+ All Categories
Home > Documents > Higgs and beyond at the LHC with a little help from QCD - CERN...Higgs boson. W+ W− H 2i M2 W v...

Higgs and beyond at the LHC with a little help from QCD - CERN...Higgs boson. W+ W− H 2i M2 W v...

Date post: 14-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
102
Higgs and beyond at the LHC with a little help from QCD Gavin Salam CERN, Princeton University & LPTHE/CNRS (Paris) MIT Physics Colloquium 6 September 2012
Transcript
  • Higgs and beyond at the LHCwith a little help from QCD

    Gavin Salam

    CERN, Princeton University & LPTHE/CNRS (Paris)

    MIT Physics Colloquium6 September 2012

  • The LHC has been colliding protons since late 2009

    The world’s largest fundamental physics endeavour

    Involving O (10 000) scientists and engineersFrom about 60 countries across the worldAt a cost of several billion US dollars

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 2 / 40

  • The scales at play[Introduction]

  • The scales at play[Introduction]

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    Nuc

    l. P

    hys.

    Che

    mis

    try

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    1 century

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    1 century

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    LHC

    tµ τneutrinos e

    ud s cb

  • The scales at play[Introduction]

    happens here...get clues as to what

    The hope:

    matter−antimatter asymmetry+ other questions, e.g.

    nature of dark matter/energy

    Nuc

    l. P

    hys.

    Che

    mis

    try

    Fla

    v. fa

    ctor

    ies

    Tev

    atro

    n

    neutrinoexperiments

    LHC

    tµ τneutrinos e

    ud s cb

  • The Standard Model[Higgs mechanism]

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 5 / 40

  • The Standard Model[Higgs mechanism]

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 5 / 40

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

    Z-boson fields

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

    gauge coupling Z-boson fields

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

    gauge coupling

    scalar field

    Z-boson fields

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

    gauge coupling

    scalar field

    Z-boson fields

    0 v

    V(φ)

    φPotential for scalar field is

    V (φ) = −µ2φ2 + λφ4

    Universe lives at minimum of poten-tial, φ ≃ v . Rewrite φ in terms ofperturbations H around minimum

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

    gauge coupling

    scalar field

    Z-boson fields

    0 v

    V(φ)

    φ

    Minimum of potential at

    φ = v ≡√

    µ2

    Potential for scalar field is

    V (φ) = −µ2φ2 + λφ4

    Universe lives at minimum of poten-tial, φ ≃ v . Rewrite φ in terms ofperturbations H around minimum

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

    gauge coupling

    scalar field

    Z-boson fields

    0 v

    V(φ)

    φ

    Minimum of potential at

    φ = v ≡√

    µ2

    Potential for scalar field is

    V (φ) = −µ2φ2 + λφ4

    Universe lives at minimum of poten-tial, φ ≃ v . Rewrite φ in terms ofperturbations H around minimum

    φ ≡ v +H → φ2 = v2 +2vH +H2H is the Higgs-boson field

  • Higgs/ABEHGHK’tH in an (oversimplified) slide[Higgs mechanism]

    Among the terms in theStandard Model Lagrangian:

    g2w

    φ2 ZµZµ

    gauge coupling

    scalar field

    Z-boson fields

    0 v

    V(φ)

    φ

    Minimum of potential at

    φ = v ≡√

    µ2

    Potential for scalar field is

    V (φ) = −µ2φ2 + λφ4

    Universe lives at minimum of poten-tial, φ ≃ v . Rewrite φ in terms ofperturbations H around minimum

    φ ≡ v +H → φ2 = v2 +2vH +H2H is the Higgs-boson field

    g2wφ2ZµZ

    µ → g2wv2︸ ︷︷ ︸

    Z mass2

    ZµZµ + 2g2w v

    ︸ ︷︷ ︸

    HZZ coupling

    HZµZµ

    Mechanism generatesparticle masses

    And a “Higgs” boson

  • A similar mechanism holds for fermions, with a Yukawa coupling yf ,yf φf f̄ → yf v f f̄

    ︸ ︷︷ ︸

    fermion mass

    + yf H f f̄︸ ︷︷ ︸

    interaction

    Higgs mechanism gives massto all fundamental particles(except maybe neutrinos).

    It predicts characteristic rela-tionship between their massesand their interactions with theHiggs boson.

    W+

    W−

    H

    2iM2Wv

    gµν

    Z

    ZH

    2iM2Zv

    gµν

    f

    f_

    Himfv

    v ≃ 246 GeV is known as vacuum expectation value of Higgs field

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 7 / 40

  • Higgs Mass ↔ no-lose proposition[Higgs mechanism]

    V (φ) = −µ2φ2 + λφ4 −→ MH =√2λv

    quartic coupling λ unknown, so no prediction about Higgs mass

    Still, strong arguments say

    ◮ it cannot be below 70 GeV, because λ too small — renormalisation groupevolution drives it negative and our universe is unstable

    ◮ if MH & 800 GeV, λ is large and we see new non-perturbative physics at∼ 1 TeV

    So ideally build a collider that can discover Higgs-boson upto 800 GeV and perform WW scattering up to ≃ 1 TeV

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 8 / 40

  • LHC concept got serious in first half of 80’s[LHC]

    From the CERN Courier in 1984:

    The installation of a hadron collider inthe [27km] LEP tunnel, using supercon-ducting magnets, has always been fore-seen by ECFA and CERN as the naturallong term extension of the CERN facili-ties beyond LEP. [...]

    Although the installation of such ahadron collider in the LEP tunnel mightappear still a long way off [...], it [is] anopportune moment for ECFA, in collabo-ration with CERN, to organize a ’Work-shop on the Feasibility of a Hadron Col-lider in the LEP Tunnel’ [...]

    E ∝ BR

    ring radius R ∼ 4×Tevatronsuperconduction magnets: B = 8 T

    (2× Tevatron)

    Tevatron ∼ 2∼ 2∼ 2TeV −→−→−→ LHC ∼ 14∼ 14∼ 14TeVGavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 10 / 40

  • Interconnection betweentwo “dipoles” (bendingmagnets) in the LHCtunnel.

  • Cryogenics plant: 96 000 kg of Helium circulate through the machine at 1.9K

  • The detectors:

    To accumulate 5× 1016 collisions over a few years, theyhave to be able to handle a pp collision rate of 109Hz

    [25 collisions every 25 ns]

    Typically, about 100 000 000 channels to read out.[must be examined 40 000 000 times/s,

    interesting events written to long-term storage ∼400–1000 times/s]

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 13 / 40

  • ATLAS: general purpose CMS: general purpose

    ALICE: heavy-ion physics LHCb: B-physics

    + TOTEM, LHCf

  • HIGGSPRODUCTION CHANNELS

    (always indirect, because H couples

    only weakly to light quarks)

    cross section ≃ 20 pb∼ 1 Higgs every 5× 109 pp collisions

    [for mH = 125.5 GeV]

    protonproton

    gluon gluon

    Higgs

    top

    87%

    W+ W−Z Z

    quarkquark

    Higgs

    or

    7%

    5%

    quarkantiquark

    W or Z Higgs

    0.6%

    gluon gluon

    topanti−top

    Higgs

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 15 / 40

  • DECAY CHANNELS[for mH = 125.5 GeV]

    WW and ZZ suppressed relative to

    simple coupling proportionality,

    because they cannot be produced

    on-shell

    Best channels for detection areγγ and ZZ ∗(→ 4e, µ), becauseof excellent experimental massresolution and manageable

    backgrounds

    b57%

    b

    Z Z * 2.8%

    0.01% for 4 e, µ

    6%τ+ τ−

    0.2%

    photonphoton

    top

    photonphotonW

    W W

    22%W W*

    1% for 2 e, µ + 2ν

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 16 / 40

  • γγ pair invariant mass distribution[Higgs searches]

    100 110 120 130 140 150 160

    Eve

    nts

    / 2 G

    eV

    500

    1000

    1500

    2000

    2500

    3000

    3500 ATLAS

    γγ→H

    Data

    Sig+Bkg Fit

    Bkg (4th order polynomial)

    -1Ldt=4.8fb∫=7 TeV, s-1Ldt=5.9fb∫=8 TeV, s

    (a)

    =126.5 GeV)H

    (m

    100 110 120 130 140 150 160

    Eve

    nts

    - B

    kg

    -200-100

    0100200

    (b)

    100 110 120 130 140 150 160

    wei

    ghts

    / 2

    GeV

    Σ

    20

    40

    60

    80

    100Data S/B Weighted

    Sig+Bkg Fit

    Bkg (4th order polynomial)

    =126.5 GeV)H

    (m

    (c)

    [GeV]γγm100 110 120 130 140 150 160

    w

    eigh

    ts -

    Bkg

    Σ -8-4048

    (d)

    (GeV)γγm110 120 130 140 150S

    /(S

    +B

    ) W

    eig

    hte

    d E

    ve

    nts

    / 1

    .5 G

    eV

    0

    500

    1000

    1500

    Data

    S+B Fit

    B Fit Component

    σ1±

    σ2±

    -1 = 8 TeV, L = 5.3 fbs

    -1 = 7 TeV, L = 5.1 fbsCMS

    (GeV)γγm120 130

    Eve

    nts

    / 1

    .5 G

    eV

    1000

    1500

    Unweighted

  • ZZ ∗ (4-lepton) invariant mass distribution[Higgs searches]

    [GeV]4lm100 150 200 250

    Eve

    nts/

    5 G

    eV

    0

    5

    10

    15

    20

    25

    -1Ldt = 4.8 fb∫ = 7 TeV: s-1Ldt = 5.8 fb∫ = 8 TeV: s

    4l→(*)ZZ→H

    Data(*)Background ZZ

    tBackground Z+jets, t

    =125 GeV)H

    Signal (m

    Syst.Unc.

    ATLAS

    ✽� ✶�� ✶✁� ✶✂� ✶✄� ✶✽��

    ✶�

    ✶✁

    ✶✂

    ✶✄❉☎✆☎

    ❩✝✞

    ✯✟ ❩❩✤❩

    ❂✠✡☛ ☞✌✍❍♠

    ❈✎❙✲✏✥ ✑ ✒❡✓✱ ▲ ✥ ✺✔✸ ❢✕s✲✏✥ ✖ ✒❡✓✱ ▲ ✥ ✺✔✗ ❢✕s

    ✘✙✚✛✜✢✣✦✧★ ✦✢★ ✦✩★

    ❊✪✫✬✭✮✰✳✴✫✵

    ❁ ❃ ✷❄❀❅❑

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 18 / 40

  • Significance of the “bumps”?[Higgs searches]

    p0 value = probability background fluctuated to produce observed “bumps”.

    [GeV]Hm110 115 120 125 130 135 140 145 150

    0L

    oca

    l p

    -1110

    -1010

    -910

    -810

    -710

    -610

    -510

    -410

    -310

    -210

    -110

    1

    Obs. Exp.

    σ1 ±-1Ldt = 5.8-5.9 fb∫ = 8 TeV: s-1Ldt = 4.6-4.8 fb∫ = 7 TeV: s

    ATLAS 2011 - 2012

    σ0σ1σ2

    σ3

    σ4

    σ5

    σ6

    (GeV)Hm116 118 120 122 124 126 128 130

    Local p-v

    alu

    e-1210

    -1110

    -1010

    -910

    -810

    -710

    -610

    -510

    -410

    -310

    -210

    -110

    11

    2

    3

    4

    5

    6

    7

    Combined obs.

    Expected for SM H

    = 7 TeVs

    = 8 TeVs

    CMS-1

    = 8 TeV, L = 5.3 fbs-1

    = 7 TeV, L = 5.1 fbs

    ZZ✣ + H ✢✢✣ H

    ≥ 5σ≥ 5σ≥ 5σ: OBSERVATION OF A NEW PARTICLEBY BOTH ATLAS AND CMS!

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 20 / 40

  • Properties of this new “Higgs-like” particle[Higgs searches]

    ◮ decay to γγ indicates either spin 0 or 2data by end of year should pin down spin and parity

    ◮ Mass: ATLAS: 126.0± 0.4± 0.4 GeVCMS: 125.3± 0.4± 0.5 GeV

    ◮ Couplings to other SM particles (key prediction of Higgs mechanism)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 21 / 40

  • Properties of this new “Higgs-like” particle[Higgs searches]

    ◮ decay to γγ indicates either spin 0 or 2data by end of year should pin down spin and parity

    ◮ Mass: ATLAS: 126.0± 0.4± 0.4 GeVCMS: 125.3± 0.4± 0.5 GeV

    ◮ Couplings to other SM particles (key prediction of Higgs mechanism)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 21 / 40

  • Properties of this new “Higgs-like” particle[Higgs searches]

    ◮ decay to γγ indicates either spin 0 or 2data by end of year should pin down spin and parity

    ◮ Mass: ATLAS: 126.0± 0.4± 0.4 GeVCMS: 125.3± 0.4± 0.5 GeV

    ◮ Couplings to other SM particles (key prediction of Higgs mechanism)

    )µSignal strength (

    -1 0 1

    Combined

    4l→ (*) ZZ→H

    γγ →H

    νlν l→ (*) WW→H

    ττ →H

    bb→W,Z H

    -1Ldt = 4.6 - 4.8 fb∫ = 7 TeV: s-1Ldt = 5.8 - 5.9 fb∫ = 8 TeV: s

    -1Ldt = 4.8 fb∫ = 7 TeV: s-1Ldt = 5.8 fb∫ = 8 TeV: s

    -1Ldt = 4.8 fb∫ = 7 TeV: s-1Ldt = 5.9 fb∫ = 8 TeV: s

    -1Ldt = 4.7 fb∫ = 7 TeV: s-1Ldt = 5.8 fb∫ = 8 TeV: s

    -1Ldt = 4.7 fb∫ = 7 TeV: s

    -1Ldt = 4.6-4.7 fb∫ = 7 TeV: s

    = 126.0 GeVHm

    0.3± = 1.4 µ

    ATLAS 2011 - 2012

    SM/Best fit

    -1 0 1 2 3

    bb✣H

    ✢✢✣H

    WW✣H

    ZZ✣H

    ✜✜✣H

    CMS-1

    = 8 TeV, L = 5.3 fbs-1

    = 7 TeV, L = 5.1 fbs

    = 125.5 GeVH

    m

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 21 / 40

  • Interpretations. . .[Higgs searches]

    Fits to underlying couplings Stability of universe at Mplanck

    Degrassi et al

    Since the discovery, a slew of papers have discussed couplings,proposed new physics explanations of deviations, etc.

    The forthcoming installments of data will tell us more.

  • Behind the scenes. . .

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 23 / 40

  • Oneof

    theenablers

    fortheLHC’ssuccess

    isourunderstan

    dingof

    the

    stronginteraction

    Quantum

    Chromodynamics

    —QCD

    0

    0.2

    0.4

    0.6

    0.8 1

    fraction of ATLAS & CMS papers that cite them

    Papers com

    monly cited by A

    TLA

    S and C

    MS

    as of 2012−06−

    28, from ’papers’, excluding self−

    citations

    Plot by GP Salam based on data from ATLAS, CMS and INSPIREHEP

    Pythia 6.4 MCGEANT4Anti−kt jet alg.CTEQ6 PDFs

    Herwig 6 MCALPGENCTEQ6.6 PDFsMSTW2008 PDFs

    MC@NLOJIMMYRPP2010LO* PDFsPOWHEG (2007)

    MadGraph4MC@NLO heavy−flavour

    FastJetHerwig++ MCCT10 PDFsFEWZ NNLOCL(s) techniqueLHC MachineZ1 UE TunePythia 8.1PDF4LHC

    QC

    D

    Gavin

    Salam

    (CERN/Prin

    ceton/Paris)

    Higgs@

    LHC

    andQCD

    MIT

    2012-09-06

    24/40

  • Rough combination of ATLAS and CMS H → γγ signal strengths: they see1.6± 0.3 times the standard model expectation — a little high, but stillconsistent

    The standard-model cross section for gluon-fusion Higgs production iswritten as a perturbative expansion in powers of the strong couplingconstant, with a leading-order (LO) term:

    Higgs productioncross section

    gluon gluon

    Higgs

    top

    number of colliding gluon pairsper pp collision ~ 100

    Higgs field vacuum expectation value

    strong coupling constant ~ 0.11

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 25 / 40

  • If ATLAS and CMS had used the previous page’s formula they would havefound

    σobservedσLO

    = 5.6± 1.1

    This would have been a strong sign (4σ) of physics beyond the standardmodel!

    Where’s the catch? Higher orders of QCD perturbation theory:

    σgg→H = σLO(1 + 11.4αs + 63α

    2s + · · ·

    )

    = σLO (1 + 1.27 + 0.79 + · · · )≃ σLO × 3.4

    NLO: Dawson ’91; Djouadi, Spira & Zerwas ’91

    NNLO: Harlander & Kilgore ’02; Anastasiou & Melnikov ’02; Ravindran, Smith & van Neerven ’03

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 26 / 40

  • If ATLAS and CMS had used the previous page’s formula they would havefound

    σobservedσLO

    = 5.6± 1.1

    This would have been a strong sign (4σ) of physics beyond the standardmodel!

    Where’s the catch? Higher orders of QCD perturbation theory:

    σgg→H = σLO(1 + 11.4αs + 63α

    2s + · · ·

    )

    = σLO (1 + 1.27 + 0.79 + · · · )≃ σLO × 3.4

    NLO: Dawson ’91; Djouadi, Spira & Zerwas ’91

    NNLO: Harlander & Kilgore ’02; Anastasiou & Melnikov ’02; Ravindran, Smith & van Neerven ’03

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 26 / 40

  • Corrections to total σgg→H are tip of QCD iceberg

    Experimental searches break analysisinto sub-channels, which can differ interms of signal process, backgrounds,resolutions, etc. Need QCD predic-tions in each sub-channel.

    W+ W−

    quarkquark

    Higgs

    gluon gluon

    Higgs

    top

    One or richest aspects of this kind of event characterization involves jets,which help count the number of energetic quarks and gluons in an event.

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 27 / 40

  • Quarks & gluons? We only ever see “jets”[Jets]

    q

    q

    Start off with quark and anti-quark, qq̄

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 28 / 40

  • Quarks & gluons? We only ever see “jets”[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ αsdE

    E

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    θ

    q

    q

    A quark never survives unchangedit always emits a gluon (usually low-energy, at small angles)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 28 / 40

  • Quarks & gluons? We only ever see “jets”[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ αsdE

    E

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    q

    q

    Each gluon radiates a further gluon

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 28 / 40

  • Quarks & gluons? We only ever see “jets”[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ αsdE

    E

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    q

    q

    And so forth

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 28 / 40

  • Quarks & gluons? We only ever see “jets”[Jets]

    In perturbative quantum chromody-namics (QCD), probability that aquark or gluon emits a gluon:

    ∼ αsdE

    E

    θ

    Diverges for small gluon energies E

    Diverges for small angles θ

    q

    q

    And then a non-perturbative transition occurs

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 28 / 40

  • Quarks & gluons? We only ever see “jets”[Jets]

    jet

    jet

    q

    q

    π, K, p, ...

    Giving a pattern of hadrons that “remembers” the gluon branchingHadrons mostly produced at small angle wrt qq̄ directions or with low energy

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 28 / 40

  • Jets made systematic: jet definitions[Jets]

    jet 1 jet 2

    LO partons

    Jet Def n

    jet 1 jet 2

    Jet Def n

    NLO partons

    jet 1 jet 2

    Jet Def n

    parton shower

    jet 1 jet 2

    Jet Def n

    hadron level

    π π

    K

    p φ

    LHC events may be discussed in terms of quarks, quarks+gluon, or hadrons

    A jet definition provides common representation of different “levels” ofevent complexity.

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 29 / 40

  • A $100 000 000, 20-year old problem[Jets]

    QCD theorists have spent the past 10–15 years making accuratecalculations of signals and backgrounds at the LHC, many of them with jets(with remarkable advances in field theory on the way)

    O (100) people × 10 years ≃ $100 000 000

    Problem 1: the jet definitions originally foreseen by LHC experiments werenot compatible with these calculations — they “leaked” infinities:

    σ = σLO(1 + c1 αs + c2 α

    2s +∞∞∞α3s + · · ·

    )

    Problem 2: the jet definitions advocated by theorists since 1990’s hadbeen mostly shunned by proton-collider experiments

    a) bad response to experimental noiseb) severe computational issues (1 minute/event ×1010 recorded events)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 30 / 40

  • Solving the jets problem[Jets]

    Discovered a link between QCD jet-finding and problemsof 2D computational geometry

    Cacciari & GPS ’05

    Jet clustering reduces to 2D dynamic nearest neighbour problem

    time to cluster N particles reduced from N3 → N lnN (or N 32 )

    Developed a theory of the interplay between jet-finding,

    QCD radiation and experimental noiseCacciari, GPS & Soyez ’08

    A crucial element was linearity of response

    Spin-off applications for γ and lepton ID in Higgs searches

    Proposed a new jet-definition based on what we’d learntanti-kt

    Cacciari, GPS & Soyez ’08

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 31 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Anti-kt algorithm[Jets]

    simple agglomerative clustering algorithm

    repeatedly cluster objects with smallest dij =∆R2ij

    max(k2ti , k2tj)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 32 / 40

  • Coefficient of “infinity”

    10-5 10-4 10-3 10-2 10-1 1

    Fraction of hard events failing IR safety test

    JetClu

    SearchCone

    PxCone

    MidPoint

    Midpoint-3

    Seedless [SM-pt]

    Seedless [SM-MIP]

    Anti-Kt, SISCone

    50.1%

    48.2%

    16.4%

    15.6%

    9.3%

    1.6%

    0.17%

    0 (none in 4x109)

    Safe for perturbative QCD:No infinities

    Speed

    10-4

    10-3

    10-2

    10-1

    1

    10

    102

    102 103 104 105t

    [s]

    N

    time to cluster N particles

    OLD

    : KtJ

    et (s

    afe

    for t

    heor

    y)

    OLD

    : CDF

    JetCl

    u (ver

    y un

    safe)

    NEW

    : Fas

    tJet a

    nti-k t

    LHC lo-lumi LHC hi-lumi LHC Pb-Pb

    ∼ 1000 times faster than previouscodes

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 33 / 40

  • anti-kt used in nearly all jetmeasurements at the LHC

    → possible to make accuratepredictions for range of

    measurements, including Higgs

    allowing the experiments to pindown Higgs couplings moreaccurately in years to come

    e.g.: fraction of Higgs eventsthat pass a “jet veto,” which

    matters for measuring H → WW

    ε(p t

    ,vet

    o)

    gg → H, mH = 125 GeV

    NNLO

    NNLL+NNLO

    HqT-rescaled POWHEG + Pythia 0.2

    0.4

    0.6

    0.8

    1

    pp, 8 TeVmH /4 < µR,F , Q < mH , schemes a,b,cMSTW2008 NNLO PDFsanti-kt, R = 0.5Pythia partons, Perugia 2011 tune

    ε(p t

    ,vet

    o) /

    ε cen

    tral

    (pt,v

    eto)

    pt,veto [GeV]

    0.8

    0.9

    1

    1.1

    1.2

    10 20 30 50 70 100

    Banfi, Monni, GPS & Zanderighi ’12

    cf. talk tomorrow by Pier Monni

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 34 / 40

  • QCD is, in part, about predicting properties of collisions

    But also about devising techniques to carry out more

    effective searches

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 35 / 40

  • H → bb̄ (57% of decays) v. hard to see[Jet substructure]

    Best hope is pp → W±H (and ZH), W± → ℓ±ν, H → bb̄.

    e,µ

    b

    νb

    H

    W

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 36 / 40

  • H → bb̄ (57% of decays) v. hard to see[Jet substructure]

    Best hope is pp → W±H (and ZH), W± → ℓ±ν, H → bb̄.

    pp → WH → ℓνbb̄ + bkgds

    ATLAS TDR

    Conclusion (ATLAS TDR):

    “The extraction of a signal from H → bb̄decays in the WH channel will be verydifficult at the LHC, even under the mostoptimistic assumptions [...]”

    Low efficiency, huge backgrounds, e.g. tt̄

    NB: Evidence of this channel seen recently

    at Tevatron, but similar difficulties

    e,µ

    b

    νb

    H

    W

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 36 / 40

  • H → bb̄ (57% of decays) v. hard to see[Jet substructure]

    Best hope is pp → W±H (and ZH), W± → ℓ±ν, H → bb̄.

    pp → WH → ℓνbb̄ + bkgds

    ATLAS TDR

    Conclusion (ATLAS TDR):

    “The extraction of a signal from H → bb̄decays in the WH channel will be verydifficult at the LHC, even under the mostoptimistic assumptions [...]”

    Low efficiency, huge backgrounds, e.g. tt̄

    Analysis of signal/bkgd suggests:

    ◮ Go to high pt (ptH , ptW > 200 GeV)◮ Lose 95% of signal, but more efficient?◮ Maybe kill tt̄ & gain clarity?

    W

    H

    bb

    e,µ ν

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 36 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Cluster event, C/A, R=1.2

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Fill it in, → show jets more clearly

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Consider hardest jet, m = 150 GeV

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    split: m = 150 GeV, max(m1,m2)m

    = 0.92 → repeat

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    split: m = 139 GeV, max(m1,m2)m

    = 0.37 → mass drop

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    check: y12 ≃pt2pt1

    ≃ 0.7 → OK + 2 b-tags (anti-QCD)

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Rfilt = 0.3

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Rfilt = 0.3: take 3 hardest, m = 117 GeV

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[Jet substructure]

    Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

    Rfilt = 0.3: take 3 hardest, m = 117 GeV

    Butterworth, Davison, Rubin & GPS ’08

    also earlier work by Seymour; Butterworth et al

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 37 / 40

  • “substructure” techniques haveapplications in many searches,

    e.g. tt̄ resonances

    very active field,(including MIT group!)

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 38 / 40

  • An overview of some new-physics searches[Jet substructure]

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 39 / 40

  • LHC Outlook[Outlook]

    rest of 2012

    continue running at 8 TeV to reach ∼ 30 fb−1 per experiment (a factor of 3more data than used for discovery). Higgs features should emerge more clearly

    2013

    short proton-lead runfollowed by ∼18 month shutdown to complete LHC repairs

    late 2014-

    Running at 13− 14 TeVAccumulating several 100 fb−1 over a few years

    Cover a large chunk of LHC’s potential to search for new physics

    Beyond

    LHC luminosity upgrades: factor 5-10?

    Linear collider (to study Higgs in detail)?

    Higher-energy LHC?Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 40 / 40

  • EXTRAS

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 41 / 40

  • Energy–frontier colliders of the past 25 years[Extras]

    Collider Lab Date Collided C.o.M. Energy

    Tevatron Fermilab/USA 1987 – pp̄ @ 1960 GeVSLC SLAC/USA 1989 – 1998 e+e− @ 100 GeVLEP CERN/Europe 1989 – 2000 e+e− @ 209 GeVHERA DESY/Germany 1992 – 2007 e±p @ 330 GeV

    Protons are made of quarks, anti-quarks and gluons. It’s the individualquarks and gluons that collide. Only a fraction of the proton’s energy isactually available in a single quark/gluon collision.

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 42 / 40

  • ATLAS[Extras]

  • A slice of CMS[Extras]

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 44 / 40

  • LHC has now been operating for three years[Extras][Operation]

    1995: LHC approved2000: LEP closed

    2008/09: LHC beams circulated

    2008/09: severe “incident”poor electrical connection, arc, catastrophic Helium release, much damage

    Followed by reviews, the fixes that could be made in ∼ 1 year

    2009/11: LHC starts up again, 900 GeV pp collisions2009/12: 2360 GeV pp collisions2010/03: 7000 GeV pp collisions (∼ 50 pb−1)

    “reduced-energy” target for safe operation

    2010/11: 2760 GeV PbPb collisions2011/03: 7 TeV pp collisions (∼ 5 fb−1)2011/11: 2760 GeV PbPb collisions2012/03: 8 TeV pp collisions (∼ 6 fb−1 published, ∼ 14 fb−1 delivered)Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 45 / 40

  • The challenges in reaching high energies[Extras][Operation]

    Circular e+e− collider. Basic issue is synchrotron radiation

    Energy loss per orbit ∼ E4

    m4R

    At LEP the numbers are O (10%) of the electron’s energy per orbit.

    Circular pp collider

    Proton mass 2000 times larger, so synchrotron radiation not a problem.The limitation is magnetic field needed to bend the protons round

    B ∼ ER

    Tevatron: R ∼ 1 km, Ec.o.m ∼ 2 TeV =⇒ B = 4 TeV.

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 46 / 40

  • The challenges in reaching high energies[Extras][Operation]

    Circular e+e− collider. Basic issue is synchrotron radiation

    Energy loss per orbit ∼ E4

    m4R

    At LEP the numbers are O (10%) of the electron’s energy per orbit.

    Circular pp collider

    Proton mass 2000 times larger, so synchrotron radiation not a problem.The limitation is magnetic field needed to bend the protons round

    B ∼ ER

    Tevatron: R ∼ 1 km, Ec.o.m ∼ 2 TeV =⇒ B = 4 TeV.

    So what energy do you need?

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 46 / 40

  • Higgs mass and Higgs decays?[Extras][EW precision]

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    WAtop band for mσ1

    WAtop

    68%, 95%, 99% CL fit contours excl. m

    LE

    P 9

    5% C

    L

    Tev

    atro

    n 9

    5% C

    L

    WAtop

    68%, 95%, 99% CL fit contours incl. m

    68%, 95%, 99% CL fit contours incl. WA and direct Higgs searchestopm

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    G fitter SM

    Nov 10

    Likely Higgs Mass

    There’s some likelihood thatthe Higgs boson will be“light”, MH ∼ 120 GeV

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 47 / 40

  • Higgs mass and Higgs decays?[Extras][EW precision]

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    WAtop band for mσ1

    WAtop

    68%, 95%, 99% CL fit contours excl. m

    LE

    P 9

    5% C

    L

    Tev

    atro

    n 9

    5% C

    L

    WAtop

    68%, 95%, 99% CL fit contours incl. m

    68%, 95%, 99% CL fit contours incl. WA and direct Higgs searchestopm

    [GeV]HM50 100 150 200 250 300 350 400

    [G

    eV]

    top

    m

    150

    155

    160

    165

    170

    175

    180

    185

    190

    G fitter SM

    Nov 10

    Likely Higgs Mass

    BR(H)

    bb_

    τ+τ−

    cc_

    gg

    WW

    ZZ

    tt-

    γγ Zγ

    MH [GeV]50 100 200 500 1000

    10-3

    10-2

    10-1

    1

    Higgs decayproducts v. MHMHMH

    There’s some likelihood thatthe Higgs boson will be“light”, MH ∼ 120 GeV

    If it is, crucial test of whetherit is the Higgs, will comefrom measuring several dif-ferent decays

    Remember: Higgs couplings

    intimately related to origin

    of particle masses

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 47 / 40

  • ✲�

    ✲✁✂✄

    ✁✂✄

    �✂✄

    ❉❍

    ❉❱

    ❉❢

    ❉❲

    ❉❩

    ❉t

    ❉❜

    ❉☎

    ❉❣

    ❉❩✆❲

    ❉☎✆❜

    ❉❜✆❲

    ✝① ✥ ✝①❙✞

    ✟✠✡☛①✮

    ▲☞✌✍✎✏✑✍✒✓✔ ✕✖✗✘✙✑✍✒✏✑✍✚✓✛ ✕✖✗✘ ✜✢✣✤✱ ✎✛✦ ✧▲★ ✩✕▲✩❙ ✙ ✧✞❙

    ✪✫ ✬✭✯✰

    ❞✳✴✳

    ❞✳✴✳ ✵✶☛✷✸

    ICHEP 2012

    Plehn & Rauch

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 49 / 40

  • Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 50 / 40

  • 0-jet events

    [GeV]l,lm50 100 150 200

    eve

    nts

    /6.7

    Ge

    V

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    [GeV]l,lm50 100 150 200

    eve

    nts

    /6.7

    Ge

    V

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90 =125 GeVH m data WW *γ Z/ Top VZ W+jets

    CMS Preliminary = 8 TeVs

    -1L = 5.10 fb

    [GeV]l,lm50 100 150 200

    eve

    nts

    /6.7

    Ge

    V

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    mainly WW ∗

    background

    1-jet events

    [GeV]l,lm50 100 150 200

    eve

    nts

    /6.7

    Ge

    V

    0

    5

    10

    15

    20

    25

    30

    35

    40

    [GeV]l,lm50 100 150 200

    eve

    nts

    /6.7

    Ge

    V

    0

    5

    10

    15

    20

    25

    30

    35

    40=125 GeVH m data

    WW *γ Z/ Top VZ W+jets

    CMS Preliminary = 8 TeVs

    -1L = 5.10 fb

    [GeV]l,lm50 100 150 200

    eve

    nts

    /6.7

    Ge

    V

    0

    5

    10

    15

    20

    25

    30

    35

    40

    also some tt̄background

    ≥ 2-jet events

    not usedtoo much background

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 51 / 40

  • How does anti-kt fare?[Extras]

    [anti-kt ]

    Timing v. particle multiplicity 2005

    10-4

    10-3

    10-2

    10-1

    1

    101

    102

    100 1000 10000 100000

    t / s

    N

    KtJe

    t k t

    CDF M

    idPoin

    t (see

    ds >

    0 GeV

    )

    CDF M

    idPoin

    t (seed

    s > 1 G

    eV)

    CDF J

    etClu (

    very u

    nsafe)

    3.4 GHz P4, 2 GB

    R=0.7

    Tevatron LHC lo-lumi LHC hi-lumi LHC Pb-Pb

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 52 / 40

  • How does anti-kt fare?[Extras]

    [anti-kt ]

    Timing v. particle multiplicity 2008

    10-4

    10-3

    10-2

    10-1

    1

    101

    102

    100 1000 10000 100000

    t / s

    N

    KtJe

    t k t

    CDF M

    idPoin

    t (see

    ds >

    0 GeV

    )

    CDF M

    idPoin

    t (seed

    s > 1 G

    eV)

    CDF J

    etClu (

    very u

    nsafe)

    FastJe

    t

    Seedl

    ess IR

    Safe C

    one

    (SISC

    one)

    Cam/Aac

    hen

    R=0.7

    anti-k t

    LHC lo-lumi LHC hi-lumi LHC Pb-Pb

    k t

    in critical region of N ∼ 2000− 40001000 times faster than previous attempts with similar jet algorithms

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 52 / 40

  • How does anti-kt fare?[Extras]

    [anti-kt ]

    Experimental sensitivity to noise

    As good as, orbetter than allpreviousexperimentally-favouredalgorithms

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 52 / 40

  • How does anti-kt fare?[Extras]

    [anti-kt ]

    Coefficient of “infinity”

    10-5 10-4 10-3 10-2 10-1 1

    Fraction of hard events failing IR safety test

    JetClu

    SearchCone

    PxCone

    MidPoint

    Midpoint-3

    Seedless [SM-pt]

    Seedless [SM-MIP]

    Anti-Kt, SISCone

    50.1%

    48.2%

    16.4%

    15.6%

    9.3%

    1.6%

    0.17%

    0 (none in 4x109)

    Safe for perturbative QCDpredictions:

    No “leakage” of infinitiesto higher orders

    Gavin Salam (CERN/Princeton/Paris) Higgs@LHC and QCD MIT 2012-09-06 52 / 40

    IntroductionHiggs mechanismLHCHiggs searchesQCDJetsJet substructureOutlookExtrasOperationEW precisionfits etc.WW channelanti-kt


Recommended