+ All Categories
Home > Documents > HF radars WERA and CODAR in the St. Lawrence estuary

HF radars WERA and CODAR in the St. Lawrence estuary

Date post: 24-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
39
HF radars WERA and CODAR in the St. Lawrence estuary Cédric Chavanne Institut des Sciences de la Mer de Rimouski (ISMER) Université du Québec à Rimouski (UQAR) Rimouski (Québec), Canada HF radar WERA workshop University of Victoria 12-13 June 2017
Transcript

HF radars WERA and CODAR in the St. Lawrence estuary

Cédric ChavanneInstitut des Sciences de la Mer de Rimouski (ISMER)

Université du Québec à Rimouski (UQAR)Rimouski (Québec), Canada

HF radar WERA workshopUniversity of Victoria

12-13 June 2017

Outline

1) Experimental setup

2) Range vs environmental parameters

3) Currents comparisons between WERA, CODAR, ADCP and surface drifters

4) Waves comparisons between WERA and wave buoy

5) Future work

Experimental setup

Kamli (2014, M.Sc. thesis)

Near-surface salinity

Galbraith et al (2015)

Theoretical range

WERA documentation

WERA

central frequency : 16.15 MHz bandwidth : 50 - 100 kHz range resolution : 1.5 - 3 km beamforming 12 receive antennas

Problem : coastal erosion!

CODAR

central frequency : 12.5 MHz and 13.5 MHz bandwidth : 100 kHz range resolution : 1.5 km MUSIC direction finding

CODAR 2CODAR 1

Example of currents coverage

Range vs environmental parameters

Maximum range

➔ Pav = average power➔ Gt = transmitting antenna gain➔ Gr = receiving antenna gain➔ F = factor to account for propagation effects➔ λ = wavelength➔ σ = target cross-section➔ Tc = coherent processing time➔ N = noise power per unit bandwidth➔ α = signal-to-noise ratio required for detection➔ L = system losses

Max range determination

Kamli et al (2016)

Range vs Bragg waves energy

Kamli et al (2016)

Range vs radio noise

Kamli et al (2016)

Range vs sea ice concentration

Kamli et al (2016)

Range vs sea ice concentration

Kamli et al (2016)

Currents comparisons between WERA, CODAR, ADCP

and surface drifters

WERA - CODAR comparison

WERA 2

CODAR 2

WERA 2 vs. CODAR 2

WERA 2vs.

ADCP(8-12 m)

CODAR 2vs.

ADCP (8-12 m)

HFRsvs.

ADCP 300 kHz(8-12 m depth)

WERA

CODAR

Why such poor HFR / ADCP comparisons?

WERA

CODAR

Wind < 5 m/s Wind > 5 m/s

Comparisons with surface drifting

buoys

Comparisons with surface drifting buoys

Buoy drogue depth = 0-0.5 m

Comparisons with surface drifting buoys

Buoy drogue depth = 0.5-1 m

Waves comparisons between WERA and wave buoy

Comparisons with wave buoy

Accelerometer (6 Hz)on IML-4 buoy

Comparisons with wave buoy

Comparisons with wave buoy

Comparisons with wave buoy

Comparisons with wave buoy

Future work

Wave measurements in winter :

- comparisons with AWAC

- range dependence on sea ice concentration

Current measurements :

- comparisons with 1200-kHz ADCP on IML-4 buoy (2016)

- comparisons with PAP CODAR with antennas on pier (2016)

- comparisons with near-surface drifters with drogues at different depths (new deployment summer 2017)

Acknowledgments

Jan Buermans, Bruno Cayouette, Fraser Eaton, Noah Hansen, Emna Kamli, Matthias Kniephoff, Julien Robitaille, Mike Scott, Markus Valentin, and Chad Whelan for installation, tuning and maintenance of HF-radars.

Ministère des Transports du Québec, Parc Nature de Pointe-aux-Outardes, Site Historique Maritime de Pointe-au-Père, and Motel Le Gaspésiana for hosting the radars on their land properties.

Ministère des Pêches et des Océans (Maurice-Lamontagne Institute) for moored ADCP data.

Développement Économique Canada pour les régions du Québec (DEC), Fonds de Recherche du Québec - Nature et Technologies (FRQNT), Natural Sciences and Engineering Research Council of Canada (NSERC), and Marine Environmental Observation Prediction and Response Network (MEOPAR) for funding.


Recommended