+ All Categories
Home > Science > Heterojunction silicon based solar cells

Heterojunction silicon based solar cells

Date post: 09-Jul-2015
Category:
Upload: dinomasch
View: 437 times
Download: 2 times
Share this document with a friend
Description:
PDF
46
Heterojunction silicon based solar cells Miro Zeman Photovoltaic Materials and Devices Laboratory, Delft University of Technology
Transcript
Page 1: Heterojunction silicon based solar cells

Heterojunction

silicon based solar cells

Miro Zeman

Photovoltaic Materials and Devices Laboratory, Delft University of Technology

Page 2: Heterojunction silicon based solar cells

Outline

Introduction to Si PV technologies

Motivation for developing HTJ Si solar cells

Achievements

Challenges

HET-Si project

Summary

Page 3: Heterojunction silicon based solar cells

Introduction to Si PV technologies

Wafer-based crystalline silicon

½ century of manufacturing history, ~90% of 2008 markethighest performance of flat-plate technologiesgood track record and reliabilitycost reduction is main overall challengemodule efficiencies:

-

12 ~ 20% (now)-

18 ~ > 22% (long term)

Wim

Sinke

(ECN, Leader of WG 3 : Science, technology & applications of EU

PV Technology Platform)

Page 4: Heterojunction silicon based solar cells

Introduction to Si PV technologies

Thin-film silicon

Wim

Sinke

(ECN, Leader of WG 3 : Science, technology & applications of EU

PV Technology Platform)

low-cost potential and new application possibilitiesapplication of micro-crystalline siliconefficiency enhancement is major challengestable module efficiencies:

- 6 ~ 9% (now)- 10 ~ 15% (longer term)

Page 5: Heterojunction silicon based solar cells

http://us.sanyo.com/Dynamic/customPages/docs/solarPower_HIT_Solar_Power_10-15-07.pdf

Introduction to Si PV technologies

High performance Low-cost potentialHybrid technology HIT solar cell

Sanyo started R&D in 1990

HIT: Heterojunction

with Intrinsic Thin Layer

Most popular Si PV technologies:

Page 6: Heterojunction silicon based solar cells

Motivation for HTJ solar cells

Solar cell operating principles:

Thermodynamic approach:

Conversion of energy of solar radiation into electrical energy

Two-step process:

1.

Solar energy → Chemical energy

of electron-hole pairs

2.

Chemical energy

→ Electrical energy

Page 7: Heterojunction silicon based solar cells

χe

absorber

EF

EC

EV

-qψ

Solar cell operating principles

Χe

electron affinity

1.

Solar energy → Chemical energy

of electron-hole pairs

Page 8: Heterojunction silicon based solar cells

-qψ

Solar cell operating principles

EFV

-μeh

EFCEC

EV

absorber

1.

Solar energy → Chemical energy

of electron-hole pairs

Page 9: Heterojunction silicon based solar cells

2.

Chemical energy

→ Electrical energy

-qψ

Solar cell operating principles

EFV

-μeh

EFCEC

EV

absorber

Page 10: Heterojunction silicon based solar cells

2.

Chemical energy

→ Electrical energy

Solar cell operating principles

absorber

EV

-qψ

EFC -qVOCEFV

Semi-

permeable membrane

for electrons

EC

Semi-

permeable membrane for holes

Page 11: Heterojunction silicon based solar cells

2.

Chemical energy

→ Electrical energy

Solar cell operating principles

absorber

EV

-qψ

EFC -qVOCEFV

Semi-

permeable membrane

for electrons

EC

Semi-

permeable membrane for holes

n-typep-type

Page 12: Heterojunction silicon based solar cells

2.

Chemical energy

→ Electrical energy

Solar cell operating principles

absorber

EV

-qψ

EFC -qVOCEFV

Semi-

permeable membrane

for electrons

EC

Semi-

permeable membrane for holes

n-typep-type

Page 13: Heterojunction silicon based solar cells

2.

Chemical energy

→ Electrical energy

Solar cell operating principles

absorber

χeEC

EV

-qψ

EFC

χe

E

χe

EFV

Semi-

permeable membrane

for electrons

Semi-

permeable membrane for holes

-qVOC

Page 14: Heterojunction silicon based solar cells

2.

Chemical energy

→ Electrical energy

Solar cell operating principles

absorber

EC

EV

-qψ

EFCE

EFV

Semi-

permeable membrane

for electrons

Semi-

permeable membrane for holes

-qVOC

n-typep-type

Page 15: Heterojunction silicon based solar cells

2.

Chemical energy

→ Electrical energy

Solar cell operating principles

absorber

EC

EV

-qψ

EFCE

EFV

Semi-

permeable membrane

for electrons

Semi-

permeable membrane for holes

-qVOC

n-typep-type

Page 16: Heterojunction silicon based solar cells

EF

Eg1

N c-Si P c-Si

Eg1

Silicon based solar cells

Eg1

N c-SiP a-Si

Eg2

EF

1. Tunneling2. Thermionic emission3. Trap-assisted tunneling

Homojunction Heterojunction

(band off-set)

Real world:

Page 17: Heterojunction silicon based solar cells

• Between p and n-type materials there is an intrinsic a-Si:H layer.

• Thin-layer: optimum thickness of the intrinsic a-Si:H is about 4 to 5 nm.

n-doped c-Si

p-doped a-Si:H

intrinsic a-Si:H

Heterojunction

Si solar cells

Sanyo HIT (Heterojunction with Intrinsic Thin Layer) solar cell:

http://us.sanyo.com/Dynamic/customPages/docs/solarPower_HIT_Solar_Power_10-15-07.pdf

Page 18: Heterojunction silicon based solar cells

UNSW PERL c-Si solar cell Sanyo HIT solar cell

http://pvcdrom.pveducation.org/MANUFACT/LABCELLS.HTM

http://sanyo.com/news/2009/05/22-1.html

Efficiency record

25% 23%

Manufacturing

Complicated diffusion, oxidation Formation of pn junction, passivation, photomasking BSF are all completed by PECVD

Temperature High temperature processes Less than 200 ˚C requirement

(up to 1000˚C)

Heterojunction

Si solar cells

Comparison with homojunction

c-Si solar cell:

Jsc

, Voc

, FF, Area

42.7 mAcm-2, 0.705 V, 0.828, 4 cm2

39.5 mAcm-2, 0.729 V, 0.80, 100 cm2

Page 19: Heterojunction silicon based solar cells

Good stability under light [1] and thermal exposure [2]

High efficiency (capability of reaching efficiency up to 25%)

• Negligible SWE due to very thin a-Si:H layer

• Favorable temperature dependence of the conversion efficiency

[1] T. Sawada, et al, Photovoltaic Energy Conversion, 2

(1994) 1219--1226

[2] Maruyama, E. et al, Photovoltaic Energy Conversion, 2

(2006) 1455--1460

Heterojunction

Si solar cells

Potential:

Page 20: Heterojunction silicon based solar cells

1. Low thermal budget

2. Avoiding bowing of thin wafers. Route to use very thin wafers

3. Suppressing lifetime degradation of minority carriers; possible use low quality c-Si

Heterojunction

Si solar cells

Industrial benefits:

200

400

600

800

1000

Proc

ess

tem

pera

ture

[C°]

Time [min]

c-Si conventional technology

Junction diffusion

ARC

Contacts

Firing

30’

0,5’ 2’

0,3’

200

400

600

800

1000

Proc

ess

tem

pera

ture

[C°]

Plasma

3’

TCO

10’

Front/back contact

Firing

0,3’

a-Si/c-Si technology

Low Tem

perature

Rapid ProcessTime [min]

F. Roca, ENEA

Page 21: Heterojunction silicon based solar cells

FZ/CZ Area Jsc Voc FF Efficiency

(cm2) (mA/cm

2) (mV) (%) (%)

Sanyo n CZ 100 39.5 729 80 23,0

AIST n CZ 0.2 35.6 656 75 17.5

Helmholtz

centre Berlin

n FZ 1 39.3 639 79 19.8

p FZ 1 36.8 634 79 18.5

IMT EPFL n FZ 0.2 34 682 82 19.1

p FZ 0.2 32 690 74 16.3

NREL p FZ 0.9 35.9 678 78.6 19.1

n FZ 0.9 35.3 664 74.5 17.2

Achievements

Laboratory solar cells:

Page 22: Heterojunction silicon based solar cells

• The maximum efficiency was 12.3%

Low Voc and FF compared to c-Si homojunction

results from large interface state density.

n c-Si

p a-Si:H

TCO

metal

Achievements

Development of HIT solar cells at Sanyo:

M. Tanaka, et al, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Appl. Phys., 31 (1992) 3518-3522

Page 23: Heterojunction silicon based solar cells

• The maximum conversion efficiency is 14.8%

• Voc

is improved by 30 mV due toexcellent passivation

of a-Si:H

• FF is improved to 0.8

Thin intrinsic a-Si layer

introduced, better passivation

of silicon wafers

Achievements

Development of HIT solar cells at Sanyo:

ACJ-HIT

n c-Si

p a-Si:H

TCO

metal

i a-Si:H

M. Tanaka, et al, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Appl. Phys., 31 (1992) 3518-3522

Page 24: Heterojunction silicon based solar cells

Application of textured substrate

and back surface field

(BSF), the maximum conversion efficiencyincreases to 18.1% for 1cm2 area.

• Jsc

is improved by 20% to 37.9 mA/cm2

Achievements

Development of HIT solar cells at Sanyo:

TCO

p a-Si:H

i a-Si:H

n c-Si

metal

n a-Si:H

M. Tanaka, et al, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Appl. Phys., 31 (1992) 3518-3522

Page 25: Heterojunction silicon based solar cells

The symmetrical structure

can suppress both thermal and mechanical stress.

• The maximum conversion efficiency is 21.3% for 100 cm2.

TCO

p a-Si:H

i a-Si:H

n c-Si

n a-Si:H

i a-Si:H

metal

TCO

Achievements

Development of HIT solar cells at Sanyo:

M. Tanaka, et al, “Development of hit solar cells with more than 21% conversion efficiency and commercialization of highest performance hit modules”, Photovoltaic Energy Conversion, 1 (2003) 955--958

Page 26: Heterojunction silicon based solar cells

Achievements

Development of HIT solar cells at Sanyo:

Y. Tsunomura, et al, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells, 93 (2009) 670--673

1. Improving the a-Si:H/c-Si heterojunction

Conversion efficiency 22.3% has been achieved in 2008 by further optimization:

2. Improving the grid electrode

3. Reducing the absorption in the a-Si:H and TCO

Page 27: Heterojunction silicon based solar cells

Achievements

Sanyo HIT modules:

Page 28: Heterojunction silicon based solar cells

Achievements

Sanyo HIT Double Bifacial modules:

Page 29: Heterojunction silicon based solar cells

Achievements

Development of HIT solar cells at Sanyo:

Conversion efficiency 23,0% has been achieved in May 2009:

http://us.sanyo.com/News/SANYO-Develops-HIT-Solar-Cells-with-World-s-Highest-Energy-Conversion-Efficiency-of-23-0-

Voc(V) 0.729

Jsc(mA/cm2) 39.5

FF 0.8

Efficiency 23%

c-Si Thickness (µm) >200

Page 30: Heterojunction silicon based solar cells

Achievements

Development of HIT solar cells at Sanyo:

Conversion efficiency 22.8% with 98 µm thick c-Si (EU-PVSEC Hamburg 2009):

http://techon.nikkeibp.co.jp/english/NEWS_EN/20090923/175532/

Highest Voc

for c-Si type solar cell, Voc

= 0.743V

Page 31: Heterojunction silicon based solar cells

Achievements

Production development of HIT solar cells at Sanyo:

http://www.pv-tech.org/news/_a/sanyo_targets_600mw_hit_solar_cell_production_with_new_plant/

Page 32: Heterojunction silicon based solar cells

Achievements

National Institute of

Advanced Industrial Science and Technology:

H. Fujiwara, et al, “Crystalline Si Heterojunction Solar Cells with the Double Heterostructure of Hydrogenated Amorphous Silicon Oxide”, Jpn. J. Appl. Phys., 48 (2009) 064506

Al

n c-Si

p a-SiO:HITO

i a-SiO:H

i a-SiO:Hn a-SiO:H

ITO

Ag

• a-SiO:H i layer can suppress epitaxial growth completely

• Efficiency decreases with decreasing thickness of c-Si

Page 33: Heterojunction silicon based solar cells

Achievements

Institute of Microtechnology

(IMT) Neuchatel (EPFL):

Al or Ag

n c-Si

p a-Si:H/µc-Si:HITO

i a-Si:H

i a-Si:Hn a-Si:H/µc-Si:H

ITO

S.Olibet, PhD thesis, 2008

• a-Si:H/uc-Si:H layers fabricated by VHF-CVD

• Small area (0.2 cm2) cells without front metal contact

Page 34: Heterojunction silicon based solar cells

• no intrinsic a-Si:H layer results in low Voc

Achievements

Helmholtz Center Berlin for Materials and Energy:

AZO

p a-Si:H

n c-Si

n a-Si:H

Al

M.Schmidt, et al, “Physical aspects of a-Si:H/c-Si hetero-junction solar cells”, Thin Solid Films, 515 (2007) 7475--7480

• reduction of optical loss due to thinner a-Si layer

Page 35: Heterojunction silicon based solar cells

• a-Si:H layers fabricated by HW CVD

Achievements

National Renewable Energy laboratory (NREL):

n a-Si:H

p c-Si

p a-Si:H

i a-Si:H

metal

ITO

i a-Si:H

metal

Q. Wang, et al, “Crystal Silicon Heterojunction Solar cell by Hot-Wire CVD”, The 33rd IEEE Photovoltaic Specialists Conference, 2008.

Page 36: Heterojunction silicon based solar cells

Challenges

Losses in HIT solar cell:

Optical losses:1. Textured surface2. Low absorption of TCO and a-Si3. High aspect ratio of grid electrode

Recombination losses:1. cleaning2. Hydrogen termination of wafer surface3. High quality a-Si:H

Resistance losses:1. High conductivity TCO2. Good ohmic

contact between different layers

n c-Si

a-Si:H (i/n)

TCOa-Si:H (p/i)

TCO

Grid electrode

reflection absorption shading

Optical losses (Jsc)

+-

Recombination losses (Voc)

Res

ista

nce

loss

es (

FF)

Page 37: Heterojunction silicon based solar cells

Challenges

1. Wafer cleaning

Partial passivation by H2 or HF solution to saturate dangling bonds

Remove particles and metallic contaminants from the surface

SC1 + SC2 (RCA Cleaning) NaOH : H2OHNO3 : HFHF : H2OHCl:HFCH3OH:HFCH3CH(OH)CH3:HF (or HI)HF:H2O2:H2OCF4/O2 (8% Mix)NF3H2N2O2Ar

wet

Chemicals

dry

PVMD/DIMES

results:

F. Roca, ENEA

Page 38: Heterojunction silicon based solar cells

Challenges

2. Epitaxial growth at the heterojunction

interface

H. Fujiwara, et al, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cell”, Appl. Phys. Lett., 90 (2007) 013503--3

Optimum growth temperature and rf power density

Suppression of the epitaxial growth

Page 39: Heterojunction silicon based solar cells

Challenges

3. Controlling layer thickness

Efficiency is highly related to the thickness of the intrinsic and doped layers

T. Sawada, et al, “High efficiency a-Si/c-Si heterojuction solar cell”, IEEE Photovoltaic Specialists Conference, Vol. 2 (1994) 1219—1226

Thicker intrinsic a-Si:H

layers lead to rapid reduction in Jsc

and FF

Jsc

is sensitive to thickness of p-type a-Si:H

layer.

Page 40: Heterojunction silicon based solar cells

Optical loss in short wavelength region is caused by the absorption of a-Si.

Optical loss in long wavelength region is caused by the free carrier absorption of TCO.

Challenges

4. Reducing absorption loss in a-Si and TCO

E.Maruyama, et al, “Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, Photovoltaic Energy Conversion, 2 (2006) 1455--1460

Solutions:1. High-quality wide gap alloys such as a-SiC:H2. High-quality TCO with high carrier mobility and

relatively low carrier density.

Page 41: Heterojunction silicon based solar cells

Surface-textured substrates are used due to optical confinement effect

Challenges

5. Surface-textured wafer surface

M. Tucci, et al, “CF4/O2 dry etching of textured crystalline silicon surface in a-Si:H/c-Si heterojunction for photovoltaic applications”, Solar energy materials and solar cells, 69 (2001) 175-185

Problems:

1. Fabrication of an uniform a-Si layer on the textured c-Si

2. Insufficient cleaning of c-Si surfaces before a-Si film growth

Solutions:1. Optimization of deposition condition

2. Clean c-Si surface with hydrogen plasma treatment

Page 42: Heterojunction silicon based solar cells

Finer width (W) and no spreading area of grid electrode reduce shade losses

Challenges

6. Improvement of grid electrode

Solutions:

1. Optimize viscosity and rheology of silver paste2. Optimize process parameters in screen printing

Y.Tsunomura, et al, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells, 93 (2009) 670--673

Page 43: Heterojunction silicon based solar cells

00/00/200800/00/200800/00/2008

Project concept and objectivesHetorojunction

concepts for high

efficiency

solar

cells

Short-term target:

demonstrate the industrial feasibility

of heterojunction

solar cells

in EuropeMedium term target:

demonstrate the concept of ultra-

high efficiency rear-contact cells

based on a-Si/c-Si heterojunction

Page 44: Heterojunction silicon based solar cells

00/00/200800/00/200800/00/2008

Project partnershipHETSI partnership

Page 45: Heterojunction silicon based solar cells

1.

HTJ Si solar cells offer promising potential to conventional c-Si solar cells-

lower production cost-

better thermal stability-

higher electrical yield

Summary

2. HIT Si solar cells contain a-Si/c-Si heterojunction

and use intrinsic a-Si:H

for high-quality passivation

3. The efficiency record of HIT solar cells is 23.0%

4.

Challenges to fabricate high-efficiency HTJ Si solar cells-

clean and textured c-Si surfaces-

abrupt heterojunctions

with low interface-defect densities-

optimum a-Si :H deposition conditions and layer thickness- TCO


Recommended