,G.W.Minshall,K.W.Cummins,J.R.Sedell,andC.E.Cushing.1980.Therivercontinuumconcept.CanadianJournalofFisheriesandAquaticSciences37(1):130–137.

Ward,J.V.1989.Thefour-dimensionalnatureofloticecosystems.JournaloftheNorthAmericanBenthologicalSociety8(1):2–8.

Warden,R.L.,andW.J.Lorio.1975.Movementsoflargemouthbass(Micropterussalmoides)inimpoundedwatersasdeterminedbyunderwatertelemetry.TransactionsoftheAmericanFisheriesSociety104(4):696–702.

Wingfield,J.C.,D.L.Maney,C.W.Breuner,J.D.Jacobs,S.Lynn,M.Ramenofsky,andR.D.Richardson.1998.Ecologicalbasesofhormone—behaviorinteractions:the“emergencylifehistorystage.”IntegrativeandComparativeBiology38(1):191–206.

Young,S.P.,T.R.Ingram,J.E.Tannehill,andJ.J.Isely.2012.PassageofspawningAlabamashadatJimWoodruffLockandDam,ApalachicolaRiver,Florida.TransactionsoftheAmericanFisheriesSociety141(4):881–889.

Zelnik,P.R.,andG.Goldspink.1981.Theeffectofexerciseonplasmacortisolandbloodsugarlevelsintherainbowtrout,SalmogairdneriiRichardson.JournalofFishBiology19(1):37–43.

Zigler,S.J.,M.R.Dewey,andB.C.Knights.1999.DielmovementandhabitatusebypaddlefishinNavigationPool8oftheUpperMississippiRiver.NorthAmericanJournalofFisheriesManagement19(1):180–187.

Page 78: Hershey Thesis v05 - Auburn University

70

Zigler,S.J.,M.R.Dewey,B.C.Knights,A.L.Runstrom,andM.T.Steingraeber.2004.HydrologicandhydraulicfactorsaffectingpassageofpaddlefishthroughdamsintheUpperMississippiRiver.TransactionsoftheAmericanFisheriesSociety133(1):160–172.


Recommended