+ All Categories
Home > Documents > HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling...

HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling...

Date post: 06-Jul-2018
Category:
Upload: dangnhan
View: 218 times
Download: 0 times
Share this document with a friend
39
© MS 1 HICUM model overview HICUM model overview M. Schröter 1,2 , A. Mukherjee 1 , A. Pawlak 1 , Y. Zimmermann 1 1 Chair for Electron Devices and Integr. Circuits, TU Dresden, Germany 2 ECE Dept. UC San Diego, La Jolla, CA, USA 2012 HICUM Workshop Newport Beach, CA 92026
Transcript
Page 1: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview

HICUM model overview

M. Schröter1,2, A. Mukherjee1, A. Pawlak1, Y. Zimmermann1 1Chair for Electron Devices and Integr. Circuits, TU Dresden, Germany

2ECE Dept. UC San Diego, La Jolla, CA, USA

2012 HICUM Workshop

Newport Beach, CA 92026

© MS 1

Page 2: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview

OUTLINE

1 Introduction

2 SiGe HBT modeling overview

3 HICUM basicsParameter extraction

4 Geometry scaling

5 Parameter extraction

6 Applications

7 Conclusions

© MS 2

Page 3: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Introduction

Introduction

• Silicon-based bipolar transistor technology (incl. SiGe HBTs, BiCMOS) enjoys wide-spread use throughout industry

• Latest SiGe HBT development shows clear advantages of HBT over MOSFET for HF applications, especially for coming mm- and submm-wave markets

• Cost efficient circuit design requires accurate and numerically stable compact mod-els in production PDKs

• existing Si-based BJT/HBT technologies’ performance spans from fT = 10...300 GHz, BVCEO from 1.5 ...30V, fTmax = 10...500 GHz,

=> Goals of this presentation: • overview on SiGe HBT compact modeling approaches => why HICUM

• HICUM basics in a nutshell

• application examples in production and prototyping technologies

© MS 3

Page 4: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview SiGe HBT modeling overview

SiGe HBT modeling overviewGoal: Unified compact HBT model (incl. model hierarchy)

process development

circuit design

param. extraction simulatorcompactmodel

• include all physical effects • model parameters without wafers• rapid eval. of process variations • “debugging” of process issues

• EC topology, equations to

• I, Q contin. differentiable• modular, easily extendable

fit in different interfaces• well-defined, fast, reliable• using standard equipment • min. parameter interaction

• accurate, valid over wide range• smooth geom. scaling (for optim.) • computationally fast and reliable • easy to understand

available in all relevant circuit simulators=> numerically stable

production version

standard extraction flow & test structures=> reduced development

effort

⇒ physics-based, geometry scalable, computationally fast model with simple equivalent circuit and fast parameter extraction covering all processes

© MS 4

Page 5: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview SiGe HBT modeling overview

Modeling approaches

Criteria Behavioral, X-par. Physics-basedaccuracy high (within narrow ranges) moderate to high over wide

rangenumerical stability compromised outside fitting

rangeshigh (for standard models)

fabricated devices need every possible layoutused in circuits

only few devices (6 HF trs, 6 test structures)

measurement effort moderate to high moderate to lowpar. extraction effort moderate to low (per device)

very high for librarymoderate to low (per device)very low for library

geometry scaling inconsistent (typically) consistentpredictive capability none moderate to highstatistical modeling none (very high effort) good to excellent

Goal: large variety of applications & circuit optimization (bias, T, f)=> Physics-based model (cuts design cycle, supports process dev.)

© MS 5

Page 6: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview SiGe HBT modeling overview

Existing standard BJT and HBT models• SPICE Gummel-Poon model

• addresses effects present in "70ies" BJT technologies, no HBT effects => subset of HICUM/L0 => to be replaced by HICUM/L0 v1.31

• HICUM/L2, MEXTRAM, VBIC• include some or all SiGe HBT related effects• HICUM [3] includes mm-wave technology related effects in SiGeC HBTs (s. DOTFIVE)

© MS 6

Page 7: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview SiGe HBT modeling overview

Existing standard BJT and HBT models• SPICE Gummel-Poon model

• addresses effects present in "70ies" BJT technologies, no HBT effects => subset of HICUM/L0 => to be replaced by HICUM/L0 v1.31

• HICUM/L2, MEXTRAM, VBIC• include some or all SiGe HBT related effects• HICUM [3] includes mm-wave technology related effects in SiGeC HBTs (s. DOTFIVE)

ijBCx

iBEt

ijSC

iT

RE

B

ijBCi

RCx

E

C

ijBEi

C’

B’

E’

iAVL

CEox

B*

ijBEp

QjCi

iTS

S

CrBi

ΔTj

CthRthP

Csu

Rsu

RBx

S’

eff. internal transistor

T

thermal network

Qr

QjEi Qf

QBCx QdS

QjS

QjEp

,,QBCx,

Rbi*

=> HICUM/L2 v2.3

=> available in 15+ circuit simulators

• physics-based

• large-signal model (charge conservative)

• geometry scalable

• NQS & HF noise correl. adjunct networks not shown here

© MS 7

Page 8: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

HICUM basicsBuilding a compact model

n+

n+ buried layer

p-

p+

n+ sinker

n-epi

SiO2

SiGe

BC

• Step 1: intrinsic transistor operation• along 1D direction under emitter: mostly

nonlinear physical and electrical effects • quasi-static currents and charges• vertical NQS effects, noise correlation

• Step 2: internal transistor• region under emitter => 2D effects• internal base resistance• emitter perimeter effects

• Step 3: external regions• access regions, structural parasitics

⇒ 3D effects

• Step 4: other effects• temperature dependence• noise in the internal and external region• electro-thermal effects

B

2D and 3D effects ⇒ geometry dependence

© MS 8

Page 9: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Transfer current: Generalized ICCR

0.7 0.75 0.8 0.85 0.9 0.9510-3

10-2

10-1

100

101

VB`E` (V)

I T (mA

)

• exact solution of q.s. transport equa-tion over entire 1D transistor region:

• weight factors:

,

• 1D case: hJ = hv = 1

IT c0

VB'E'VT

-----------⎝ ⎠⎛ ⎞ VB'C'

VT-----------⎝ ⎠

⎛ ⎞exp–exp

hg hJ hv pdxxE'

xC'

∫------------------------------------------------------------=

c0 AEqVTμnrnir2=

hgμnrnir

2

μn x( )ni2 x( )

---------------------------= hJJnx x( )IT AE⁄------------------=

hvVB'E' ϕp x( )–

VT-------------------------------⎝ ⎠

⎛ ⎞exp=VBC = 0

rel. error

x device simulationGICCR

- - ideal (classical sol.)

⇒ links charge and current very accurately over wide bias region

© MS 9

Page 10: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Visualization of the GICCR

• split transfer current into components:

• hole charge (in emitter, base, collector region)

• depletion charges:

• minority charges:

iT iTf iTr–=

QpT Qp0 hjEiQjEi vB'E'( ) … hfQf iT vB'E',( )+ + +=

QjEi q CjEi v( ) vd0

vB'E'∫=

QjCi q CjCi v( ) vd0

vB'C'∫=

Qf τf i( ) id0

ITf

∫=

Qr τriTr=VB’E’ Q

QpT

hjEiQjEilog(IT) IT(Qp0+hjEiQjEi)

IT(QpT)

ideal

Qp0 0

impact of charges on transfer current (at VB’C’ = 0)

hfQf

log(ICK)

iT c10 vB'E' VT⁄( ) vB'C' VT⁄( )exp–exp

QpT-----------------------------------------------------------------------------=

C, τ aremeasurable

⇒ approach can be extended to 2D/3D case [WCM05]

© MS 10

Page 11: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Depletion charges and capacitances [3]

-6 -4 -2 00

0.5

1

1.5

VB`C` (V)

CjC

/CjC

0

VDCx=0.77 zx=1.7779 CPT=0.37 25-Jul-

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

VB`E` (V)

CjE

0/CjE

0

VDEx=0.97 zx=0.24317 Vf=0.9025 25-Jul-200

current dependent equ. existing

x device simulation model equation

- - classical equ.

x device simulation model equation

- - classical equ.

VPT

BC depletion capacitance

VDEi

BE depletion capacitance

model: modification at high bias to avoidpole at VDEi

modification includes punch-througheffect at VPT

classical equation:

CjCj0

1 V VD⁄–( )z------------------------------=

charge

=> accurate over wide bias range

© MS 11

Page 12: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Mobile charge and transit time

VC’B’ or VC’E’

τf0

0

Early-effect

BC SCR• transit time is determined from

• analytical description

consists of models for regional components• τB, τBC usually dominate at low to medium cur-

rent densities (ratio varies dep. on coll. profile)

• low current densities: τf0(VB’C’)• Early effect (base region)• BC SCR bias dependence

• high current densities: Δτf(ITf, VB’C’)• BC barrier effect • collector injection zone • emitter component increase

τf dQf dIT⁄ 2πfT( ) 1– ΣCBv( ) gm⁄– τRC–= =

τf ITf VB'C',( ) τf0 VB'C'( ) Δτf ITf VB'C',( )+=

© MS 12

Page 13: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Forward mobile charge and transit time low-current component τf0 (IEEE TED, pp. 288-300, 1999)

Early-effect transit time through BC-SCR

VC’B’ or VC’E’

τf0

0

Early-effect

BC SCR

τfB wB2∼ τBC wBC∼

wB

wBC

⇒ both effects are modeled in HICUM

IC/AE

fT

0

VC’E’1

VC’E’

VC’E’2 < VC’E’3

© MS 13

Page 14: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Mobile charge modeling: critical currentICK indicates “onset” of high-current effects in the collector (Si and Si/SiGe transistors)

• calculated in HICUM from the conditions • Ex = Vceff/wCi at low voltages (cf. curve 3 above)

• Ex(xjc) = Elim at high voltages

• connection by suitable smoothing function

,

• effective CE voltage

• model parameters , ,

fCK x( ) 1 x x2 10 3–++2

-----------------------------------+= xVceff Vlim–

VPT---------------------------=

Vceff VC'E' VCEs VDCi VB'C'–≅–=

Vlim Elim wCi=

VPTqNCi

2ε------------- wCi

2= rCi0wCi

qμnC0NCi AE--------------------------------------=

⇒ physics-based relation and model parameters ⇒ enabling geometry, process, T dependent modeling and transistor sizing

Ilim

ICK

VC’E’

T = const

VlimVCEs0

~1/VPT~1/rCi0

ICKVceffrCi0-----------

fCK x( )

1VceffVlim-----------⎝ ⎠

⎛ ⎞δCK

+1 δCK⁄

----------------------------------------------------=

© MS 14

Page 15: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Intrinsic transistor: base current componentsThe (internal) base current consists of various components

iBi ipEi ijREi+ ijBCi iAVL+ +=

⎧ ⎪ ⎨ ⎪ ⎩ijBEi

• back injection into the emitter (major contribution): ipEi IBEiSvB'E'

mBEiVT------------------

⎝ ⎠⎜ ⎟⎛ ⎞

1–exp=• Model parameters: IBEiS and mBEi

• recombination in BE space charge region: ijREi IREiSvB'E'

mREiVT------------------

⎝ ⎠⎜ ⎟⎛ ⎞

1–exp=• Model parameters: IREiS and mREi

• weak avalanche current (breakdown in BC junction):

iAVL ITfAVLVDCi

Cc1 zCi⁄

-----------------------qAVL

CjCi0VDCi-------------------------Cc

1 zCi⁄ 1–( )–

⎝ ⎠⎜ ⎟⎛ ⎞

exp= with Cc = CjCi(VB’C’)/CjCi0

• Model parameters: fAVL and qAVL

• back injection into the collector: iBCi IBCiSvB'C'

mBCiVT-------------------

⎝ ⎠⎜ ⎟⎛ ⎞

1–exp=• Model parameters: IBCiS and mBCi

© MS 15

Page 16: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Internal base resistance... strongly depends on operating mode

10-3

10-2

10-1

10010

-1

100

101

f/fT

Re(

z BE)

10-3

10-2

10-1

10010

-1

100

101

f/fT

-Im(z

BE)

0 5 10 150.2

0.4

0.6

0.8

1

1.2

IC (mA)

r SB

i/r SB

i0

• DC operation: bias dependence [16]-[19]

RBi rSBi bElE------ gi bE lE,( ) ψdc IBi rSBi bE lE, , ,( )=

geometry func. current crowdingrSBirSBi0-----------

Qp0rQp0r ΔQp+----------------------------≈

conductivity modul.

• large-signal transient operation• slow switching ⇒ use DC RBi • fast switching ⇒ dynamic current crowding

⇒ no compact solution ⇒ distributed model [20]

• small-signal HF operation• analytical solution for negligible DC current crowding

⇒ input impedance [17][18]

• equivalent circuit [21] ⇒ ZB*E’ ZBi lf,RBi

1 jωgωCBRBi+--------------------------------------≈

(negl. in adv. HBTs)

RBi

gωCB

B* B’

Warning: this solution does not apply to large-signal transient operation

© MS 16

Page 17: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Summary of model for internal transistor

QjEi Qf

Qr

iT

ijBCi

iBEi

C’

B’

E’

iAVLQjCi

B’

• internal transistor• equivalent circuit • compact equations for each

element as function of - bias - temperature - emitter dimensions

Ti

• summary of important effects explicitely covered in standard version• BE and BC depletion capacitance forward bias limiting • BC depletion capacitance punch-through• bias and bandgap dependent Early-effect (forward and reverse)• accurate mobile charge model incl. current blocking due to BC conduction band barrier• collector voltage dependent impact ionization (iAVL)• vertical non-quasi-static effects for both charge and transfer current • non-ideal and recombination base current components in• BE perimeter injection transfer current• geometry dependence through effective electrical emitter area

(includes (partial) perimeter components => avoid 2-transistor model, simplify extraction)

RBi

CRBi

iBEti

© MS 17

Page 18: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Emitter perimeter effects and effective emitter area

bE0

lE0

bE

p

n

n+

JnxITi

γC γC

• carrier injection into base (transfer current):

• AE, bE: effective electrical emitter area and width

⇒ internal and perimeter transistor merged into a

single transistor

⇒ single expression for transfer current (rather than 2-transistor model)

• Note: there are still leftover perimeter components for the base currents and depletion charges

IT ITi AE0 ITp , PE0+ ITi AE0 1

ITp ,

ITi

------- PE0 AE0-----------+

⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞

ITi AE

= =

=⎧ ⎨ ⎩

⎧ ⎨ ⎩ITiγC

emitter window dimensions:AE0 = bE0 lE0

PE0 = 2(bE0 + lE0)

© MS 18

Page 19: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

External transistor

ijBCx

QjS

ijSC

RE

B

RCx

E

C

CEpar

QdS

QjEpijBEp

iTS

S

QBCx, QBCx

,,

Csu

Rsu

RBx

S’

Ti

substrate coupling

iBEt E’

B*

each spatial region is represented by a corresponding equivalent circuit element

C

E

BB

• additional effects included and implemented in simulator code:• temperature dependent equations• self-heating (via adjunct network)• noise (including correlation between transfer and dynamic base current)

(for a complete list of relevant physical effects in HBTs and covered by HICUM/L2 but not available in SGPM => see [3][27])

© MS 19

Page 20: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

Modeling the (total) base resistance large variety of geometries and contact configurations to be covered ...

• geometries: wide range of lE/bE

• contact configurations• double/single base B||E, multi/single B⊥E

• 2D simulation of a plane through base under emitter [22]-[25],[19]

• analytical equations rB(geometry, bias)

SiO2

EB

E

B

symmetry line

bsil bp bs bE bsilb

Ifront Iback

Ifore

2D plane

x

y

z

lE/2

lp

lsil

p+ poly

2 vias

lE/bE = 2.6BIB/2

rB

rBi

rBs

© MS 20

Page 21: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview HICUM basics

HICUM/L2 complete equivalent circuit

ijBCx

iBEtp

ijSC

iT

RE

B

ijBCi

RCx

E

C

ijBEi

C’

B’

E’

iAVL

CBEpar2

B*

ijBEp

QjCi

iTS

S

CrBi

ΔTj

CthRthP

Csu

Rsu

RBx

S’

intrinsic transistor

T

thermal networkQr

QjEi Qf

QBCx QdS

QjS

QjEp

,,QBCx,

Rbi*

Inb= 2qIjBEi

Vnb

1S.Vnb

Inc= 2qIT

Vnc

1S.Vnc

1S.VncTb2VncTb1Vnb

Tb1=1+jωτf Bf(2αqf -αIT)

Tb2=jωτf αIT

2 noiselessintrinsic

transistor

noise correlation Qf,nqs

R=τf

Qf,qsτf

αIT

VC1 iT,nqs=VC2

R=τf

VC2τf

iT,qsτf

VC1τf

αQf

αIT3

vertical NQS effects

CBEpar1

iBEti

© MS 21

Page 22: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Geometry scaling

Geometry scaling bipolar transistor structures: dealing with large variety of structures . . .

silicide

becbsbpmbpobKB bKC

n-SICbsic

n+

p+ poly

bE0+bbl

n+ buried layerwj

wCx

bov

p+

n+ sinker

n-epi

ws

wCiwox

bE0

SiO2

SiGe

. . . and layout configurations C E B

CB BEC B BB E E E EEC B CE EC BB

EB CB

EE B C

C

EE B

C

E EB BB

. . . is accomplished by parameter generation and sizing tool TRADICA [30]-[32]

© MS 22

Page 23: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Geometry scaling

Geometry scalable model (parameter) generationdimensions / design rules

© MS 23

Page 24: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Geometry scaling

Model related input: general specific electrical parameters

© MS 24

Page 25: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Geometry scaling

HICUM specific electrical parameters (grouped by function)

© MS 25

Page 26: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Geometry scaling

Model parameter generation

transistor configuration

=> transistor figures of merit (fT, fmax, Fmin)

=> generates hundreds of consistent model cards in a second

© MS 26

Page 27: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Geometry scaling

Model parameter generation example (netlist)* dptest AE0= 1* 0.30* 2.00( 1); NB= 2( ); NC=1(SIDE),lv ;T=300.00;* HICUM/Level2 v2.2 / SPECTR TRADICA A5.3.SUBCKT N030201S02_01 3 2 1 9simulator lang=spectrecbemet 2 1 capacitor c=0.1848E-13ccsmet 3 9 capacitor c=0.3300E-14simulator lang=spiceQ 3 2 1 9 MOD.model MOD bht type=NPN tnom= 26.85 version=2.2 + c10=6.544E-33 qp0=8.449E-15 hjei=1.000E+00 hjci=1.000E+00 hfe=1.000E+00 + hfc=1.000E+00 mcf=1.000E+00 ich=7.041E-03 cjei0=2.464E-15 vdei=9.500E-01 + zei=5.000E-01 ajei=2.500E+00 cjci0=4.034E-16 vdci=8.000E-01 zci=3.333E-01 + vptci=3.780E+00 t0=6.523E-12 dt0h=-1.400E-12 tbvl=1.000E-13 tef0=5.000E-13 + gtfe=2.000E+00 thcs=3.000E-11 ahc=5.000E-01 fthc=6.000E-01 rci0=3.754E+02 + vlim=7.000E-01 vpt=1.000E+01 vces=1.000E-01 latb=3.959E+00 latl=6.759E-01 + tr=1.000E-09 alit=4.500E-01 alqf=2.250E-01 flnqs=1.000E+00 ibeis=1.141E-20 + mbei=1.014E+00 ireis=7.041E-34 mrei=2.000E+00 favl=1.186E-04 qavl=4.225E-15 + ibcis=7.041E-34 mbci=1.000E+00 tbhrec=0.000E+00 rbi0=1.282E+02 fgeo=7.934E-01 + fdqr0=2.000E-01 fcrbi=0.000E+00 fqi=6.132E-01 ibeps=4.839E-20 mbep=1.040E+00 + ireps=2.987E-33 mrep=2.000E+00 ibets=9.742E-05 abet=3.674E+01 + tunode=1.000E+00 cjep0=9.341E-16 vdep=1.000E+00 zep=4.167E-01 ajep=2.000E+00 + cbepar=5.412E-16 fbepar=1.000E+00 rcx=2.949E+01 rbx=2.730E+01 re=4.350E+01 + ibcxs=1.059E-18 mbcx=1.025E+00 cjcx0=2.240E-15 vdcx=7.000E-01 zcx=3.333E-01 + vptcx=1.250E+00 fbcpar=2.221E-02 cbcpar=7.126E-16 cjs0=6.098E-15 + vds=6.000E-01 zs=3.479E-01 vpts=1.000E+02 rsu=0.000E+00 csu=0.000E+00 + itss=0.000E+00 msf=1.100E+00 iscs=0.000E+00 msc=1.050E+00 tsf=0.000E+00 + kf=3.711E-09 af=2.100E+00 vgb=1.110E+00 zetact=4.100E+00 alt0=1.110E-03 + kt0=2.220E-05 zetaci=1.453E+00 alvs=1.000E-03 alces=5.714E-04 alfav=3.300E-05 + alqav=4.400E-06 zetarbi=9.000E-01 zetarbx=1.997E-01 zetarcx=2.237E-01 + zetare=0.000E+00 zetabet=4.900E+00 vge=1.061E+00 vgc=1.175E+00 vgs=1.177E+00 + zetacx=2.500E+00 f1vg=-1.024E-04 f2vg=4.322E-04 rth=1.539E+03 cth=1.950E-09 + flsh=1.000E+00.ENDS N030201S02_01

=> generation of complete libraries in seconds

© MS 27

Page 28: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Parameter extraction

Parameter extraction• strongly impacted by self-heating => carefully been taken into account

model verification

issue: existing on-wafer small- and large-signalcapability insufficient for most advanced HBT technologies

XMOD toolkit

well-defined flow & test structures

=> selected results

© MS 28
Page 29: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Parameter extraction

Modeling results for production technologiesExample for model accuracy: ST SiGe BiCMOS process [37]

IC (mA)VBE (V)

f T (G

Hz)

I C (m

A)

bias and geometry dependence ofcollector current ... ... and transit frequency

⇒ similar results for, e.g., 200GHz(fT) IBM & 300GHz(fT) IHP process, (for more results see [1] and HICUM website [3])

© MS 29

Page 30: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Parameter extraction

... more modeling results Example for HBT model in production PDK:

IC (mA)

NF m

in (d

B)

Gu

(dB

)

unilateral power gain vs. frequency ... and minimumm noise figure vs. frequency

10010 f (GHz)1

VBE

VBE = (0.8, 0.83, 0.86, 0.89)V f = (8, 20, 32, 40)GHz

TowerJazz SiGe BiCMOS process with (fT, fmax) = (240, 270) GHz

⇒ complete results available in PDK documentation

© MS 30

Page 31: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Applications

Applications• HICUM/L2 has been employed for production designs such as

• SiGe PAs (WCDMS, OFDMA)• consumer products: laser drivers for CD/DVD/BD, OC192• GSM and GPS receiver front ends• transceivers for wireless key entry systems• UWB, DBS(SAT), radar, OC768

• During production circuit design, the model enables • selecting optimum ballast resistance (trade-off ruggedness vs. power density)• predicting device and metallization temperatures (identify reliability issues)• predicting optimum TSV placement (for optimizing RF gain)• predicting collector voltage waveforms (long-term reliability)

=> widely used => significant implementation effort (e.g. CMC) => well-proven & extensively tested numerically stable production code

• Examples for industrial applications: mostly proprietary ...• usually only feedback once problems are encountered

© MS 31

Page 32: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Applications

850MHz GSM output cell (RFMD)

850 MHz GSM output cell modelmeasurement

=> good agreement even for

• array of IBM 5PAe HV SiGe HBTs

• 3 E fingers with 0.8*20μm2 each

• total E area = 10000μm2

Simulation with HICUM/L2 • thermal effects • ballasting • ADS • IBM PDK v.1.2.0.2W50• load-pull simulations for finding opti-

mum PAE

very large power levels

© MS 32

Page 33: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Applications

Model availability and usage• HICUM/L2 has been applied to every Si BJT and SiGe HBT process node since

early eighties => continuous model development

• Examples for process technologies and design kit availability

=> spans 0.1 to 0.8μm lithography, 10 to 300 GHz transit frequency• >15 commercial circuit simulators (incl. RF simulators ADS, SPECTRE ...)

foundry →process ↓

IBM TowerJazz ST TFK (Atmel) IHP

Si-BJT10...30GHz

B25BC35

avail. UHF6STSHSB-SOI

HS SiGe 40... 80GHz

5HP? SBC35 BiCMOS6BiCMOS7

SiGe1RFSiGe2RF

SGB25V

HV SiGe 40... 80GHz

5PAe B25 to SBC18

BiCMOS6 to 9

SiGe2PW SGB25V

HS SiGe90... 240GHz

7HP8HP

SBC18variants

BiCMOS9variants

process N/A

planned

HS SiGe≥300 GHz

process N/A

process N/A

process N/A

process N/A

SG13G2

© MS 33

Page 34: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Conclusions

Conclusions• Compact modeling approaches

=> physics-based approach has far more benefits than behavioral modeling

• Overview on state-of-the-art compact HBT model HICUM • most important physical effects in SiGe HBTs• parameter extraction flow• examples for results from production designs

• HICUM/L2 is available in all major commercial circuit simulators and many PDKs

• HICUM/L2 has turned out to be suitable for production circuit design of a large vari-ety of applications, aiding trade-off optimization between performance and reliability

=> accurate modeling aids optimizing process capability (& RoI)

• Issues • large-signal model verification requires significant improvement in on-wafer characterization• insufficient funding for transfer into production, implementation, and (legacy) user support • need to have early enough access to advanced technologies to provide model in time• need to better educate circuit designers when using advanced (mm-wave) technologies

© MS 34

Page 35: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview Acknowledgments

Acknowledgments

Model development• BMBF (financial support)

• German Science Foundation (financial support)

• EU FP7 IP DOTFIVE (financial support)

Users and user support• IHP, Infineon, GCS, Skyworks, ST Microelectronics, TowerJazz (wafer supply)

• Cadence, Mentor Graphics (software)

• Agilent, AIST, Analog Devices, Ansoft, Atmel, IBM, ProPlus Solutions, Qualcomm, Renesas Electronics, RFMD, Samsung, STARC, Synopsys, Texas Instruments (National), TelefunkenSemi, Toshiba, TSMC, UMC

© MS 35

Page 36: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview References (examples only)

References (examples only)[1] M. Schroter and A. Chakravorty, “Compact hierarchical modeling of bipolar transistors with HICUM”, World Scientific, Singapore, ISBN

978-981-4273-21-3, 2010.[2] M. Schroter, “Advanced compact bipolar transistor models - HICUM”, Chapter 8.4 (pp. 807- 823) in “Silicon heterostructure Handbook”,

ed. by J. Cressler, CRC Press NY, 2005.[3] A. Chakravorty and M. Schroter, "HICUM documentation at http://www.iee.et.tu-dresden.de/iee/eb[4] H.K. Gummel and H.C. Poon, "An Integral Charge-Control Model for Bipolar Transistors", BSTJ Vol. 49, 1970, pp. 827-852.[5] G.M. Kull et al., "A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects", IEEE Trans. Electron Dev., Vol.

ED-32, 1985, pp. 1103-1113.[6] C. McAndrew, J.A. Seitchik, D.F. Bowers, M. Dunn, M. Foisy, I. Getreu, M. McSwain, S. Moinian, J. Parker, D.J. Roulston, M. Schröter,

P. v.Wijnen and L.F. Wagner, „VBIC95, the vertical bipolar intercompany model“, IEEE J. Solid-State Circuits, Vol. 31, pp. 1476-1483, 1996.

[7] M. Schröter, M. Friedrich, and H.-M. Rein, „A generalized Integral Charge-Control Relation and its application to compact models for silicon based HBT's“, IEEE Trans. Electron Dev., Vol. 40, pp. 2036-2046,1993.

[8] M. Schroter, “Integral Charge-Control Relations” Chapter A3 (pp. 1181-1208) in “Silicon heterostructure Handbook”, ed. by J. Cressler, CRC Press NY, 2005.

[9] M. Schroter, H. Tran, “Charge-storage related parameter calculations for Si and SiGe bipolar transistors from device simulation”, Proc. WCM, International NanoTech Meeting, Boston (MA), pp. 735-740, 2006.

[10] M. Schröter and T.-Y. Lee, „A physics-based minority charge and transit time model for bipolar transistors“, IEEE Trans. Electron Dev., vol. 46, pp. 288-300, 1999.

[11] J.R. Beale and J.A. Slatter, "The Equivalent Circuit of a Transistor with a Lightly Doped Collector Operating in Saturation", Solid-State Electronics, Vol. 11, 1968, pp. 241-252.

[12] R.J. Whittier and D.A. Tremere, "Current Gain and Cutoff Frequency Falloff at High Current Densities", IEEE Trans. Electron Dev., Vol. ED-16, 1969, pp. 39-57.

[13] J. TeWinkel, "Extended Charge-Control Model for Bipolar Transistors", IEEE Trans. Electron Dev., Vol. ED-20, 1973, pp. 389-394.[14] P.B. Weil and L.P. McNamee "Simulation of Excess Phase in Bipolar Transistors", IEEE Trans. Circ. Syst., Vol. CAS-25, 1978, pp. 114-

116.[15] W.M. Webster, “On the Variation of Junction-Transistor Current-Amplification Factor with Emitter Current”, Proc. IRE, Vol. 42, 1954,

S. 914-920.[16] H.-M. Rein and M. Schröter, „Experimental determination of the internal base sheet resistance of bipolar transistors under forward-bias

conditions“, Solid-State Electron., Vol. 34, pp. 301-308, 1991.

© MS 36

Page 37: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview References (examples only)

References (2)[17] R.L. Pritchard "Two-Dimensional Current Flow in Junction Transistors at High Frequencies", Proc. IRE, Vol. 46 ,1958, pp. 1152-1160.[18] H.N. Ghosh, "A Distributed Model of Junction Transistor and its Application in the Prediction of the Emitter-Base Diode Characteristic,

Base Impedance, and Pulse Response of the Device", IEEE Trans. Electron Dev., Vol. ED-12, 1965, pp. 513-531.[19] H.-M. Rein and M. Schröter, „Base spreading resistance of square emitter transistors and its dependence on current crowding“, IEEE

Trans. Electron Dev., Vol. 36, pp. 770-773, 1989.[20] H.-M. Rein, "Improving the Large Signal Models of Bipolar Transistors by Dividing the Intrinsic Base into two Lateral Sections", Elec-

tronics Lett., Vol. 13, 1977, pp. 40-41.[21] M. Versleijen, "Distributed High Frequency Effects in Bipolar Transistors", Proc. IEEE Bipolar Circuits and Technology Meeting, Min-

neapolis, 1991, pp. 85-88.[22] M. Schröter, „Simulation and modeling of the low-frequency base resistance of bipolar transistors in dependence on current and geome-

try“, IEEE Trans. Electron Dev., Vol. 38, pp. 538-544, 1991.[23] M. Schröter, „Modeling of the low-frequency base resistance of single base contact bipolar transistors“, IEEE Trans. Electron Dev., Vol.

39, pp. 1966-1968, 1992.[24] M. Schroter, J. Krause, S. Lehmann, D. Celi, “Compact layout and bias dependent base resistance modeling for advanced SiGe HBTs”,

IEEE Trans. Electron Devices, Vol. 55, No. 7, pp. 1693-1701, 2008.[25] S. Lehmann, M. Schroter, “Improved layout dependent modeling of the base resistance in advanced HBTs”, Proc. WCM, International

NanoTech Meeting, Boston, pp. 795-800, 2008.[26] H.-M. Rein, "A Simple Method for Separation of the Internal and External (Peripheral) Currents of Bipolar Transistors", Solid-State Elec-

tronics, Vol. 27, 1984, pp. 625-632.[27] M. Schroter, A. Pawlak, P. Sakalas, J. Krause, T. Nardmann, “ SiGeC and InP HBT compact modeling for mm-wave and THz applica-

tions”, inv. paper, CSICS, pp. 181-184, 2011.[28] M. Schroter and D.J. Walkey, „Physical modeling of lateral scaling in bipolar transistors“, IEEE J. Solid-State Circuits, Vol. 31, pp. 1484-

1491, 1996 and Vol. 33, p. 171, 1998.[29] M. Schroter, H. Tran, “Two-/three-dimensional GICCR for Si/SiGe bipolar transistors” Proc. WCM, International NanoTech Meeting,

Anaheim (CA), pp. 99-104, 2005.[30] M. Schröter, H.-M. Rein, W. Rabe, R. Reimann, H.-J. Wassener and A. Koldehoff, „Physics- and process-based bipolar transistor mod-

eling for integrated circuit design“, IEEE Journal of Solid-State Circuits, Vol. 34 , pp. 1136-1149, 1999. [31] P. Sakalas, J. Herricht, M. Ramonas, M. Schroter, "Noise modeling of advanced technology high speed SiGe HBTs”, Proc. BCTM, pp.

169-172, 2010. [32] A. Pawlak, M. Schröter, J. Krause, D. Céli and N. Derrier, “HICUM/2 v2.3 Parameter Extraction for Advanced SiGe-Heterojunction Bi-

polar Transistors”, Proc IEEE BCTM, pp. 195-198, 2011.

© MS 37

Page 38: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview References (examples only)

References (3)[33] M. Schröter and B. Ardouin, “The HiCuM bipolar transistor model”, Chapter 8 in G. Gildenblat (ed.), Compact Modeling: Principles,

Techniques and Applications, Springer, 2010.[34] P. Sakalas, M. Ramonas, M. Schroter, C. Jungemann, A. Shimukovitch and W. Kraus, “Impact Ionization Noise in SiGe HBTs: compar-

ison of device and compact modeling with experimental results”, submitted for publication. [35] M. Schroter, S. Lehmann, S. Fregonese, T. Zimmer, “A Computationally Efficient Physics-Based Compact Bipolar Transistor Model for

Circuit Design—Part I: Model Formulation”, IEEE Trans. Electron Dev., Vol. 53, pp. 279-286, 2006. S. Fregonese, S. Lehmann, T. Zimmer, M. Schroter, D. Celi, B. Ardouin, H. Beckrich, P. Brenner, W. Kraus, “A Computationally Efficient Physics-Based Compact Bipolar Transistor Model for Circuit Design—Part II: Parameter Extraction and Experimental Results”, IEEE Trans. Electron Dev., Vol. 53, pp. 287- 295, 2006.

[36] M. Rickelt and H.-M. Rein, “A novel transistor model for simulating avalanche-breakdown effects in Si bipolar circuits“, IEEE J. Solid-State Circuits, Vol. 37, 2002, pp. 1184-1197. See also: M. Rickelt, “Modeling the breakdown behavior of Si/SiGe bipolar transistors in high-speed integrated circuits“, Ph.D. thesis (in German), Ruhr-University Bochum, Germany, 2004.

[37] D. Berger, "Study and evaluation of a bipolar transistor model for applications at high frequencies", (in French), Ph.D. thesis, University of Bordeaux, 2004.

[38] R. Mallardi, K. Newton, M. Schroter, “Development and design kit integration of a scalable and statistical HIgh CUrrent Model for ad-vanced SiGe HBTs”, Proc. WCM, International NanoTech Meeting, Boston (MA), pp. 729-734, 2006.

[39] Ramana M. Malladi, Vuk Borich, Susan L.Sweeney, Jay Rascoe, Kim M. Newton, Sonal Venkatadri, Jian Yang and Steve Chen, "Two-Tone Distortion Modeling for SiGe HBTs Using the High-Current Model", Proc. WCM, International NanoTech Meeting, Boston, pp. 729-734, 2006.

[40] "EU project targets 0.5-THz SiGe bipolar transistor", EE Times Europe print edition covering March 17 – April 6, 2008. see also DOT-FIVE website: http://www.dotfive.eu/

[41] J. M. Lopez-Gonzalez, M. Schroter,”Study of emitter width effects on ßF, fT, and fmax of 200 GHz SiGe HBTs by DD, HD and EB device simulation”, Semicond. Sci. Technol, 24, 115005 (7 pages), 2009.

[42] S. Decoutere, S. Van Huylenbroeck, B. Heinemann , A. Fox, P. Chevalier , A. Chantre, T. Meister, K. Aufinger, M. Schröter, “Advanced Process Modules and Architectures for Half-Terahertz SiGe:C HBTs” (inv. paper), IEEE BCTM, pp. 9-16, 2009.

[43] A. Pawlak, M. Schröter, J. Krause, G. Wedel, C. Jungemann, “On the feasibility of 500 GHz Silicon-Germanium HBTs”, SISPAD, San Diego, CA, pp. 27-30 , 2009.

[44] S. Decoutere, S. Van Huylenbroeck, B. Heinemann, A. Fox, P. Chevalier, A. Chantre, T. Meister, K. Aufinger, M. Schröter, „Pushing the speed limits of SiGe:C HBTs up to 0.5 Terahertz”, IEEE 2009 Custom Integrated Circuits Conference (CICC), pp. 347-354, 2009.

[45] J. Jacob, A. DasGupta, M. Schröter, A. Chakravorty, "Modeling Non-Quasi-Static Effects in SiGe HBTs", IEEE Trans. Electron Dev., Vol. 57, No. 7, pp. 1559-1566, 2010.

© MS 38

Page 39: HICUM model overview - TU Dresden model overview OUTLINE 1 Introduction ... smooth geom. scaling (for optim.) ... conductivity modul.

HICUM model overview References (examples only)

[46] M. Al-Sa'di, V. d’Alessandro, S. Fregonese, S.-M. Hong, C. Jungemann, C. Maneux, I. Marano, A. Pakfar, N. Rinaldi, G. Sasso, M. Schröter, A. Sibaja-Hernandez, C. Tavernier, and G. Wedel, "TCAD simulation and development within the European DOTFIVE project on 500GHz SiGe:C HBT’s", European Microwave Conf., pp. 29-32, 2010.

[47] B. Ardouin, C. Raya, M. Schroter, A. Pawlak, D. Céli, F. Pourchon, K. Aufinger, T. F. Meister, T. Zimmer, "Modeling and Parameter Extraction of SiGe:C HBT's with HICUM for the Emerging Terahertz Era", European Microwave Conf., pp. 25-28, 2010.

[48] G. Wedel, M. Schroter, “Hydrodynamic simulations for advanced SiGe HBTs”, CMRF, Proc. BCTM, pp. 237-244, 2010.[49] P. Sakalas, J. Herricht, M. Ramonas, M. Schroter, "Noise modeling of advanced technology high speed SiGe HBTs”, Proc. BCTM, pp.

169-172, 2010. [50] A. Rumiantsev, P. Sakalas, F. Pourchon, P. Chevalier, N. Derrier, M. Schroter, “Application of On-Wafer Calibration Techniques for Ad-

vanced High-Speed BiCMOS Technology”, Proc. BCTM, pp. 98-104, 2010. [51] J. Lopez-Gonzalez, P. Sakalas, M. Schroter, “Analytical modeling of 200 GHz SiGe HBT high frequency noise parameters “, Sol.-St.

Technol., Vol. , pp. 105011 (10p), 2010.[52] A. Shimukovitch, P. Sakalas, P.Zampardi, M. Schroter and A. Matulionis, “Investigation of electron delay in the base on noise perfor-

mance in InGaP HBTs”, Physica Status-Solidi, Vol., pp. 335-337, 2010.[53] S. Lehmann, M. Weiss, Y. Zimmermann, A. Pawlak, K. Aufinger, M. Schroter, “Scalable Compact Modeling for SiGe HBTs suitable for

Microwave Radar Applications", Dig. IEEE SiRF, Phoenix (AZ), pp. 113-116, Jan. 2011.[54] T. Nardmann, S. Lehmann, M. Schroter, “Application of HICUM/L0 to InP DHBTs using single-transistor parameter extraction”, 23rd

Int. Conf. on Indium Phosphide and Rel. Mat., Berlin, Germany, 4 pages, May 2011. [55] A. Pawlak, M. Schröter, A. Mukherjee, S. Lehmann, S. Shou, D. Celi, “Automated Model Complexity Reduction using the HICUM Hi-

erarchy”, IEEE SCD, 4 pages, 2011.[56] K. Moebus, Y. Zimmermann, G. Wedel, M. Schröter, “Thermal Modeling of BOX/DTI enclosed Power Devices with Green’s Function

Approach”, IEEE SCD, 4 pages, 2011.[57] A. Pawlak, M. Schröter, J. Krause, D. Céli and N. Derrier, “HICUM/2 v2.3 Parameter Extraction for Advanced SiGe-Heterojunction Bi-

polar Transistors”, Proc IEEE BCTM, pp. 195-198, 2011. [58] M. Schroter, A. Pawlak, P. Sakalas, J. Krause, T. Nardmann, “ SiGeC and InP HBT compact modeling for mm-wave and THz applica-

tions”, inv. paper, CSICS, pp. 181-184, 2011.[59] M. Schroter, G. Wedel, B. Heinemann, C. Jungemann, J. Krause, P. Chevalier, A. Chantre, “Physical and electrical performance limits of

high-speed SiGeC HBTs - Part I: Vertical scaling”, IEEE Trans. Electron Dev., Vol. 58, No. 11, pp. 3687-3696, 2011.[60] M. Schroter, J. Krause, N. Rinaldi, G. Wedel, B. Heinemann, P. Chevalier, A. Chantre, “Physical and electrical performance limits of

high-speed SiGeC HBTs - Part II: Lateral scaling”, IEEE Trans. Electron Dev., Vol. 58, No. 11, pp. 3696-3706, 2011.[61] M. Schroter, S. Chaudhry, J. Zheng, A. Mukherjee, A. Pawlak, S. Lehmann, “SiGe HBT compact modeling for production-type circuit

design” (inv.), Proc. SiRF, pp. 129-132, 2012.

© MS 39


Recommended